
A Domain Specific Language

We adopt a Lisp-like domain specific language with certain built-in functions. A program C is a list
of expressions pc1...cN q, where each expression is either a special token “EOS" indicating the end of
the program, or a list of tokens enclosed by parentheses “pFA1...AK

q". F is a function, which takes
as input K arguments of specific types. Table A defines the arguments, return value and semantics
of each function. In the table domain, there are rows and columns. The value of the table cells can
be number, date time or string, so we also categorize the columns into number columns, date time
columns and string columns depending on the type of the cell values in the column.

Function Arguments Returns Description
(hop v p) v: a list of rows. a list of cells. Select the given column of the

p: a column. given rows.

(argmax v p) v: a list of rows. a list of rows. From the given rows, select the
(argmin v p) p: a number or date ones with the largest / smallest

column. value in the given column.

(filter° v q p) v: a list of rows. a list of rows. From the given rows, select the ones
(filter• v q p) q: a number or date. whose given column has certain
(filter† v q p) p: a number or date order relation with the given value.
(filter§ v q p) column.
(filter“ v q p)
(filter‰ v q p)

(filter
in

v q p) v: a list of rows. a list of rows. From the given rows, select the
(filter!in v q p) q: a string. ones whose given column contain

p: a string column. / do not contain the given string.

(first v) v: a list of rows. a row. From the given rows, select the one
(last v) with the smallest / largest index.

(previous v) v: a row. a row. Select the row that is above
(next v) / below the given row.

(count v) v: a list of rows. a number. Count the number of given rows.

(max v p) v: a list of rows. a number. Compute the maximum / minimum
(min v p) p: a number column. / average / sum of the given column
(average v p) in the given rows.
(sum v p)

(mode v p) v: a list of rows. a cell. Get the most common value of the
p: a column. given column in the given rows.

(same_as v p) v: a row. a list of rows. Get the rows whose given column is
p: a column. the same as the given row.

(diff v0 v1 p) v0: a row. a number. Compute the difference in the given
v1: a row. column of the given two rows.
p: a number column.

Table 5: Functions used in the experiments.

In the WIKITABLEQUESTIONS experiments, we used all the functions in the table. In the WIKISQL
experiments, because the semantics of the questions are simpler, we used a subset of the functions
(hop, filter“, filter

in

, filter°, filter†, count, maximum, minimum, average and sum). We created the
functions according to [67, 34].2

2The only function we have added to capture some complex semantics is the same_as function, but it only
appears in 1.2% of the generated programs (among which 0.6% are correct and the other 0.6% are incorrect),
so even if we remove it, the significance of the difference in Table 3 will not change.

14



B Examples of Generated Programs

The following table shows examples of several types of programs generated by a trained model.

Statement Comment

Superlative
nt-13901: the most points were scored by which player?
(argmax all_rows r.points-num) Sort all rows by column ‘points’ and take the first row.
(hop v0 r.player-str) Output the value of column ‘player’ for the rows in v0.

Difference
nt-457: how many more passengers flew to los angeles than to saskatoon?
(filterin all_rows [’saskatoon’] r.city-str) Find the row with ‘saskatoon’ matched in column ‘city’.
(filterin all_rows [‘los angeles’] r.city-str) Find the row with ‘los angeles’ matched in column ‘city’.
(diff v1 v0 r.passengers-num) Calculate the difference of the values

in the column ‘passenger’ of v0 and v1.

Before / After
nt-10832: which nation is before peru?
(filterin all_rows [‘peru’] r.nation-str) Find the row with ‘peru’ matched in ‘nation’ column.
(previous v0) Find the row before v0.
(hop v1 r.nation-str) Output the value of column ‘nation’ of v1.

Compare & Count
nt-647: in how many games did sri lanka score at least 2 goals?
(filter• all_rows [2] r.score-num) Select the rows whose value in the ‘score’ column >= 2.
(count v0) Count the number of rows in v0.

Exclusion
nt-1133: other than william stuart price, which other businessman was born in tulsa?
(filterin all_rows [‘tulsa’] r.hometown-str) Find rows with ‘tulsa’ matched in column ‘hometown’.
(filter!in v0 [‘william stuart price’] r.name-str) Drop rows with ‘william stuart price’ matched in the

value of column ‘name’.
(hop v1 r.name-str) Output the value of column ‘name’ of v1.

Table 6: Example programs generated by a trained model.

C Analysis of Sampling from Inside and Outside Memory Buffer

In the following we give theoretical analysis of the distributed sampling approaches. For the purpose
of the analysis we assume binary rewards, and exhaustive exploration, that the buffer B` ” B
contains all the high reward samples, and B´ ” A ´ B

a

contains all the non-rewarded samples. It
provides a general guidance of how examples should be allocated on the experiences and whether to
use baseline or not so that the variance of gradient estimations can be minimized. In our work, we
take the simpler approach to not use baseline and leave the empirical investigation to future work.

C.1 Variance: baseline vs no baseline

Here we compare baseline strategies based on their variances of gradient estimations. We thank
Wenyun Zuo’s suggestion in approximating the variances.

Assume �

2
` “ V ar

a„⇡

`
✓ paqrr log ⇡paqs and �

2
´ “ V ar

a„⇡

´
✓ paqrr log ⇡paqs are the variance of the

gradient of the log likelihood inside and outside the buffer. If we don’t use a baseline, the the optimal
sampling strategy is to only sample from B. The variance of the gradient estimation is

VarrrOERs « ⇡

✓

pBq2�2
` (9)

15



If we use a baseline b “ ⇡

✓

pBq and apply the optimal sampling allocation (Section C.2), then the
variance of the gradient estimation is

VarrrOERs
b

« ⇡

✓

pBq2p1 ´ ⇡

✓

pBqq2p�2
` ` �

2
´q (10)

We can prove that both of these estimators reduce the variance for the gradient estimation. To compare
the two, we can see that the ratio of the variance with and without baseline is

VarrrOERs
b

VarrrOERs “ p1 ` �

2
´

�

2`
qp1 ´ ⇡

✓

pBqq2 (11)

So using baseline provides lower variance when ⇡

✓

pBq « 1.0, which roughly corresponds to the later
stage of training, and when �´ is not much larger than �`; it is better to not use baselines when
⇡

✓

pBq is not close to 1.0 or when �´ is much larger than �`.

C.2 Optimal Sample Allocation

Given that we want to apply stratified sampling to estimate the gradient of REINFORCE with
baseline 2, here we show that the optimal sampling strategy is to allocate the same number of samples
to B and A ´ B.

Assume that the gradient of log likelihood has similar variance on B and A ´ B:
Var

⇡

`
✓ paqrr log ⇡

✓

paqs « Var

⇡

´
✓ paqrr log ⇡

✓

paqs “ �

2 (12)

The variance of gradient estimation on B and A ´ B are:

Var

⇡

`
✓ paqrp1 ´ ⇡

✓

pBqqr log ⇡

✓

paqs “p1 ´ ⇡

✓

pBqq2 ˚ �

2

Var

⇡

´
✓ paqrp´⇡

✓

pBqqr log ⇡

✓

paqs “⇡

✓

pBq2 ˚ �

2
(13)

When performing stratified sampling, the optimal sample allocation is to let the number of samples
from a stratum be proportional to its probability mass times the standard deviation P

i

�

i

In other
words, the more probability mass and the more variance a stratum has, the more samples we should
draw from a stratum. So the ratio of the number of samples allocated to each stratum under the
optimal sample allocation is

k

`

k

´ “
⇡

✓

pBq
b

Var

⇡

`
✓ paq

1 ´ ⇡

✓

pBq
b

Var

⇡

´
✓ paq

(14)

Using equation 13, we can see that
k

`

k

´ “ 1 (15)

So the optimal strategy is to allocate the same number of samples to B and A ´ B.

D Distributed Actor-Learner Architecture

Figure 4: Distributed actor-learner architecture.

Using 30 CPUs, each running one actor, and 2 GPUs, one for training and one for evaluating on dev
set, the experiment finishes in about 3 hours on WikiTableQuestions and about 7 hours on WikiSQL.

16



E Pruning Rules for Random Exploration on WikiTableQuestions

The pruning rules are inspired by the grammar [67]. It can be seen as trigger words or POS tags for a
subset of the functions. For the functions included, they are only allowed when at least one of the
trigger words / tags appears in the sentence. For the other functions that are not included, there isn’t
any constraints. Also note that these rules are only used during random exploration. During training
and evaluation, the rules are not applied.

Function Triggers
count how, many, total, number

filter!in not, other, besides

first first, top

last last, bottom

argmin JJR, JJS, RBR, RBS, top, first, bottom, last

argmax JJR, JJS, RBR, RBS, top, first, bottom, last

sum all, combine, total

average average

maximum JJR, JJS, RBR, RBS

minimum JJR, JJS, RBR, RBS

mode most

previous next, previous, after, before, above, below

next next, previous, after, before, above, below

same same

diff difference, more, than

filter• RBR, JJR, more, than, least, above, after

filter§ RBR, JJR, less, than, most, below, before, under

filter° RBR, JJR, more, than, least, above, after

filter† RBR, JJR, less, than, most, below, before, under

Table 7: Pruning rules used during random exploration on WikiTableQuestions.

17


	Introduction
	The Problem of Weakly Supervised Contextual Program Synthesis
	Optimization of Expected Return via Policy Gradients
	MAPO: Memory Augmented Policy Optimization
	Memory Weight Clipping
	Systematic Exploration
	Distributed Sampling
	Final Algorithm

	Experiments
	Experimental setup
	Comparison to baselines 
	Comparison to state-of-the-art
	Analysis of Memory Weight Clipping

	Related work
	Conclusion
	Domain Specific Language
	Examples of Generated Programs
	Analysis of Sampling from Inside and Outside Memory Buffer
	Variance: baseline vs no baseline
	Optimal Sample Allocation

	Distributed Actor-Learner Architecture
	Pruning Rules for Random Exploration on WikiTableQuestions

