
A Derivation of the Kronecker factorization of the diagonal blocks of the
Hessian

Martens and Grosse [23] and Botev et al. [2] both develop block-diagonal Kronecker factored ap-
proximations to the Fisher and Gauss-Newton matrix of fully connected neural networks respectively,
which in turn both are positive semi-definite approximations of the Hessian. Both use their ap-
proximations for optimization, hence the positive semi-definiteness is crucial in order to prevent
parameter updates that increase the loss. We require this property as well, as we perform a Laplace
approximation and the Normal distribution requires its covariance to be positive semi-definite.

In the following, we provide the basic derivation for the diagonal blocks of the Hessian being
Kronecker factored as developed in [2] and state the recursion for calculating the pre-activation
Hessian.

We denote a neural network as taking an input a0 = x and producing an output hL. The input is
passed through layers l = 1, . . . , L as linear pre-activations hl = Wlal−1 and non-linear activations
al = fl(hl), where Wl denotes the weight matrix and fl the elementwise activation function. Bias
terms can be absorbed into Wl by appending a 1 to every al. The weights are optimized w.r.t. an
error function E(y, hL), which can usually be expressed as a negative log likelihood.

Using the chain rule, the gradient of the error function w.r.t. an individual weight can be calculated
as:

∂E

∂W l
a,b

=
∑
i

∂hli
∂W l

a,b

∂E

∂hli
= al−1b

∂E

∂hla
(12)

Differentiating again w.r.t. another weight within the same layer gives:

[Hl](a,b),(c,d) ≡
∂2E

∂Wa,b∂Wc,d
= al−1b al−1d [Hl](a,c) (13)

where

[Hl]a,b ≡
∂2E

∂hla∂h
l
b

(14)

is defined to be the pre-activation Hessian.

This can also be expressed in matrix notation as a Kronecker product:

Hl =
∂2E

∂ vec(W l)∂ vec(W l)
=
(
al−1a

>
l−1
)
⊗Hl (15)

Similar to backpropagation, the pre-activation Hessian can be calculated as:

Hl = BlW
>
l+1Hl+1Wl+1Bl +Dl (16)

where the diagonal matrices Bl and Dl are defined as

Bl = diag(f ′l (hl)) (17)

Dl = diag(f ′′l (hl)
∂E

∂al
) (18)

f ′ and f ′′ denote the first and second derivative of f . The recursion for H is initialized with the
Hessian of the error w.r.t. the network outputs, i.e. HL ≡ ∂2E

∂hL∂hL
. For the derivation of the recursion

and how to calculate the diagonal blocks of the Gauss-Newton matrix, we refer the reader to [2], and
to [23] for the Fisher matrix.

12



B Visualization of the effect of λ for a Gaussian prior and posterior

Figure 5: Contours of a Gaussian likelihood (dashed blue) and prior (shades of purple) for different
values of λ. Values smaller than 1 shift the joint maximum θ∗, marked by a ‘×’,towards that of the
likelihood, i.e. the new task, for values greater than 1 it moves towards the prior, i.e. previous tasks.

A small λ resulting in high uncertainty shifts the mode towards that of the likelihood, i.e. enables the
network to learn the new task well even if our posterior approximation underestimates the uncertainty.
Vice versa, increasing λ moves the joint mode towards the prior mode, improving how well the
previous parameters are remembered. The optimal choice depends on the true posterior and how
closely it is approximated.

In principle, it would be possible to use a different value λt for every dataset. In our experiments, we
keep the value of λ the same across all tasks as the family of posterior approximation is the same
throughout training. Furthermore, using a separate hyperparameter for each task would let the number
of hyperparameters grow linearly in the number of tasks, which would make tuning them costly.

C Additional related work

Various methods for overcoming catastrophic forgetting without a Bayesian motivation have also
been proposed over the past year. Zenke et al. [41] develop ‘Synaptic Intelligence’ (SI), another
quadratic penalty on deviations from previous parameter values where the importance of each weight
is heuristically measured as the path length of the updates on the previous task. Lopez-Paz and
Ranzato [21] formulate a quadratic program to project the gradients such that the gradients on
previous tasks do not point in a direction that decreases performance; however, this requires keeping
some previous data in memory. Shin et al. [38] suggest a dual architecture including a generative
model that acts as a memory for data observed in previous tasks. Other approaches that tackle the
problem at the level of the model architecture include [35], which augments the model for every
new task, and [5], which trains randomly selected paths through a network. Serrà et al. [37] propose
sharing a set of weights and modifying them in a learnable manner for each task. He and Jaeger
[12] introduce conceptor-aided backpropagation to shield gradients against reducing performance on
previous tasks.

D Optimization details

For the permuted MNIST experiment, we found the performance of the methods that we compared to
mildly depend on the choice of optimizer. Therefore, we optimize all techniques with Adam [15] for
20 epochs per dataset and a learning rate of 10−3 as in [41], SGD with momentum [32] with an initial
learning rate of 10−2 and 0.95 momentum, and Nesterov momentum [28] with an initial learning
rate of 0.1, which we divide by 10 every 5 epochs, and 0.9 momentum. For the momentum based
methods, we train for at least 10 epochs and early-stop once the validation error does not improve for
5 epochs. Furthermore, we decay the initial learning rate with a factor of 1

1+kt for the momentum-
based optimizers, where t is the index of the task and k a decay constant. We set k using a coarse
grid search for each value of the hyperparameter λ in order to prevent the objective from diverging
towards the end of training, in particular with the Kronecker factored curvature approximation.
For the Laplace approximation based methods, we consider λ ∈ {1, 3, 10, 30, 100}; for SI we try
c ∈ {0.01, 0.03, 0.1, 0.3, 1}. We ultimately pick the combination of optimizer, hyperparameter and

13



decay rate that gives the best validation error across all tasks at the end of training. For the Laplace-
based methods, we found momentum based optimizers to lead to better performance, whereas Adam
gave better results for SI.

E Numerical results of the vision experiment

Table 1: Per dataset test accuracy at the end of training on the suite of vision datasets. SI is Synaptic
Intelligence [41] and EWC Elastic Weight Consolidation [16]. We abbreviate Per-Task Laplace (one
penalty per task) as PTL, Approximate Laplace (Laplace approximation of the full posterior at the
mode of the approximate objective) and our Online Laplace approximation as OL. nMNIST refers to
notMNIST, fMNIST to FashionMNIST and C10 to CIFAR10.

Test Error (%)
Method Approximation MNIST nMNIST fMNIST SVHN C10 Avg.
SI n/a 87.27 79.12 84.61 77.44 57.61 77.21
PTL Diagonal (EWC) 97.83 94.73 89.13 79.80 53.29 82.96

Kronecker factored 97.85 94.92 89.31 85.75 58.78 85.32
AL Diagonal 96.56 92.33 89.27 78.00 56.57 82.55

Kronecker factored 97.90 94.88 90.08 85.24 58.63 85.35
OL Diagonal 96.48 93.41 88.09 81.79 53.80 82.71

Kronecker factored 97.17 94.78 90.36 85.59 59.11 85.40

F Additional figures for the vision experiment

(a) Approximate Laplace

(b) Per-task Laplace

Figure 6: Test accuracy of a convolutional network on a sequence of vision datasets for different
methods for preventing catastrophic forgetting. We train on the datasets separately in the order
displayed from top to bottom and show the network’s accuracy on each dataset once training on it
has started. The dotted black line indicates the performance of a network with the same architecture
trained separately on the task.

14


