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A Derivation of the self-consistent equation

In this section, the detailed derivation of the self-consistent equation of the covariance matrix is
derived. Here, we recast our starting-point equation:
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A.1 Random averages overW t andA

We first take the average of exp(L1) overW t. The Gaussian integral with respect toW t yields
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where we introduce the following quantities:
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Therefore, Eq. (1) can be written as
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Note that as we will see below, ut+1, vt, ψt, and their conjugates are related to Xt, and thus the
average overXt is taken outside of their integral.

We next take the average over a random graph. In Eq. (6), only the final term in the exponent is rel-
evant to A. We denote this term as L2. We also let Ξt
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At the second line, we used the fact that ρσσ′ = O(N−1). Then, at the third line we used Ξt
ij =

O(D/N) ≪ 1. Finally, at the last line we used the symmetry of the undirected graph, ρσσ′ = ρσ′σ .

Note here that the degrees of freedom with respect to the feature dimension are factored out, and
thus the dependence on µ can be omitted. Hereafter, the same notation will be employed for the
variables without the µ-dependence. We also introduce the notation expD(f) ≡ exp(Df). The
factor inside of the average overXt in Eq. (6) can be written as follows:∫
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where
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As in the main text, we have defined Bσσ′ ≡ Nγσρσσ′γσ′ .

When D ≫ 1, the saddle-point condition of the exponent in Eq. (11) yields ut+1
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integrand of Eq. (12). Because the correlation between the auxiliary variables should be zero, owing
to causality [1, 2], we finally arrive at
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A.2 Stochastic process with a correlated noise

Here, we compare Eq. (13) with a Markovian discrete-time stochastic process yt+1
σ = ηtσ , in which

each element is correlated via a random noise, i.e., ⟨ηtσ⟩η = 0, and ⟨ηtσηtσ′⟩η = Cσσ′ for any t. The
corresponding normalization condition reads
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Analogously to the case of the GNN, we have defined Dŷt+1Dyt+1 ≡
∏

σ γσdŷ
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A.3 Self-consistent equation

Finally, we compare Eqs. (13) and (15). However, note that these are not of exactly the same form,
because the average over Xt is taken outside of the exponential in Eq. (13). Two approximations
are made in order to derive the self-consistent equation, and the assumptions that justify these ap-
proximations are discussed afterward.
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holds in the stationary limit, then the group-wise state xt can be regarded as a Gaussian variable
whose correlation matrix obeys
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This equation is still not closed, because the right-hand side of Eq. (17) depends on the statistic
of Xt, rather than xt. However, because the vertices within the group σ are statistically equivalent,
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Let us consider the first approximation that we adopted in Eq. (16). In the terminology of physics,
this is the replacement of a free energy with an internal energy, or the neglect of the entropic con-
tribution. It is difficult to evaluate this residual in general. However, note that this becomes closer
to equality as every xi approaches the same value. Therefore, this implies that the self-consistent
equation is more accurate as we approach the detectability limit, and yields an adequate estimate of
the critical value.

Let us next consider the second approximation we adopted in Eq. (17). Although the law of large
numbers with respect to ϕ(xi) (not xi) ensures that

∑
i∈Vσ

ϕ(xi)/(γσN) has a certain value char-
acterized by the group, this may be different from ϕ(xσ). In fact, the relation between these is in
general an inequality (Jensen’s inequality) when the activation function ϕ is a convex function. The
(exact) equality holds only when {xi} is constant or the function ϕ is linear within the considered
domain.

The second approximation can be justified in the following cases. The first case is when the fluctua-
tion of xi−xσi

is negligible compared to the magnitude of xσ . Note that this is the same assumption
as we made in the first approximation. To see this precisely, let us express xi as xi = xσ + zi for
i ∈ Vσ . We can formally write the probability distribution P ({xi}) of {xi} in a hierarchical fashion
as follows:
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where Pσ({xσ}) is the probability distribution with respect to x. Thus, the expectation ⟨f(X)⟩X
can be expressed as
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where P ({zi}|{xσ}) ≡ P ({xσi
+ zi}), which can be a nontrivial function. However, whenever the

contributions from the average with respect to zi are negligible, Eq. (20) implies that the expectation
in Eq. (17) can be evaluated using only the group-wise variables {xσ}. Another case is when the
activation function ϕ is almost linear within the domain over which zi fluctuates. For example, in
the case that ϕ = tanh, the present approximation does not deteriorate the accuracy even when
xσ ≈ 0. When either of these assumption holds, the equality of Jensen’s inequality is approximately
satisfied, and our derivation of the self-consistent equation is justified.

B K-means classification using ϕ(X)

Instead of XT , ϕ(XT ) can be adopted to perform the k-means classification after the feedforward
process. Again, we employ tanh as the nonlinear activation function. The results of an untrained
GNN and a trained GNN under the same experimental settings as in the main text are illustrated
in Fig. 1 and Fig. 2, respectively. In Fig. 1a, the reader should note that the range of the color
gradient is different from that in the phase diagram in the main text. For the untrained GNN, the
obtained overlaps are clearly better than that usingXT . It can be understood that the error is reduced
because the nonlinear function drives each element of the state XT to either +1 or −1, making the
classification using the k-means method easier and more accurate. On the other hand, for the trained
GNN, differences between the overlaps usingXT and ϕ(XT ) are hardly observable.

Particularly for the case of an untrained GNN in which ϕ(XT ) is adopted for the readout classifier,
the overlap gradually changes around the estimated detectability limit. This may be as result of the
strong finite-size effect. Again, note that our estimate of the detectability limit is for the case that
N → ∞.
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Figure 1: Performance of the untrained GNN using the k-means classifier with ϕ(X). (a) The
detectability phase diagram and (b) the overlaps of the SBM with c = 8 are plotted in the same
manner as in Fig. 3 in the main text. When the variation of the overlap is interpolated for each graph
size, these curves are crossed at ϵ∗ ≈ 0.33. It implies the presence of detectability phase transition
around the value of ϵ predicted by our mean-field estimate.
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Figure 2: Performance of the trained GNN using the classifier with ϕ(X). For (a) and (b), the
overlaps are plotted in the same manner as in Fig. 4 in the main text, respectively.
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