
Memory Augmented Policy Optimization for
Program Synthesis and Semantic Parsing

Chen Liang
Google Brain

crazydonkey200@gmail.com

Mohammad Norouzi
Google Brain

mnorouzi@google.com

Jonathan Berant
Tel-Aviv University, AI2

joberant@cs.tau.ac.il

Quoc Le
Google Brain

qvl@google.com

Ni Lao
SayMosaic Inc.

ni.lao@mosaix.ai

Abstract
We present Memory Augmented Policy Optimization (MAPO), a simple and novel
way to leverage a memory buffer of promising trajectories to reduce the variance
of policy gradient estimates. MAPO is applicable to deterministic environments
with discrete actions, such as structured prediction and combinatorial optimization.
Our key idea is to express the expected return objective as a weighted sum of two
terms: an expectation over the high-reward trajectories inside a memory buffer,
and a separate expectation over trajectories outside of the buffer. To design an
efficient algorithm based on this idea, we propose: (1) memory weight clipping to
accelerate and stabilize training; (2) systematic exploration to discover high-reward
trajectories; (3) distributed sampling from inside and outside of the memory buffer
to speed up training. MAPO improves the sample efficiency and robustness of
policy gradient, especially on tasks with sparse rewards. We evaluate MAPO on
weakly supervised program synthesis from natural language (semantic parsing). On
the WIKITABLEQUESTIONS benchmark, we improve the state-of-the-art by 2.6%,
achieving an accuracy of 46.3%. On the WIKISQL benchmark, MAPO achieves
an accuracy of 74.9% with only weak supervision, outperforming several strong
baselines with full supervision. Our source code is available at goo.gl/TXBp4e.

1 Introduction
There has been a recent surge of interest in applying policy gradient methods to various application
domains including program synthesis [26, 17, 68, 10], dialogue generation [25, 11], architecture
search [69, 71], game [53, 31] and continuous control [44, 50]. Simple policy gradient methods
like REINFORCE [58] use Monte Carlo samples from the current policy to perform an on-policy
optimization of the expected return objective. This often leads to unstable learning dynamics and
poor sample efficiency, sometimes even underperforming random search [30].

The difficulty of gradient based policy optimization stems from a few sources: (1) policy gradient
estimates have a large variance; (2) samples from a randomly initialized policy often attain small
rewards, resulting in a slow training progress in the initial phase (cold start); (3) random policy
samples do not explore the search space efficiently and systematically. These issues can be especially
prohibitive in applications such as program synthesis and robotics [4] where the search space is large
and the rewards are delayed and sparse. In such domains, a high reward is only achieved after a long
sequence of correct actions. For instance, in program synthesis, only a few programs in the large
combinatorial space of programs may correspond to the correct functional form. Unfortunately,
relying on policy samples to explore the space often leads to forgetting a high reward trajectory unless
it is re-sampled frequently [26, 3].

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://goo.gl/TXBp4e

Learning through reflection on past experiences (“experience replay”) is a promising direction to
improve data efficiency and learning stability. It has recently been widely adopted in various deep
RL algorithms, but its theoretical analysis and empirical comparison are still lacking. As a result,
defining the optimal strategy for prioritizing and sampling from past experiences remain an open
question. There has been various attempts to incorporate off-policy samples within the policy gradient
framework to improve the sample efficiency of the REINFORCE and actor-critic algorithms (e.g.,
[12, 57, 51, 15]). Most of these approaches utilize samples from an old policy through (truncated)
importance sampling to obtain a low variance, but biased estimate of the gradients. Previous work
has aimed to incorporate a replay buffer into policy gradient in the general RL setting of stochastic
dynamics and possibly continuous actions. By contrast, we focus on deterministic environments with
discrete actions and develop an unbiased policy gradient estimator with low variance (Figure 1).

This paper presents MAPO: a simple and novel way to incorporate a memory buffer of promising
trajectories within the policy gradient framework. We express the expected return objective as
a weighted sum of an expectation over the trajectories inside the memory buffer and a separate
expectation over unknown trajectories outside of the buffer. The gradient estimates are unbiased
and attain lower variance. Because high-reward trajectories remain in the memory, it is not possible
to forget them. To make an efficient algorithm for MAPO, we propose 3 techniques: (1) memory
weight clipping to accelerate and stabilize training; (2) systematic exploration of the search space to
efficiently discover the high-reward trajectories; (3) distributed sampling from inside and outside of
the memory buffer to scale up training;

We assess the effectiveness of MAPO on weakly supervised program synthesis from natural lan-
guage (see Section 2). Program synthesis presents a unique opportunity to study generalization
in the context of policy optimization, besides being an important real world application. On the
challenging WIKITABLEQUESTIONS [39] benchmark, MAPO achieves an accuracy of 46.3% on the
test set, significantly outperforming the previous state-of-the-art of 43.7% [67]. Interestingly, on the
WIKISQL [68] benchmark, MAPO achieves an accuracy of 74.9% without the supervision of gold
programs, outperforming several strong fully supervised baselines.

2 The Problem of Weakly Supervised Contextual Program Synthesis

Year Venue Position Event Time
2001 Hungary 2nd 400m 47.12
2003 Finland 1st 400m 46.69
2005 Germany 11th 400m 46.62
2007 Thailand 1st relay 182.05
2008 China 7th relay 180.32

Table 1: x: Where did the last 1st place
finish occur? y: Thailand

Consider the problem of learning to map a natural lan-
guage question x to a structured query a in a program-
ming language such as SQL (e.g., [68]), or converting a
textual problem description into a piece of source codeas
in programming competitions (e.g., [5]). We call these
problems contextual program synthesis and aim at tack-
ling them in a weakly supervised setting – i.e., no correct
action sequence a, which corresponds to a gold program,
is given as part of the training data, and training needs to
solve the hard problem of exploring a large program space.
Table 1 shows an example question-answer pair. The model needs to first discover the programs that
can generate the correct answer in a given context, and then learn to generalize to new contexts.

We formulate the problem of weakly supervised contextual program synthesis as follows: to generate
a program by using a parametric function, ˆa “ fpx; ✓q, where ✓ denotes the model parameters. The
quality of a program ˆ

a is measured by a scoring or reward function Rpˆa | x,yq. The reward function
may evaluate a program by executing it on a real environment and comparing the output against the
correct answer. For example, it is natural to define a binary reward that is 1 when the output equals
the answer and 0 otherwise. We assume that the context x includes both a natural language input and
an environment, for example an interpreter or a database, on which the program will be executed.
Given a dataset of context-answer pairs, tpx

i

,y

i

quN
i“1, the goal is to find optimal parameters ✓˚ that

parameterize a mapping of x Ñ a with maximum empirical return on a heldout test set.

One can think of the problem of contextual program synthesis as an instance of reinforcement learning
(RL) with sparse terminal rewards and deterministic transitions, for which generalization plays a key
role. There has been some recent attempts in the RL community to study generalization to unseen
initial conditions (e.g. [45, 35]). However, most prior work aims to maximize empirical return on
the training environment [6, 9]. The problem of contextual program synthesis presents a natural
application of RL for which generalization is the main concern.

2

3 Optimization of Expected Return via Policy Gradients
To learn a mapping of (context x) Ñ (program a), we optimize the parameters of a conditional
distribution ⇡

✓

pa | xq that assigns a probability to each program given the context. That is, ⇡
✓

is a
distribution over the countable set of all possible programs, denoted A. Thus @a P A : ⇡

✓

pa | xq • 0

and
∞

aPA ⇡

✓

pa | xq “ 1. Then, to synthesize a program for a novel context, one finds the most likely
program under the distribution ⇡

✓

via exact or approximate inference ˆ

a « argmax

aPA ⇡

✓

pa | xq .
Autoregressive models present a tractable family of distributions that estimates the probability of a
sequence of tokens, one token at a time, often from left to right. To handle variable sequence length,
one includes a special end-of-sequence token at the end of the sequences. We express the probability
of a program a given x as ⇡

✓

pa | xq ” ±|a|
i“t

⇡

✓

pa
t

| a†t

,xq ,where a†t

” pa1, . . . , at´1q
denotes a prefix of the program a. One often uses a recurrent neural network (e.g. [20]) to predict the
probability of each token given the prefix and the context.

In the absence of ground truth programs, policy gradient techniques present a way to optimize the
parameters of a stochastic policy ⇡

✓

via optimization of expected return. Given a training dataset
of context-answer pairs, tpx

i

,y

i

quN
i“1, the objective is expressed as E

a„⇡✓pa|xq Rpa | x,yq. The
reward function Rpa | x,yq evaluates a complete program a, based on the context x and the correct
answer y. These assumptions characterize the problem of program synthesis well, but they also apply
to many other discrete optimization and structured prediction domains.

Simplified notation. In what follows, we simplify the notation by dropping the dependence of the
policy and the reward on x and y. We use a notation of ⇡

✓

paq instead of ⇡
✓

pa | xq and Rpaq instead
of Rpa | x,yq, to make the formulation less cluttered, but the equations hold in the general case.

We express the expected return objective in the simplified notation as,

OERp✓q “
ÿ

aPA
⇡

✓

paq Rpaq “ E
a„⇡✓paq Rpaq . (1)

The REINFORCE [58] algorithm presents an elegant and convenient way to estimate the gradient of
the expected return (1) using Monte Carlo (MC) samples. Using K trajectories sampled i.i.d. from
the current policy ⇡

✓

, denoted tap1q
, . . . ,a

pKqu, the gradient estimate can be expressed as,

r
✓

OERp✓q “ E
a„⇡✓paq r log ⇡

✓

paq Rpaq « 1

K

K

ÿ

k“1

r log ⇡

✓

papkqq rRpapkqq ´ bs , (2)

where a baseline b is subtracted from the returns to reduce the variance of gradient estimates.
This formulation enables direct optimization of OER via MC sampling from an unknown search
space, which also serves the purpose of exploration. To improve such exploration behavior, one
often includes the entropy of the policy as an additional term inside the objective to prevent early
convergence. However, the key limitation of the formulation stems from the difficulty of estimating
the gradients accurately only using a few fresh samples.

4 MAPO: Memory Augmented Policy Optimization
We consider an RL environment with a finite number of discrete actions, deterministic transitions, and
deterministic terminal returns. In other words, the set of all possible action trajectories A is countable,
even though possibly infinite, and re-evaluating the return of a trajectory Rpaq twice results in the
same value. These assumptions characterize the problem of program synthesis well, but also apply to
many structured prediction problems [47, 37] and combinatorial optimization domains (e.g., [7]).

To reduce the variance in gradient estimation and prevent forgetting high-reward trajectories, we
introduce a memory buffer, which saves a set of promising trajectories denoted B ” tpapiqquM

i“1.
Previous works [26, 2, 60] utilized a memory buffer by adopting a training objective similar to

OAUGp✓q “ �OERp✓q ` p1 ´ �q
ÿ

aPB
log ⇡

✓

paq, (3)

which combines the expected return objective with a maximum likelihood objective over the memory
buffer B. This training objective is not directly optimizing the expected return any more because the
second term introduces bias into the gradient. When the trajectories in B are not gold trajectories

3

Figure 1: Overview of MAPO compared with experience replay using importance sampling.

but high-reward trajectories collected during exploration, uniformly maximizing the likelihood of
each trajectory in B could be problematic. For example, in program synthesis, there can sometimes
be spurious programs [40] that get the right answer, thus receiving high reward, for a wrong reason,
e.g., using 2 ` 2 to answer the question “what is two times two”. Maximizing the likelihood of those
high-reward but spurious programs will bias the gradient during training.

We aim to utilize the memory buffer in a principled way. Our key insight is that one can re-express
the expected return objective as a weighted sum of two terms: an expectation over the trajectories
inside the memory buffer, and a separate expectation over the trajectories outside the buffer,

OERp✓q “
ÿ

aPB
⇡

✓

paq Rpaq `
ÿ

aPpA´Bq
⇡

✓

paq Rpaq (4)

“ ⇡B E
a„⇡

`
✓ paq Rpaq

looooooomooooooon

Expectation inside B

` p1 ´ ⇡Bq E
a„⇡

´
✓ paq Rpaq

looooooomooooooon

Expectation outside B

, (5)

where A ´ B denotes the set of trajectories not included in the memory buffer, ⇡B “ ∞

aPB ⇡

✓

paq
denote the total probability of the trajectories in the buffer, and ⇡

`
✓

paq and ⇡

´
✓

paq denote a normalized
probability distribution inside and outside of the buffer,

⇡

`
✓

paq “
"

⇡

✓

paq{⇡B if a P B
0 if a R B , ⇡

´
✓

paq “
"

0 if a P B
⇡

✓

paq{p1 ´ ⇡Bq if a R B . (6)

The policy gradient can be expressed as,

r
✓

OERp✓q “ ⇡B E
a„⇡

`
✓ paq r log ⇡

✓

paqRpaq ` p1 ´ ⇡BqE
a„⇡

´
✓ paq r log ⇡

✓

paqRpaq. (7)

The second expectation can be estimated by sampling from ⇡

´
✓

paq, which can be done through
rejection sampling by sampling from ⇡

✓

paq and rejecting the sample if a P B. If the memory
buffer only contains a small number of trajectories, the first expectation can be computed exactly
by enumerating all the trajectories in the buffer. The variance in gradient estimation is reduced
because we get an exact estimate of the first expectation while sampling from a smaller stochastic
space of measure p1 ´ ⇡Bq. If the memory buffer contains a large number of trajectories, the first
expectation can be approximated by sampling. Then, we get a stratified sampling estimator of the
gradient. The trajectories inside and outside the memory buffer are two mutually exclusive and
collectively exhaustive strata, and the variance reduction still holds. The weights for the first and
second expectations are ⇡B and 1 ´ ⇡B respectively. We call ⇡B the memory weight.

In the following we present 3 techniques to make an efficient algorithm of MAPO.

4.1 Memory Weight Clipping
Policy gradient methods usually suffer from a cold start problem. A key observation is that a “bad”
policy, one that achieves low expected return, will assign small probabilities to the high-reward
trajectories, which in turn causes them to be ignored during gradient estimation. So it is hard to
improve from a random initialization, i.e., the cold start problem, or to recover from a bad update,
i.e., the brittleness problem. Ideally we want to force the policy gradient estimates to pay at least
some attention to the high-reward trajectories. Therefore, we adopt a clipping mechanism over the

4

memory weight ⇡B, which ensures that the memory weight is greater or equal to ↵, i.e. ,⇡B • ↵,
otherwise clips it to ↵. So the new gradient estimate is,

r
✓

Oc

ERp✓q “ ⇡

c

B E
a„⇡

`
✓ paq r log ⇡

✓

paqRpaq ` p1 ´ ⇡

c

BqE
a„⇡

´
✓ paq r log ⇡

✓

paqRpaq, (8)

where ⇡

c

B “ maxp⇡B,↵q is the clipped memory weight. At the beginning of training, the clipping is
active and introduce a bias, but accelerates and stabilizes training. Once the policy is off the ground,
the memory weights are almost never clipped given that they are naturally larger than ↵ and the
gradients are not biased any more. See section 5.4 for an empirical analysis of the clipping.

4.2 Systematic Exploration Algorithm 1 Systematic Exploration
Input: context x, policy ⇡, fully
explored sub-sequences Be, high-
reward sequences B
Initialize: empty sequence a0:0

while true do
V “ ta | a0:t´1}a R B

eu
if V ““ H then

Be – Be Y a0:t´1

break
sample a

t

„ ⇡

V pa|a0:t´1q
a0:t – a0:t´1}a

t

if a
t

““ EOS then
if Rpa0:tq ° 0 then

B – B Y a0:t

Be – Be Y a0:t

break

To discover high-reward trajectories for the memory buffer B,
we need to efficiently explore the search space. Exploration
using policy samples suffers from repeated samples, which
is a waste of computation in deterministic environments. So
we propose to use systematic exploration to improve the ef-
ficiency. More specifically we keep a set Be of fully explored
partial sequences, which can be efficiently implemented using
a bloom filter. Then, we use it to enforce a policy to only
take actions that lead to unexplored sequences. Using a bloom
filter we can store billions of sequences in Be with only sev-
eral gigabytes of memory. The pseudo code of this approach
is shown in Algorithm 1. We warm start the memory buffer
using systematic exploration from random policy as it can be
trivially parallelized. In parallel to training, we continue the
systematic exploration with the current policy to discover new
high reward trajectories.

4.3 Distributed Sampling
Algorithm 2 MAPO

Input: data tpx
i

,y

i

quN
i“1, memories

tpB
i

,Be

i

quN
i“1, constants ↵, ✏, M

repeat ô for all actors
Initialize training batch D – H
Get a batch of inputs C
for px

i

,y

i

,Be

i

,B
i

q P C do
Algorithm1px

i

,⇡

old

✓

,Be

i

,B
i

q
Sample a

`
i

„ ⇡

old

✓

over B
i

w

`
i

– maxp⇡old

✓

pB
i

q,↵q
D – D Y pa`

i

, Rpa`
i

q, w`
i

q
Sample a

i

„ ⇡

old

✓

if a
i

R B
i

then
w

i

– p1 ´ w

`
i

q
D – D Y pa

i

, Rpa
i

q, w
i

q
Push D to training queue

until converge or early stop
repeat ô for the learner

Get a batch D from training queue
for pa

i

, Rpa
i

q, w
i

q P D do
d✓ – d✓ ` w

i

Rpa
i

q r log ⇡

✓

pa
i

q
update ✓ using d✓

⇡

old

✓

– ⇡

✓

ô once every M batches
until converge or early stop
Output: final parameters ✓

An exact computation of the first expectation of (5)
requires an enumeration over the memory buffer. The
cost of gradient computation will grow linearly w.r.t
the number of trajectories in the buffer, so it can be
prohibitively slow when the buffer contains a large
number of trajectories. Alternatively, we can ap-
proximate the first expectation using sampling. As
mentioned above, this can be viewed as stratified
sampling and the variance is still reduced. Although
the cost of gradient computation now grows linearly
w.r.t the number of samples instead of the total num-
ber of trajectories in the buffer, the cost of sampling
still grows linearly w.r.t the size of the memory buffer
because we need to compute the probability of each
trajectory with the current model.

A key insight is that if the bottleneck is in sampling,
the cost can be distributed through an actor-learner
architecture similar to [15]. See the Supplemental
Material D for a figure depicting the actor-learner
architecture. The actors each use its model to sample
trajectories from inside the memory buffer through
renormalization (⇡`

✓

in (6)), and uses rejection sam-
pling to pick trajectories from outside the memory
(⇡´

✓

in (6)). It also computes the weights for these
trajectories using the model. These trajectories and
their weights are then pushed to a queue of samples.
The learner fetches samples from the queue and uses
them to compute gradient estimates to update the parameters. By distributing the cost of sampling
to a set of actors, the training can be accelerated almost linearly w.r.t the number of actors. In our
experiments, we got a „20 times speedup from distributed sampling with 30 actors.

5

4.4 Final Algorithm
The final training procedure is summarized in Algorithm 2. As mentioned above, we adopt the
actor-learner architecture for distributed training. It uses multiple actors to collect training samples
asynchronously and one learner for updating the parameters based on the training samples. Each actor
interacts with a set of environments to generate new trajectories. For efficiency, an actor uses a stale
policy (⇡old

✓

), which is often a few steps behind the policy of the learner and will be synchronized
periodically. To apply MAPO, each actor also maintains a memory buffer B

i

to save the high-reward
trajectories. To prepare training samples for the learner, the actor picks n

b

samples from inside B
i

and
also performs rejection sampling with n

o

on-policy samples, both according to the actor’s policy ⇡

old

✓

.
We then use the actor policy to compute a weight maxp⇡

✓

pBq,↵q for the samples in the memory
buffer, and use 1 ´ maxp⇡

✓

pBq,↵q for samples outside of the buffer. These samples are pushed to a
queue and the learner reads from the queue to compute gradients and update the parameters.

5 Experiments
We evaluate MAPO on two program synthesis from natural language (also known as semantic
parsing) benchmarks, WIKITABLEQUESTIONS and WIKISQL, which requires generating programs
to query and process data from tables to answer natural language questions. We first compare
MAPO to four common baselines, and ablate systematic exploration and memory weight clipping
to show their utility. Then we compare MAPO to the state-of-the-art on these two benchmarks. On
WIKITABLEQUESTIONS, MAPO is the first RL-based approach that significantly outperforms the
previous state-of-the-art. On WIKISQL, MAPO trained with weak supervision (question-answer
pairs) outperforms several strong models trained with full supervision (question-program pairs).

5.1 Experimental setup
Datasets. WIKITABLEQUESTIONS [39] contains tables extracted from Wikipedia and question-
answer pairs about the tables. See Table 1 as an example. There are 2,108 tables and 18,496 question-
answer pairs splitted into train/dev/test set.. We follow the construction in [39] for converting a table
into a directed graph that can be queried, where rows and cells are converted to graph nodes while
column names become labeled directed edges. For the questions, we use string match to identify
phrases that appear in the table. We also identify numbers and dates using the CoreNLP annotation
released with the dataset. The task is challenging in several aspects. First, the tables are taken from
Wikipedia and cover a wide range of topics. Second, at test time, new tables that contain unseen
column names appear. Third, the table contents are not normalized as in knowledge-bases like
Freebase, so there are noises and ambiguities in the table annotation. Last, the semantics are more
complex comparing to previous datasets like WEBQUESTIONSSP [62]. It requires multiple-step
reasoning using a large set of functions, including comparisons, superlatives, aggregations, and
arithmetic operations [39]. See Supplementary Material A for more details about the functions.

WIKISQL [68] is a recent large scale dataset on learning natural language interfaces for databases.
It also uses tables extracted from Wikipedia, but is much larger and is annotated with programs
(SQL). There are 24,241 tables and 80,654 question-program pairs splitted into train/dev/test set.
Comparing to WIKITABLEQUESTIONS, the semantics are simpler because the SQLs use fewer
operators (column selection, aggregation, and conditions). We perform similar preprocessing as for
WIKITABLEQUESTIONS. Most of the state-of-the-art models relies on question-program pairs for
supervised training, while we only use the question-answer pairs for weakly supervised training.

Model architecture. We adopt the Neural Symbolic Machines framework[26], which combines (1)
a neural “programmer”, which is a seq2seq model augmented by a key-variable memory that can
translate a natural language utterance to a program as a sequence of tokens, and (2) a symbolic
“computer”, which is an Lisp interpreter that implements a domain specific language with built-in
functions and provides code assistance by eliminating syntactically or semantically invalid choices.

For the Lisp interpreter, we added functions according to [67, 34] for WIKITABLEQUESTIONS
experiments and used the subset of functions equivalent to column selection, aggregation, and
conditions for WIKISQL. See the Supplementary Material A for more details about functions used.

We implemented the seq2seq model augmented with key-variable memory from [26] in Tensor-
Flow [1]. Some minor differences are: (1) we used a bi-directional LSTM for the encoder; (2) we
used two-layer LSTM with skip-connections in both the encoder and decoder. GloVe [43] embeddings
are used for the embedding layer in the encoder and also to create embeddings for column names by

6

Figure 2: Comparison of MAPO and 3 baselines’ dev set accuracy curves. Results on WIKITABLE-
QUESTIONS is on the left and results on WIKISQL is on the right. The plot is average of 5 runs with
a bar of one standard deviation. The horizontal coordinate (training steps) is in log scale.

averaging the embeddings of the words in a name. Following [34, 24], we also add a binary feature
in each step of the encoder, indicating whether this word is found in the table, and an integer feature
for a column name counting how many of the words in the column name appear in the question. For
the WIKITABLEQUESTIONS dataset, we use the CoreNLP annotation of numbers and dates released
with the dataset. For the WIKISQL dataset, only numbers are used, so we use a simple parser to
identify and parse the numbers in the questions, and the tables are already preprocessed. The tokens
of the numbers and dates are anonymized as two special tokens <NUM> and <DATE>. The hidden
size of the LSTM is 200. We keep the GloVe embeddings fixed during training, but project it to 200

dimensions using a trainable linear transformation. The same architecture is used for both datasets.

Training Details. We first apply systematic exploration using a random policy to discover high-
reward programs to warm start the memory buffer of each example. For WIKITABLEQUESTIONS,
we generated 50k programs per example using systematic exploration with pruning rules inspired by
the grammars from [67] (see Supplementary E). We apply 0.2 dropout on both encoder and decoder.
Each batch includes samples from 25 examples. For experiments on WIKISQL, we generated 1k
programs per example due to computational constraint. Because the dataset is much larger, we don’t
use any regularization. Each batch includes samples from 125 examples. We use distributed sampling
for WIKITABLEQUESTIONS. For WIKISQL, due to computational constraints, we truncate each
memory buffer to top 5 and then enumerate all 5 programs for training. For both experiments, the
samples outside memory buffer are drawn using rejection sampling from 1 on-policy sample per
example. At inference time, we apply beam search of size 5. We evaluate the model periodically on
the dev set to select the best model. We apply a distributed actor-learner architecture for training. The
actors use CPUs to generate new trajectories and push the samples into a queue. The learner reads
batches of data from the queue and uses GPU to accelerate training (see Supplementary D). We use
Adam optimizer for training and the learning rate is 10´3. All the hyperparameters are tuned on the
dev set. We train the model for 25k steps on WikiTableQuestions and 15k steps on WikiSQL.

5.2 Comparison to baselines
We first compare MAPO against the following baselines using the same neural architecture.
¤ REINFORCE: We use on-policy samples to estimate the gradient of expected return as in (2), not
utilizing any form of memory buffer.
¤ MML: Maximum Marginal Likelihood maximizes the marginal probability of the memory buffer
as in OMMLp✓q “ 1

N

∞

i

log

∞

aPBi
⇡

✓

paq “ 1
N

log

±

i

∞

aPBi
⇡

✓

paq. Assuming binary rewards
and assuming that the memory buffer contains almost all of the trajectories with a reward of 1,
MML optimizes the marginal probability of generating a rewarding program. Note that under these
assumptions, expected return can be expressed as OERp✓q « 1

N

∞

i

∞

aPBi
⇡

✓

paq. Comparing the two
objectives, we can see that MML maximizes the product of marginal probabilities, whereas expected
return maximizes the sum. More discussion of these two objectives can be found in [17, 36, 48].
¤ Hard EM: Expectation-Maximization algorithm is commonly used to optimize the marginal
likelihood in the presence of latent variables. Hard EM uses the samples with the highest probability

7

