
A Differential privacy background

The REPORTMAX algorithm takes in a collection of queries, computes a noisy answer to each query,
and returns the index of the query with the largest noisy value. We use this as the framework for our
offline private change-point detector OFFLINEPCPD in Section 3 to privately select the time k with
the highest log-likelihood ratio `(k).

Algorithm 3 Report Noisy Max : REPORTMAX(X,�, {f
1

, . . . , f
n

}, ✏)
Input: database X , set of queries {f

1

, . . . , f
n

} each with sensitivity �, and privacy parameter ✏
for i = 1, . . . , n do

Compute f
i

(X)

Sample Z
i

⇠ Lap(�
✏

)

end for
Output i⇤ = argmax

i2[n]

(f
i

(X) + Z
i

)

Theorem 7 ([DR14]). REPORTMAX is (✏, 0)-differentially private.

The ABOVETHRESH algorithm, first introduced by [DNR+09] and refined to its current form by
[DR14], takes in a potentially unbounded stream of queries, compares the answer of each query to a
fixed noisy threshold, and halts when it finds a noisy answer that exceeds the noisy threshold. We use
this algorithm as a framework for our online private change-point detector ONLINEPCPD in Section
4 when new data points arrive online in a streaming fashion.

Algorithm 4 Above Noisy Threshold: ABOVETHRESH(X,�, {f
1

, f
2

, . . .}, T, ✏)
Input: database X , stream of queries {f

1

, f
2

, . . .} each with sensitivity �, threshold T , and
privacy parameter ✏
Let ˆT = T + Lap( 2�

✏

)

for Each query i do
Let Z

i

⇠ Lap( 4�
✏

)

if f
i

(X) + Z
i

> ˆT then
Output a

i

= >.
Halt.

else
Output a

i

= ?
end if

end for

Theorem 8 ([DNR+09]). ABOVETHRESH is (✏, 0)-differentially private.
Theorem 9 ([DNR+09]). For any sequence of n queries f

1

, . . . , f
n

such that |{i < n : f
i

(X) �
T �↵}| = 0, Above Noisy Threshold outputs with probability at least 1�� a stream of a

1

, . . . , a
n

2
{>,?} such that for all a

i

= >, f
i

(X) � T � ↵, and for all a
i

= ?, f
i

(X)  T + ↵, for

↵ =

8(log k + log(2/�))

✏
.

B Concentration inequalities

Our proofs will use the following bounds.
Lemma 1 (Ottaviani’s inequality [VDVW96]). For independent random variables U

1

, . . . , U
m

, for
S
k

=

P

i2[k]

U
i

for k 2 [m], and for �
1

,�
2

> 0, we have

Pr



max

1km

|S
k

| > �
1

+ �
2

�

 Pr [|S
m

| > �
1

]

1�max

1km

Pr [|S
m

� S
k

| > �
2

]

.

If we additionally assume the U
j

above are i.i.d. with mean 0 and take values from an interval of
bounded length L, we can apply Hoeffding’s inequality for the following corollary:
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Corollary 1. For independent and identically distributed random variables U
1

, . . . , U
m

with mean
zero strictly bounded by an interval of length L and for S

k

=

P

i2[k]

U
i

for k 2 [m], and for
�
1

,�
2

> 0, we have

Pr[max

k2[m]

|S
k

| > �
1

+ �
2

]  2 exp(�2�2

1

/(mL2

))

1� 2 exp(�2�2

2

/(mL2

))

.

Lemma 2 (Bernstein inequality [VDVW96]). Let Y
1

, . . . , Y
n

be independent random variables with
mean zero such that E

h

e|Yi|/M � 1� |Yi|
M

i

M2  1

2

v
i

for constants M and v
i

and for i 2 [n]. Then

Pr[|Y
1

+ . . .+ Y
n

| > x]  2 exp

✓

�1

2

x2

v +Mx

◆

,

for v � v
1

+ . . .+ v
n

.

Corollary 2. For independent and identically distributed random variables Y
1

, . . . , Y
n

with mean
zero such that E

⇥

e|Yi| � 1� |Y
i

|
⇤

 1

2

v, for constant v and i 2 [n], and for S
k

=

P

i2[k]

Y
i

for
k 2 [m], and for �

1

,�
2

> 0, we have

Pr[max

k2[m]

|S
k

| > �
1

+ �
2

]  2 exp(��2

1

/(2mv + 2�
1

))

1� 2 exp(��2

2

/(2mv + 2�
2

))

.

C Proofs for OFFLINEPCPD

Theorem 1. For arbitrary data X , OFFLINEPCPD(X,P
0

, P
1

, ✏, 0) is (✏, 0)-differentially private.

Proof. Fix any two neighboring databases X,X 0 that differ on index j. For any k 2 [n], denote the
respective partial log-likelihood ratios as `(k) and `0(k). By (1), we have

`0(k) = `(k) +�I{j � k} with � = log

P
1

(x0
j

)

P
0

(x0
j

)

� log

P
1

(x
j

)

P
0

(x
j

)

. (12)

Next, for a given 1  i  n, fix Z�i

, a draw from [Lap(A/✏)]n�1 used for all the noisy log likelihood
ratio values except the ith one. We will bound from above and below the ratio of the probabilities
that the algorithm outputs ˜k = i on inputs X and X 0. Define the minimum noisy value in order for i
to be select with X:

Z⇤
i

= min{Z
i

: `(i) + Z
i

> `(k) + Z
k

8k 6= i}

If � < 0, then for all k 6= i we have
`0(i) +A+ Z⇤

i

� `(i) + Z⇤
i

> `(k) + Z
k

� `0(k) + Z
k

.

If � � 0, then for all k 6= i we have
`0(i) + Z⇤

i

� `(i) + Z⇤
i

> `(k) + Z
k

� `0(k)�A+ Z
k

.

Hence, Z 0
i

� Z⇤
i

+A ensures that the algorithm outputs i on input X 0, and the theorem follows from
the following inequalities for any fixed Z�i

, with probabilities over the choice of Z
i

⇠ Lap(A/✏).

Pr[

˜k = i | X 0, Z�i

] � Pr[Z 0
i

� Z⇤
i

+A | Z�i

] � e�✏

Pr[Z
i

� Z⇤
i

| Z�i

] = e�✏

Pr[

˜k = i | X,Z�i

]

Theorem 2. For hypotheses P
0

, P
1

such that �(`) < 1 and n data points X drawn from P
0

, P
1

with true change time k⇤ 2 (1, n], the MLE ˆk is (↵,�)-accurate for any � > 0 and

↵ =

2A2

C2

log

32

3�
. (6)

For hypotheses and data drawn this way with privacy parameter ✏ > 0,
OFFLINEPCPD(X,P

0

, P
1

, ✏, 0, n) is (↵,�)-accurate for any � > 0 and

↵ = max

⇢

8A2

C2

log

64

3�
,
4A

C✏
log

16

�

�

. (7)

In both expressions, A = �(`) and C = min{D
KL

(P
1

||P
0

), D
KL

(P
0

||P
1

)}.
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Proof. Our goal is to find some expression for ↵ such that we can bound the probability of the bad
event that OFFLINEPCPD outputs ˜k such that |˜k � k⇤| > ↵ with probability at most �, where k⇤ is
the true change point. The first half of our analysis will yield another bound giving accuracy of the
MLE ˆk.

Our proof is structured around the following observation. The algorithm only outputs a particular
incorrect ˜k 6= k⇤ if there exists some k in with `(k) + Z

k

> `(k⇤) + Z
k

⇤ for a set of random noise
values {Z

k

}
k2[n]

selected by the algorithm. For the algorithm to output an incorrect value, there must
either be a k that nearly beats the true change point on the noiseless data or there must be a k that
receives much more noise than k⇤. Intuitively, this captures the respective scenarios that unusual data
causes non-private ERM to perform poorly and that unusual noise draws causes our private algorithm
to perform poorly.

Given some true change-point k⇤ and error tolerance ↵ > 0, we can partition the set of bad possible
outputs k into sub-intervals of exponentially increasing size as follows. For i � 1, let

R�
i

= [k⇤ � 2

i↵, k⇤ � 2

i�1↵)

R+

i

= (k⇤ + 2

i�1↵, k⇤ + 2

i↵]

R
i

= R�
i

[R+

i

Then for any range-specific thresholds t
i

for i � 1, our previous observations allow us to bound the
probability of the bad event as follows:

Pr[|˜k � k⇤| > ↵] 
X

i�1

Pr[max

k2Ri

{`(k)� `(k⇤)} > �t
i

] +

X

i�1

Pr[max

k2Ri

{Z
k

� Z
k

⇤} � t
i

] (13)

We bound each term in the above expression separately for t
i

= 2

i�2↵C. For accuracy of the
non-private MLE, we will set ↵ to ensure that the first term is at most �. For accuracy of the private
algorithm, we will set ↵ to ensure that each term is at most �/2. The first and more difficult task
requires us to reason about the probability that the log-likelihood ratios for the data are not too
far away from their expectation. Although the `(k) are not independent, their pairwise differences
`(k+1)�`(k) are, so we can apply our corollary of Ottaviani’s inequality to bound the probability that
`(k) significantly exceeds `(k⇤) by appropriately defining several random variables corresponding to
a data stream X drawn according to the change-point model.

Specifically, we can decompose the empirical log-likelihood difference between the true change-point
k⇤ and any candidate k into the sum of i.i.d. random variables with mean zero and the expected value
of this difference as follows:

U
j

=

(

� log

P0(xj)

P1(xj)
+D

KL

(P
0

||P
1

), j < k⇤

� log

P1(xj)

P0(xj)
+D

KL

(P
1

||P
0

), j � k⇤

`(k)� `(k⇤) =

(

P

k

⇤�1

j=k

U
j

� (k⇤ � k)D
KL

(P
0

||P
1

), k < k⇤
P

k�1

j=k

⇤ U
j

� (k � k⇤)D
KL

(P
1

||P
0

), k � k⇤

We also define random variable S
m

to denote the sum of m i.i.d. random variables as follows, noting
that S

m

is distributed like
P

k

⇤�1

j=k

⇤
+m

U
j

for m < 0 and like
P

k

⇤
+m�1

j=k

⇤ U
j

for m > 0.

S
m

=

(

P

k

⇤
+mj<k

⇤ U
j

, m < 0

P

k

⇤j<k

⇤
+m

U
j

m > 0
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With these random variables, we bound each term in the first set of terms in (13) for any i � 1 and
threshold t

i

= 2

i�2↵C as follows:

Pr[max

k2Ri

{`(k)� `(k⇤)} > �2

i�2↵C]

 Pr[max

k2R

�
i

{
k

⇤�1

X

j=k

U
j

� (k⇤ � k)D
KL

(P
0

||P
1

)} > �2

i�2↵C]

+ Pr[max

k2R

+
i

{
k�1

X

j=k

⇤

U
j

� (k � k⇤)D
KL

(P
1

||P
0

)} > �2

i�2↵C]

 Pr[ max

k2[2

i�1
↵]

|S�k

| > 2

i�2↵C] + Pr[ max

k2[2

i�1
↵]

|S
k

| > 2

i�2↵C]

 4 · exp(�2

i�4↵C2/A2

)

1� 2 · exp(�2

i�4↵C2/A2

)

(14)

 8 exp(�2

i�4↵C2/A2

) (15)

= 8

✓

exp(

�↵C2

8A2

)

◆

2

i�1

where (17) follows from an application of Corollary 1 with �
1

= �
2

= 2

i�3↵C and L = A, and
the denominator can be simplified as in (18) under the assumption that ↵ � 8A

2
log 4

C

2 to simplify the
denominator, which is satisfied by our final bounds.

We now consider the sum of these terms over all i, which will be needed for the final bound on Equa-
tion (13). We note that this sum is bounded above by a geometric series with ratio exp(�↵C2/(8A2

))

since 2

i�1 � i, yielding the second inequality. Then the same assumed lower bound on ↵ is used to
simplify the denominator as in (18):

X

i�1

Pr[max

k2Ri

{`(k)� `(k⇤)} > �2

i�2↵C]  8

X

i�1

✓

exp(

�↵C2

8A2

)

◆

2

i�1

 8

X

i�1

✓

exp(

�↵C2

8A2

)

◆

i


8 exp(

�↵C

2

8A

2 )

1� exp(

�↵C

2

8A

2 )

 32

3

exp

✓

�↵C2

8A2

◆

(16)

The first term in (7) in the theorem statement ensures that the expression above is bounded by �/2,
as is required for the private algorithm.
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For non-private MLE, we bound each term in the first set of terms in (13) for any i � 1 and threshold
t
i

= 0 as follows:

Pr[max

k2Ri

{`(k)� `(k⇤)} > 0]

 Pr[max

k2R

�
i

{
k

⇤�1

X

j=k

U
j

� (k⇤ � k)D
KL

(P
0

||P
1

)} > 0]

+ Pr[max

k2R

+
i

{
k�1

X

j=k

⇤

U
j

� (k � k⇤)D
KL

(P
1

||P
0

)} > 0]

 Pr[ max

k2[2

i�1
↵]

|S�k

| > 2

i�1↵C] + Pr[ max

k2[2

i�1
↵]

|S
k

| > 2

i�1↵C]

 4 · exp(�2

i�2↵C2/A2

)

1� 2 · exp(�2

i�2↵C2/A2

)

(17)

 8 exp(�2

i�2↵C2/A2

) (18)

= 8

✓

exp(

�↵C2

2A2

)

◆

2

i�1

Summing these terms over all i,

X

i�1

Pr[max

k2Ri

{`(k)� `(k⇤)} > 0]  8

X

i�1

✓

exp(

�↵C2

2A2

)

◆

2

i�1

 8

X

i�1

✓

exp(

�↵C2

2A2

)

◆

i


8 exp(

�↵C

2

2A

2 )

1� exp(

�↵C

2

2A

2 )

 32

3

exp

✓

�↵C2

2A2

◆

. (19)

For ↵ as in (6) in the theorem statement, the expression above is bounded by �, completing the
accuracy proof for the non-private MLE.

Next we bound the second set of terms in (13), controlling the probability that large noise draws
cause large inaccuracies for the private algorithm. Since each Z

k

and Z
k

⇤ are independent draws
from a Laplace distribution with parameter A/✏, this bound follows from a union bound over all
indices in R

i

and the definition of the Laplace distribution:

Pr[max

k2Ri

{Z
k

� Z
k

⇤} � 2

i�2↵C]  Pr[2max

k2Ri

|Z
k

| � 2

i�2↵C]

 2

i↵Pr[|Lap(A/✏)| � 2

i�3↵C]

 2

i↵ · exp(�2

i�3↵C✏/A)

= 2

i↵

✓

exp(

�↵C✏

4A
)

◆

2

i�1

Then by summing over all ranges and assuming in (20) that ↵ � 4A ln 2

C✏

to simplify the denominator,
we obtain a bound on the probability of large noise applied to any possible k far from k⇤.
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X

i�1

Pr[max

k2Ri

{Z
k

� Z
k

⇤} > 2

i�2↵C]  ↵
X

i�1

2

i

(exp(�↵C✏/(4A)))

2

i�1

 ↵2
X

i�1

i(exp(�↵C✏/(4A)))

i

= ↵2
exp(�↵C✏/(4A))

(1� exp(�↵C✏/(4A)))

2

 8↵ exp(�↵C✏/(4A)) (20)

Since x/2 � lnx, requiring ↵ � 4A log(16/�)

C✏

suffices to ensure that (20) is at most �/2 as required.
By Inequality 13, this guarantees that Pr[|˜k � k⇤| > ↵]  � for the assumed ranges of ↵ captured in
Equation (7) in the theorem statement, completing the proof.

Theorem 3. For any ✏, � > 0, any hypotheses P
0

, P
1

such that A
�

< 1, any index j 2 [n],
any i, i0 2 {0, 1}, and any x

1

, . . . , x
j�1

, x
j+2

, . . . , x
n

, let X
i

= {x
1

, . . . , x
n

} denote the random
variable with x

j

⇠ P
i

and let X 0
i

0 = {x
1

, . . . , x
j�1

, x0
j

, x
j+1

, . . . , x
n

} denote the random variable
with x0

j

⇠ P
i

0 . Then for any S ✓ [n], we have

Pr[OFFLINEPCPD(X
i

, P
0

, P
1

, ✏, �, n) 2 S]

 exp(✏) · Pr[OFFLINEPCPD(X 0
i

0 , P
0

, P
1

, ✏, �, n) 2 S] + �,

where the probabilities are over the randomness of the algorithm and of X
i

, X 0
i

0 .

Proof. Define the event that the log-likelihood ratios of x
j

, x0
j

as in the theorem statement are
bounded by A

�

as follows:

E
�

:=

(

�

�

�

�

�

log

P
1

(x
j

)

P
0

(x
j

)

� log

P
1

(x0
j

)

P
0

(x0
j

)

�

�

�

�

�

< A
�

)

.

Let ˜k = OFFLINEPCPD(X
i

, P
0

, P
1

, ✏, �, n), ˜k0 = OFFLINEPCPD(X 0
i

0 , P
0

, P
1

, ✏, �, n). Then by
Theorem 1 and the observation that Pr[Ec

�

] < � by definition of A
�

, we have that for any S ✓ [n],

Pr[

˜k 2 S]  Pr[

˜k 2 S|E
�

] Pr[E
�

] + Pr[Ec

�

]

 exp(✏) Pr[˜k0 2 S|E
�

] Pr[E
�

] + �

 exp(✏) Pr[˜k0 2 S] + �.

Theorem 4. For � > 0 and hypotheses P
0

, P
1

such that A
�

< 1 and n data points X drawn from
P
0

, P
1

with true change time k⇤ 2 (1, n), the MLE ˆk is (↵,�)-accurate for any � > 0 and

↵ =

67

C2

M

log

64

3�
. (10)

For hypotheses and data drawn this way with privacy parameter ✏ > 0,
OFFLINEPCPD(X,P

0

, P
1

, ✏, �, n) is (↵,�)-accurate for any � > 0 and

↵ = max{ 262
C2

M

log

128

3�
,
2A log(16/�)

C
M

✏
}. (11)

In both expressions, A = A
�

and C
M

= min

�

D
KL

(P
0

||P0+P1
2

), D
KL

(P
1

||P0+P1
2

)

 

.

Proof. The general framework of this proof is similar to that of Theorem 2, but the main difference
is that Hoeffding’s inequality is not applicable in this general setting, since we allow �(`) to be
unbounded. The main idea in this proof is to consider the alternative log-likelihood ratio using the
average distribution (P

0

+ P
1

)/2, in which Bernstein inequality can be applied.
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Following the notation from Theorem 2, given some true change-point k⇤ and error tolerance ↵ > 0,
we can partition the set of bad possible outputs k into sub-intervals of exponentially increasing size
as follows. For i � 1, let

R�
i

= [k⇤ � 2

i↵, k⇤ � 2

i�1↵)

R+

i

= (k⇤ + 2

i�1↵, k⇤ + 2

i↵]

R
i

= R�
i

[R+

i

Then for any range-specific thresholds t
i

for i � 1, we will still bound the probability of the bad
event as follows:

Pr[|˜k � k⇤| > ↵] 
X

i�1

Pr[max

k2Ri

{`(k)� `(k⇤)} > �t
i

] +

X

i�1

Pr[max

k2Ri

{Z
k

� Z
k

⇤} � t
i

] (21)

We will re-define U
j

to denote the i.i.d random variables with mean zero by the alternative log-
likelihood, and S

m

to denote the sum of m i.i.d U
j

as follows:

U
j

=

(

� log

2P0(xj)

(P0+P1)(xj)
+D

KL

(P
0

||P0+P1
2

), j < k⇤

� log

2P1(xj)

(P0+P1)(xj)
+D

KL

(P
1

||P0+P1
2

), j � k⇤

S
m

=

(

P

k

⇤
+mj<k

⇤ U
j

, m < 0

P

k

⇤j<k

⇤
+m

U
j

m > 0

With these random variables, we can bound the empirical log-likelihood difference between the true
change-point k⇤ and any candidate k by

1

2

[`(k)� `(k⇤)] =
k

⇤
X

j=k

log

P
1

(x
j

)

P
0

(x
j

)


(

P

k

⇤�1

j=k

U
j

� (k⇤ � k)D
KL

(P
0

||P0+P1
2

), k < k⇤
P

k�1

j=k

⇤ U
j

� (k � k⇤)D
KL

(P
1

||P0+P1
2

), k � k⇤.

Then we bound each term in the first set of terms in (21) for any i � 1 and threshold t
i

= 2

i�1↵C
M

as follows:

Pr[max

k2Ri

{`(k)� `(k⇤)} > �2

i�1↵C
M

]

 Pr[max

k2R

�
i

{
k

⇤�1

X

j=k

U
j

� (k⇤ � k)D
KL

(P
0

||P0

+ P
1

2

))} > �2

i�2↵C
M

]

+ Pr[max

k2R

+
i

{
k�1

X

j=k

⇤

U
j

� (k � k⇤)D
KL

(P
1

||P0

+ P
1

2

)} > �2

i�2↵C
M

]

 Pr[ max

k2[2

i�1
↵]

|S�k

| > 2

i�2↵C
M

] + Pr[ max

k2[2

i�1
↵]

|S
k

| > 2

i�2↵C
M

] (22)


4 exp

⇣

� 2

i�4
↵C

2
M

CM+32

⌘

1� 2 exp

⇣

� 2

i�4
↵C

2
M

CM+32

⌘ (23)

 8 exp

✓

�2

i�4↵C2

M

C
M

+ 32

◆

(24)

where (23) follows from an application of Corollary 2 with �
1

= �
2

= 2

i�3↵C
M

and v = 4. To
apply Corollary 2, we first need to check the conditions of Bernstein inequality. We shall show that
for any j,

E [exp(|U
j

|)� 1� |U
j

|]  2, (25)
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and then all conditions of Bernstein inequality are fulfilled. To prove this, let Y
j

be the i.i.d. alternative
log-likelihood ratio as follows:

Y
j

=

(

� log

2P0(xj)

(P0+P1)(xj)
, j < k⇤

� log

2P1(xj)

(P0+P1)(xj)
, j � k⇤

Then it suffices to note that

E [exp(|U
j

|)] = E [exp(| log Y
j

� E [log Y
j

] |)]
 E [exp(log Y

j

� E [log Y
j

])] + E [exp(E [log Y
j

]� log Y
j

)]

= E [Y
j

] e�CM
+

E [1/Y
j

]

e�CM

 e�CM
+

2

e�CM
,

and the fact that e�CM 2 [1, 2].

It follows from direct calculations that the condition ↵ � 262

C

2
M

log

128

3�

> 363/C2

M

implies

2 exp

⇣

� 2

i�4
↵C

2
M

CM+32

⌘

< 1/2, which is used to simplify the denominator as in (24).

We now consider the sum of these terms over all i, which will be needed for the final bound on
Equation (21).

X

i�1

Pr[max

k2Ri

{`(k)� `(k⇤)} > �2

i�2↵C
M

] 
16 exp

⇣

� 2

�3
↵C

2
M

CM+32

⌘

1� exp

⇣

� 2

�3
↵C

2
M

CM+32

⌘

 64

3

exp

✓

�↵C2

M

262

◆

. (26)

The first term in (11) in the theorem statement ensures that the expression above is bounded by �/2,
as is required for the private algorithm.

For non-private MLE, we bound each term in the first set of terms in (21) for any i � 1 and threshold
t
i

= 0 as follows:

Pr[max

k2Ri

{`(k)� `(k⇤)} > 0]

 Pr[max

k2R

�
i

{
k

⇤�1

X

j=k

U
j

� (k⇤ � k)D
KL

(P
0

||P0

+ P
1

2

)} > 0]

+ Pr[max

k2R

+
i

{
k�1

X

j=k

⇤

U
j

� (k � k⇤)D
KL

(P
1

||P0

+ P
1

2

)} > 0]

 Pr[ max

k2[2

i�1
↵]

|S�k

| > 2

i�1↵C
M

] + Pr[ max

k2[2

i�1
↵]

|S
k

| > 2

i�1↵C
M

] (27)


4 exp

⇣

� 2

i�3
↵C

2
M

CM+8

⌘

1� 2 exp

⇣

� 2

i�3
↵C

2
M

CM+8

⌘ (28)

 8 exp

✓

�2

i�3↵C2

M

C
M

+ 8

◆

(29)

where (28) follows from an application of Corollary 2 with �
1

= �
2

= 2

i�2↵C
M

and v = 4.
It follows from direct calculations that the condition ↵ � 67

C

2
M

log

128

3�

> 92/C2

M

implies

2 exp

⇣

� 2

i�3
↵C

2
M

CM+8

⌘

< 1/2, which is used to simplify the denominator as in (29). Then, we consider
the sum of these terms over all i.
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X

i�1

Pr[max

k2Ri

{`(k)� `(k⇤)} > 0] 
16 exp

⇣

� 2

�2
↵C

2
M

CM+8

⌘

1� exp

⇣

� 2

�2
↵C

2
M

CM+8

⌘

 64

3

exp

✓

�↵C2

M

67

◆

. (30)

For ↵ as in (10) in the theorem statement, the expression above is bounded by �, completing the
accuracy proof for the non-private MLE.

The calculations for the probability bounds for the Laplace noise terms are the same as those in
Theorem 2 with C substituted by 2C

M

, which ends up with a probability no more than another �/2
under the condition ↵ � 2A log(16/�)

CM ✏

.

By Inequality (21), this guarantees that Pr[|˜k � k⇤| > ↵]  � for the assumed ranges of ↵ captured
in Equation (11) in the theorem statement, completing the proof.

D Proofs for ONLINEPCPD

Theorem 6. For hypotheses P
0

, P
1

such that �(`) < 1, a stream of data points X with starting
size n drawn from P

0

, P
1

with true change time k⇤ � n/2, privacy parameter ✏ > 0, and threshold
T 2 [T

L

, T
U

] with

T
L

:= 2A

s

2 log

64k⇤

�
� C +

16A

✏
log

8k⇤

�
,

T
U

:=

nC

2

� A

2

p

n log(8/�)� 16A

✏
log

8k⇤

�
,

we have that ONLINEPCPD(X,P
0

, P
1

, ✏, n, T ) is (↵,�) accurate for any � > 0 and

↵ = max

⇢

16A2

C2

log

32n

�
,
4A

C✏
log

8n

�

�

.

In the above expressions, A = �(`) and C = min{D
KL

(P
0

||P
1

), D
KL

(P
1

||P
0

)}.

Proof. We first give a range [T
L

, T
U

] of thresholds that ensure that except with probability �/4, the
randomly sampled data stream satisfies the following two conditions:

1. For T � T
L

, max

k2[j�n+1,j]

`(k) < T � ↵0 for every j < k⇤.

2. For T  T
U

, max

k2[k

⇤�n/2,k

⇤
+n/2)

`(k) > T + ↵0.

When these conditions are satisfied, the ABOVETHRESH guarantee ensures that except with probabil-
ity �/4, the randomness of the online algorithm ensures that it calls the offline algorithm on a window
of data containing the true change-point. Then we will argue that our overall accuracy follows from
the offline guarantee, where we will allow failure probability �/2.

We will get the first condition by taking a union bound over all windows tested before the change point
of the probability that the maximum log-likelihood max

k

`(k) for n elements X = (x
1

, . . . , x
n

)

sampled from P
0

exceed a given threshold. To bound this probability, we first define the following
random variables.

U
j

= � log

P
0

(x
j

)

P
1

(x
j

)

+D
KL

(P
0

||P
1

) S
m

=

X

1jm

U
j

We note that each `(k) is the sum of i.i.d. random variables, and that the maximum log-likelihood over
m consecutive elements is equal in distribution to max

k2[m]

S
k

� kD
KL

(P
0

||P
1

). This yields the
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first inequality below. Inequality (31) comes from applying Corollary 1 with �
1

= �
2

= 2

i�2C+ t/2
and interval length L = A.

Pr



max

1kn

`(k) > t

�


X

i�1

Pr[ max

k2[2

i�1
,2

i
)

{S
k

� kD
KL

(P
0

||P
1

)} > t]


X

i�1

Pr[ max

k2[2

i�1
]

S
k

> 2

i�1C + t]


X

i�1

2 exp(�(2

i�2C + t/2)2/(2i�2A2

))

1� 2 exp(�(2

i�2C + t/2)2/(2i�2A2

))

(31)

4

X

i�1

exp(�(2

i�2C + t/2)2/(2i�2A2

)) (32)

8 exp(�(2

�1C + t/2)2/(2�1A2

)) (33)

Inequalities (32) and (33) follow by plugging in t = 2A
q

2 log

64k

⇤

�

� C. This ensures that
1�2 exp(�(2

i�2C+t/2)2/(2i�2A2

)) � 1/2, giving Inequality (32), and that the series is increasing
exponentially in i, so we can collapse the sum with another factor of 2 by considering only i = 1 as
in Inequality (33). This value of t also ensures that the bound of Inequality (33) is at most �/(8k⇤).
Taking the union bound over all the windows prior to the change-point, this shows that Condition 1
holds for T

L

= 2A
q

2 log

64k

⇤

�

� C + ↵0 except with probability �/8.

To show that the second condition holds except with additional probability �/8, we consider the
window of data with the first half of data drawn from P

0

and the second half drawn from P
1

and
bound the probability that `(k⇤) in this window is less than a given threshold as follows. We note
that `(k⇤) is the sum of n/2 i.i.d. random variables, so we define mean-zero random variables
V
j

= � log

P1(xj)

P0(xj)
+D

KL

(P
1

||P
0

) and bound their sum using Hoeffding’s inequality:

Pr[ max

k

⇤�n/2k<k

⇤
+n/2

`(k) < t]  Pr[`(k⇤) < t]

 Pr[

X

k2[n/2]

V
j

> nC/2� t]

 exp(�4(nC/2� t)2/(nA2

)) (34)

Plugging in t = nC

2

� A

2

p

n log(8/�) in this final expression ensures that (34)  �/8. This ensures
that Condition 2 is satisfied except with probability �/8 for T

U

= nC/2�A
p

2 log(8/�)� ↵0.

Then we can instantiate the ABOVETHRESH accuracy guarantee with privacy parameter ✏/2 and
accuracy parameter �/4 to ensure that for ↵0

=

16A log(8k

⇤
/�)

✏

when Conditions 1 and 2 are satisfied,
ABOVETHRESH will identify a window containing the true change-point except with probability �/4.
Combining this with the �/4 probability that Conditions 1 and 2 fail to hold when T 2 [T

L

, T
U

], we
get that ONLINEPCPD calls OFFLINEPCPD in a window containing the change-point except with
probability �/2 over the randomness of the data and of the online portion of the algorithm.

We next instantiate OFFLINEPCPD with appropriate parameters to ensure that conditioned on being
called in the correct window, it will output a ˜k that is within ↵ of the true change-point k⇤ with
probability at most �/2. We can then complete the proof by taking a union bound over all the failure
probabilities.

Our offline accuracy guarantee requires data points sampled i.i.d. from P
0

before the change point
and from P

1

thereafter, so it remains to show that conditioning on the event that we call the offline
algorithm in a correct window does not harm the accuracy guarantee too much. For a window size
n, change-point k⇤, stream X of at least k⇤ + n/2 data points, set of random coins required by
ONLINEPCPD and its call to OFFLINEPCPD, and a stopping index k > n/2, let N(k) denote the
event that ONLINEPCPD calls OFFLINEPCPD on a window centered at k, and let F (k) denote the
event that OFFLINEPCPD on the window centered at k fails to output an approximation within ↵ of
k⇤.
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Our previous argument bounds the probability of all N(k) for k outside of a good range G =

(k⇤ �n/2, k⇤], and our offline guarantee bounds the probability of F (k) for any k 2 G as long as the
data are drawn according to the change-point model. Then the overall probability of a bad event can
be bounded as follows, where the probability is over the X drawn from P

0

and P
1

with change-point
k⇤ and of the randomness of the algorithm:

Pr[|˜k � k⇤| > ↵] =
X

k>n/2

Pr[N(k) \ F (k)]


X

k 62G

Pr[N(k)] +
X

k2G

Pr[F (k)]

The first summation is at most �/2 by our previous arguments. By instantiation of Theorem 2
for OFFLINEPCPD with a �/(2n) and ✏/2, the second summation is also bounded by �/2 when
↵ = max{ 32A

2

C

2 log

64n

�

, 8A

C✏

log

16n

�

}.

E Empirical validation of ONLINEPCPD

We also run Monte Carlo simulations of our online change-point detection algorithm ONLINEPCPD,
when the data points arrive sequentially and the true change occurs at time k⇤ = 5000. We choose
the appropriate threshold T by setting a constraint that an algorithm must have positive and negative
false alarm rates both at most 0.1. The range of threshold T for the online algorithm needs to be
non-empty, which impacts our choice of sliding window size n. Unfortunately the window size of
n = 200 used in the offline simulations is not sufficient for our online examples. A larger window
size is needed to detect smaller changes or under higher levels of noise. For this reason, we choose
window size n = 700 and restrict our online simulations to the large change scenario (A) and privacy
parameters ✏ = 0.5, 1,1.

For the online simulations, we use several key ideas in Section 4 to speed up the numerical search of
the threshold T . On the one hand, the threshold T cannot be too small, otherwise a false alarm will be
likely. To control the false alarm rate of 0.10 with up to k⇤ = 5000 sliding windows, a conservative
lower bound of the threshold T is the 1 � 0.10/5000 = 0.99998 quantile of the noisy versions of
W

n

with n = 700 under the pre-change distribution. On the other hand, the threshold T cannot be
too large, otherwise it will fail to detect a true change in any sliding windows of size n = 700. A
useful upper bound of the threshold T is the 10% quantile of the noisy versions of CUSUM statistics
W

n

= max

1kn

`
k

with n = 700 when the change occurs at time 350, since it will guarantee that
the online algorithms raise an alarm with probability at least 0.9 during the time interval [4650, 5350].

Next, we simulate 10

6 realizations of the CUSUM statistics W
n

= max

1kn

`
k

with n = 700

in both the pre-change and post-change cases. In each case, we speed up the computation of W
i

by using the recursive form W
i

= maxW
i�1

, 0 + log(P
1

(X
i

)/P
0

(X
i

)) for i � 1. The empirical
quantiles of the noisy versions of W

n

with n = 700 under the pre- and post- change cases will yield
the lower and upper bounds of the threshold T . When the range of the threshold T is non-empty,
we choose one that is closest to the upper bound. For the Bernoulli model, we use T = 220 for all
values of ✏ = 0.5, 1,1. In the Gaussian model, our window size n = 700 is not sufficient to ensure
non-empty range of T under false alarm rate 0.2 for ✏ = 0.5, 1, so we relax the false alarm constraints
for these ✏ values and choose T = 180, 150, 100 for ✏ = 0.5, 1,1, respectively. Figure 2 (c) indeed
shows that the false alarm rates are high in the Gaussian model with ✏ = 0.5, 1.

Figure 2 summarizes our online simulations results for both Bernoulli and Gaussian models using a
sliding window size n = 700 to detect a large change (scenario A) that occurs at time k⇤ = 5000.
Suppose our online algorithm raises an alarm at time j with the estimated change-point ˜k

j

for the
sliding window of the observations, {x

j�n+1

, · · · , x
j

}. Two probabilities are plotted: one is the
marginal probability of inaccurate estimation and false alarm, �

1

= Pr(|˜k
j

� k⇤| > ↵ or k⇤ /2
(j � n+ 1, j)), and the other is the conditional probability of inaccurate estimation conditioned on
raising an alarm correctly, �

2

= Pr(|˜k
j

� k⇤| > ↵|j�n+1  k⇤  j). As ↵ ! 1, the probability
�
1

becomes the false alarm rate plus the error rate related to the Laplace noise in hypothesis testing.
For both Bernoulli and Gaussian models, the right-hand side plots in Figure 2 (b and d) suggest that
the online accuracy conditioned on correctly raising an alarm is very similar to the offline accuracy.
Our plots show that the primary challenge in the online setting is determining when to raise an alarm
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in a sequence of sliding windows of observations. Once such window is identified correctly, the
offline estimation algorithm can be used to accurately estimate the change-point.
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(a) Bernoulli, inaccurate estimation and false
alarm
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(b) Bernoulli, inaccurate estimation condi-
tioned on no false alarm
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(c) Gaussian, inaccurate estimation and false
alarm
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(d) Gaussian, inaccurate estimation condi-
tioned on no false alarm

Figure 2: Probability of inaccurate estimation and false alarm (left) and probability of accurate report
conditioned on raising an alarm correctly (right) for Monte Carlo simulations with Bernoulli and
Gaussian data. Each simulation involves 10

6 runs of ONLINEPCPD with window size n = 700

and varying ✏ on data generated by i.i.d. samples from appropriate distributions with change point
k⇤ = 5000.
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