
Neural Nearest Neighbors Networks

Tobias Plötz Stefan Roth
Department of Computer Science, TU Darmstadt

Abstract

Non-local methods exploiting the self-similarity of natural signals have been well
studied, for example in image analysis and restoration. Existing approaches,
however, rely on k-nearest neighbors (KNN) matching in a fixed feature space.
The main hurdle in optimizing this feature space w. r. t. application performance
is the non-differentiability of the KNN selection rule. To overcome this, we
propose a continuous deterministic relaxation of KNN selection that maintains
differentiability w. r. t. pairwise distances, but retains the original KNN as the limit
of a temperature parameter approaching zero. To exploit our relaxation, we propose
the neural nearest neighbors block (N3 block), a novel non-local processing layer
that leverages the principle of self-similarity and can be used as building block
in modern neural network architectures.1 We show its effectiveness for the set
reasoning task of correspondence classification as well as for image restoration,
including image denoising and single image super-resolution, where we outperform
strong convolutional neural network (CNN) baselines and recent non-local models
that rely on KNN selection in hand-chosen features spaces.

1 Introduction

The ongoing surge of convolutional neural networks (CNNs) has revolutionized many areas of ma-
chine learning and its applications by enabling unprecedented predictive accuracy. Most network
architectures focus on local processing by combining convolutional layers and element-wise op-
erations. In order to draw upon information from a sufficiently broad context, several strategies,
including dilated convolutions [49] or hourglass-shaped architectures [27], have been explored to
increase the receptive field size. Yet, they trade off context size for localization accuracy. Hence, for
many dense prediction tasks, e. g. in image analysis and restoration, stacking ever more convolutional
blocks has remained the prevailing choice to obtain bigger receptive fields [20, 22, 31, 39, 50].

In contrast, traditional algorithms in image restoration increase the receptive field size via non-local
processing, leveraging the self-similarity of natural signals. They exploit that image structures tend to
re-occur within the same image [53], giving rise to a strong prior for image restoration [28]. Hence,
methods like non-local means [6] or BM3D [9] aggregate information across the whole image to
restore a local patch. Here, matching patches are usually selected based on some hand-crafted notion
of similarity, e. g. the Euclidean distance between patches of input intensities. Incorporating this kind
of non-local processing into neural network architectures for image restoration has only very recently
been considered [23, 47]. These methods replace the filtering of matched patches with a trainable
network, while the feature space on which k-nearest neighbors selection is carried out is taken to be
fixed. But why should we rely on a predefined matching space in an otherwise end-to-end trainable
neural network architecture? In this paper, we demonstrate that we can improve non-local processing
considerably by also optimizing the feature space for matching.

The main technical challenge is imposed by the non-differentiability of the KNN selection rule. To
overcome this, we make three contributions. First, we propose a continuous deterministic relaxation

1Code and pretrained models are available at https://github.com/visinf/n3net/.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://github.com/visinf/n3net/


q
x1

x3

x2

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(a) Query and database

q
x1

x3

x2

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(b) KNN selection (Eq. 2)

q
x1

x3

x2

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(c) Stochastic NN (Eqs. 4 to 7)

q
x1

x3

x2

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(1,0,0) (0,1,0)

(0,0,1)

(d) Continuous NN (Eqs. 8 to 11)

Figure 1. Illustration of nearest neighbors selection as paths on the simplex. The traditional KNN rule (b)
selects corners of the simplex deterministically based on the distance of the database items xi to the query item
q (a). Stochastic neighbors selection (c) performs a random walk on the corners, while our proposed continuous
nearest neighbors selection (d) relaxes the weights of the database items into the interior of the simplex and
computes a deterministic path. Depending on the temperature parameter this path can interpolate between a
more uniform weighting (red) and the original KNN selection (blue).

of the KNN rule, which allows differentiating the output w. r. t. pairwise distances in the input
space, such as between image patches. The strength of the novel relaxation can be controlled by
a temperature parameter whose gradients can be obtained as well. Second, from our relaxation
we develop a novel neural network layer, called neural nearest neighbors block (N3 block), which
enables end-to-end trainable non-local processing based on the principle of self-similarity. Third, we
demonstrate that the accuracy of image denoising and single image super-resolution (SISR) can be
improved significantly by augmenting strong local CNN architectures with our novel N3 block, also
outperforming strong non-local baselines. Moreover, for the task of correspondence classification,
we obtain significant improvements by simply augmenting a recent neural network baseline with our
N3 block, showing its effectiveness on set-valued data.

2 Related Work

An important branch of image restoration techniques is comprised of non-local methods [6, 9, 28, 54],
driven by the concept of self-similarity. They rely on similar structures being more likely to encounter
within an image than across images [53]. For denoising, the non-local means algorithm [6] averages
noisy pixels weighted by the similarity of local neighborhoods. The popular BM3D method [9]
goes beyond simple averaging by transforming the 3D stack of matching patches and employing a
shrinkage function on the resulting coefficients. Such transform domain filtering is also used in other
image restoration tasks, e. g. single image super-resolution [8]. More recently, Yang and Sun [47]
propose to learn the domain transform and activation functions. Lefkimmiatis [23, 24] goes further
by chaining multiple stages of trained non-local modules. All of these methods, however, keep the
standard KNN matching in fixed feature spaces. In contrast, we propose to relax the non-differentiable
KNN selection rule in order to obtain a fully end-to-end trainable non-local network.

Recently, non-local neural networks have been proposed for higher-level vision tasks such as object
detection or pose estimation [42] and, with a recurrent architecture, for low-level vision tasks [26].
While also learning a feature space for distance calculation, their aggregation is restricted to a single
weighted average of features, a strategy also known as (soft) attention. Our differentiable nearest
neighbors selection generalizes this; our method can recover a single weighted average by setting k=1.
As such, our novel N3 block can potentially benefit other methods employing weighted averages, e. g.
for visual question answering [45] and more general learning tasks like modeling memory access
[14] or sequence modeling [40]. Weighted averages have also been used for building differentiable
relaxations of the k-nearest neighbors classifier [13, 35, 41]. Note that the crucial difference to our
work is that we propose a differentiable relaxation of the KNN selection rule where the output is
a set of neighbors, instead of a single aggregation of the labels of the neighbors. Without using
relaxations, Weinberger and Saul [44] learn the distance metric underlying KNN classification using
a max-margin approach. They rely on predefined target neighbors for each query item, a restriction
that we avoid.

Image denoising. Besides improving the visual quality of noisy images, the importance of image
denoising also stems from the fact that image noise severely degrades the accuracy of downstream
computer vision tasks, e. g. detection [10]. Moreover, denoising has been recognized as a core module

2



for density estimation [2] and serves as a sub-routine for more general image restoration tasks in a
flurry of recent work, e. g. [5, 36, 51]. Besides classical approaches [11, 37], CNN-based methods
[18, 31, 50] have shown strong denoising accuracy over the past years.

3 Differentiable k-Nearest Neighbors

We first detail our continuous and differentiable relaxation of the k-nearest neighbors (KNN) selection
rule. Here, we will make few assumptions on the data to derive a very general result that can be
used with many kinds of data, including text or sets. In the next section, we will then define a
non-local neural network layer based on our relaxation. Let us start by precisely defining KNN
selection. Assume that we are given a query item q, a database of candidate items (xi)i∈I with
indices I = {1, . . . ,M} for matching, and a distance metric d(·, ·) between pairs of items. Assuming
that q is not in the database, d yields a ranking of the database items according to the distance to the
query. Let πq : I → I be a permutation that sorts the database items by increasing distance to q:

πq(i) < πq(i
′) ⇒ d(q, xi) ≤ d(q, xi′), ∀i, i′ ∈ I. (1)

The KNN of q are then given by the set of the first k items w. r. t. the permutation πq

KNN(q) ≡ {xi | πq(i) ≤ k}. (2)

The KNN selection rule is deterministic but not differentiable. This effectively hinders to derive
gradients w. r. t. the distances d(·, ·). We will alleviate this problem in two steps. First, we interpret
the deterministic KNN rule as a limit of a parametric family of discrete stochastic sampling processes.
Second, we derive continuous relaxations for the discrete variables, thus allowing to backpropagate
gradients through the neighborhood selection while still preserving the KNN rule as a limit case.

KNN rule as limit distribution. We proceed by interpreting the KNN selection rule as the limit
distribution of k categorical distributions that are constructed as follows. As in Neighborhood
Component Analysis [13], let Cat(w1 | α1, t) be a categorical distribution over the indices I of the
database items, obtained by deriving logits α1

i from the negative distances to the query item d(q, xi),
scaled with a temperature parameter t. The probability of w1 taking a value i ∈ I is given by:

P
[
w1 = i | α1, t

]
≡ Cat(α1, t) =

exp
(
α1

i/t
)∑

i′∈I exp
(
α1

i′/t
) (3)

where α1
i ≡ −d(q, xi). (4)

Here, we treat w1 as a one-hot coded vector and denote with w1 = i that the i-th entry is set to one
while the others are zero. In the limit of t → 0, Cat(w1 | α1, t) will converge to a deterministic
(“Dirac delta”) distribution centered at the index of the database item with smallest distance to q.
Thus we can regard sampling from Cat(w1 | α1, t) as a stochastic relaxation of 1-NN [13]. We
now generalize this to arbitrary k by proposing an iterative scheme to construct further conditional
distributions Cat(wj+1 | αj+1, t). Specifically, we compute αj+1 by setting the wj-th entry of αj to
negative infinity, thus ensuring that this index cannot be sampled again:

αj+1
i ≡ αji + log(1− wji ) =

{
αji , if wj 6= i

−∞, if wj = i.
(5)

The updated logits are used to define a new categorical distribution for the next index to be sampled:

P
[
wj+1 = i | αj+1, t

]
≡ Cat(αj+1, t) =

exp
(
αj+1

i /t
)∑

i′∈I exp
(
αj+1

i′ /t
) . (6)

From the index vectors wj , we can define the stochastic nearest neighbors {X1, . . . , Xk} of q using

Xj ≡
∑
i∈I

wjixi. (7)

When the temperature parameter t approaches zero, the distribution over the {X1, . . . , Xk} will
be a deterministic distribution centered on the k nearest neighbors of q. Using these stochastic
nearest neighbors directly within a deep neural network is problematic, since gradient estimators

3



for expectations over discrete variables are known to suffer from high variance [33]. Hence, in the
following we consider a continuous deterministic relaxation of the discrete random variables.

Continuous deterministic relaxation. Our basic idea is to replace the one-hot coded weight vectors
with their continuous expectations. This will yield a deterministic and continuous relaxation of the
stochastic nearest neighbors that still converges to the hard KNN selection rule in the limit case of
t→ 0. Concretely, the expectation w̄1 of the first index vector w1 is given by

w̄1
i ≡ E

[
w1
i | α1, t

]
= P

[
w1 = i | α1, t

]
. (8)

We can now relax the update of the logits (Eq. 5) by using the expected weight vector instead of the
discrete sample as

ᾱj+1
i ≡ ᾱji + log(1− w̄ji ) with ᾱ1

i ≡ α1
i . (9)

The updated logits are then used in turn to calculate the expectation over the next index vector:

w̄j+1
i ≡ E

[
wj+1
i | ᾱj+1, t

]
= P

[
wj+1 = i | ᾱj+1, t

]
. (10)

Analogously to Eq. (7), we define continuous nearest neighbors {X̄1, . . . , X̄k} of q using the w̄j as

X̄j ≡
∑
i∈I

w̄jixi. (11)

In the limit of t→ 0, the expectation w̄1 of the first sampled index vector will approach a one-hot
encoding of the index of the closest neighbor. As a consequence, the logit update in Eq. (9) will also
converge to the hard update from Eq. (5). By induction it follows that the other w̄j will converge to a
one-hot encoding of the closest indices of the j-th nearest neighbor. In summary, this means that our
continuous deterministic relaxation still contains the hard KNN selection rule as a limit case.

Discussion. Figure 1 shows the relation between the deterministic KNN selection, stochastic nearest
neighbors, and our proposed continuous nearest neighbors. Note that the continuous nearest neighbors
are differentiable w. r. t. the pairwise distances as well as the temperature t. This allows making
the temperature a trainable parameter. Moreover, the temperature can depend on the query item q,
thus allowing to learn for which query items it is beneficial to average more uniformly across the
database items, i. e. by choosing a high temperature, and for which query items the continuous nearest
neighbors should be close to the discrete nearest neighbors, i. e. by choosing a low temperature. Both
cases have their justification. A more uniform averaging effectively allows to aggregate information
from many neighbors at once. On the other hand, the more distinct neighbors obtained with a low
temperature allow to first non-linearly process the information before eventually fusing it.

From Eq. (11) it becomes apparent that the continuous nearest neighbors effectively take k weighted
averages over the database items. Thus, prior work such as non-local networks [42], differentiable
relaxations of the KNN classifier [41], or soft attention-based architectures [14] can be realized as
a special case of our architecture with k = 1. We also experimented with a continuous relaxation
of the stochastic nearest neighbors based on approximating the discrete distributions with Concrete
distributions [19, 30]. This results in a stochastic sampling of weighted averages as opposed to our
deterministic nearest neighbors. For the dense prediction tasks considered in our experiments, we
found the deterministic variant to give significantly better results, see Sec. 5.1.

4 Neural Nearest Neighbors Block

In the previous section we made no assumptions about the source of query and database items. Here,
we propose a new network block, called neural nearest neighbors block (N3 block, Fig. 2a), which
integrates our continuous and differentiable nearest neighbors selection into feed-forward neural
networks based on the concept of self-similarity, i. e. query set and database are derived from the
same features (e. g., feature patches of an intermediate layer within a CNN). An N3 block consists of
two important parts. First, an embedding network takes the input and produces a feature embedding
as well as temperature parameters. These are used in a second step to compute continuous nearest
neighbors feature volumes that are aggregated with the input. We interleave N3 blocks with existing
local processing networks to form neural nearest neighbors networks (N3Net) as shown in Fig. 2b. In
the following, we take a closer look at the components of an N3 block and their design choices.

4



Y

Embedding 

network

Continuous nearest 

neighbors selection Y

Neural nearest neighbors block

T

N1N2 Nk

D

Local 

network

N3

block

...

...

Local 

network

N3

block

...

Local 

network

(a) N3 block

Y

Embedding 

network

Continuous nearest 

neighbors selection Y

Neural nearest neighbors block

T

N1N2 Nk

D

Local 

network

N3

block

...

...

Local 

network

N3

block

...

Local 

network

(b) N3Net

Figure 2. (a) In a neural nearest neighbors (N3) block (shaded box), an embedding network takes the output Y
of a previous layer and calculates a pairwise distance matrix D between elements in Y as well as a temperature
parameter (T , red feature layer) for each element. These are used to produce a stack of continuous nearest
neighbors volumes N1, . . . , Nk (green), which are then concatenated with Y . We build an N3Net (b) by
interleaving common local processing networks (e. g., DnCNN [50] or VDSR [20]) with N3 blocks.

Embedding network. A first branch of the embedding network calculates a feature embedding
E = fE(Y ). For image data, we use CNNs to parameterize fE; for set input we use multi-layer
perceptrons. The pairwise distance matrix D can now be obtained by Dij = d(Ei, Ej), where Ei
denotes the embedding of the i-th item and d is a differentiable distance function. We found that the
Euclidean distance works well for the tasks that we consider. In practice, for each query item, we
confine the set of potential neighbors to a subset of all items, e. g. all image patches in a certain local
region. This allows our N3 block to scale linearly in the number of items instead of quadratically.
Another network branch computes a tensor T = fT(Y ) containing the temperature t for each item.
Note that fE and fT can potentially share weights to some degree. We opted for treating them as
separate networks as this allows for an easier implementation.

Continuous nearest neighbors selection. From the distance matrix D and the temperature tensor T ,
we compute k continuous nearest neighbors feature volumes N1, . . . , Nk from the input features Y
by applying Eqs. (8) to (11) to each item. Since Y and each Ni have equal dimensionality, we could
use any element-wise operation to aggregate the original features Y and the neighbors. However,
a reduction at this stage would mean a very early fusion of features. Hence, we instead simply
concatenate Y and the Ni along the feature dimension, which allows further network layers to learn
how to fuse the information effectively in a non-linear way.

N3 block for image data. The N3 block described above is very generic and not limited to a certain
input domain. We now describe minor technical modifications when applying the N3 block to image
data. Traditionally, non-local methods in image processing have been applied at the patch-level, i. e.
the items to be matched consist of image patches instead of pixels. This has the advantage of using a
broader local context for matching and aggregation. We follow this reasoning and first apply a strided
im2col operation on E before calculating pairwise distances. The temperature parameter for each
patch is obtained by taking the corresponding center pixel in T . Each nearest neighbor volume Ni is
converted from the patch domain to the image domain by applying a col2im operation, where we
average contributions of different patches to the same pixel.

5 Experiments

We now analyze the properties of our novel N3Net and show its benefits over state-of-the-art baselines.
We use image denoising as our main test bed as non-local methods have been well studied there.
Moreover, we evaluate on single image super-resolution and correspondence classification.

Gaussian image denoising. We consider the task of denoising a noisy image D, which arises by
corrupting a clean image C with additive white Gaussian noise of standard deviation σ:

D = C + N with N ∼ N (0, σ2). (12)
Our baseline architecture is the DnCNN model of Zhang et al. [50], consisting of 16 blocks, each
with a sequence of a 3× 3 convolutional layer with 64 feature maps, batch normalization [17], and
a ReLU activation function. In the end, a final 3× 3 convolution is applied, the output of which is
added back to the input through a global skip connection.

We use the DnCNN architecture to create our N3Net for image denoising. Specifically, we use three
DnCNNs with six blocks each, cf. Fig. 2b. The first two blocks output 8 feature maps, which are

5



Table 1. PSNR and SSIM [43] on Urban100 for different architectures on gray-scale image denoising (σ=25).

Model Matching on PSNR [dB] SSIM

(i) 1 × DnCNN (d=17) – 29.97 0.879
(ii) 1 × DnCNN (d=18) – 29.92 0.885
(iii) 3 × DnCNN (d=6), KNN block (k=7) noisy input 30.07 0.891
(iv) 3 × DnCNN (d=6), KNN block (k=7) DnCNN output (d=17) 30.08 0.890
(v) 3 × DnCNN (d=6), Concrete block (k=7) learned embedding 29.97 0.889

(ours light) 2 × DnCNN (d=6), N3 block (k=7) learned embedding 29.99 0.888
(ours full) 3 × DnCNN (d=6), N3 block (k=7) learned embedding 30.19 0.892

fed into a subsequent N3 block that computes 7 neighbor volumes. The concatenated output again
has a depth of 64 feature channels, matching the depth of the other intermediate blocks. The N3

blocks extract 10× 10 patches with a stride of 5. Patches are matched to other patches in a 80× 80
region, yielding a total of 224 candidate patches for matching each query patch. More details on the
architecture can be found in the supplemental material.

Training details. We follow the protocol of Zhang et al. [50] and use the 400 images in the train and
test split of the BSD500 dataset for training. Note that these images are strictly separate from the
validation images. For each epoch, we randomly crop 512 patches of size 80× 80 from each training
image. We use horizontal and vertical flipping as well as random rotations ∈ {0◦, 90◦, 180◦, 270◦}
as further data augmentation. In total, we train for 50 epochs with a batch size of 32, using the Adam
optimizer [21] with default parameters β1 = 0.9, β2 = 0.999 to minimize the squared error. The
learning rate is initially set to 10−3 and exponentially decreased to 10−8 over the course of training.
Following the publicly available implementation of DnCNN [50], we apply a weight decay with
strength 10−4 to the weights of the convolution layers and the scaling of batch normalization layers.

We evaluate our full model on three different datasets: (i) a set of twelve commonly used benchmark
images (Set12), (ii) the 68 images subset [37] of the BSD500 validation set [32], and (iii) the
Urban100 [16] dataset, which contains images of urban scenes where repetitive patterns are abundant.

5.1 Ablation study

We begin by discerning the effectiveness of the individual components. We compare our full N3Net
against several baselines: (i,ii) The baseline DnCNN network with depths 17 (default) and 18
(matching the depth of N3Net). (iii) A baseline where we replace the N3 blocks with KNN selection
(k = 7) to obtain neighbors for each patch. Distance calculation is done on the noisy input patches.
(iv) The same baseline as (iii) but where distances are calculated on denoised patches. Here we
use the pretrained 17-layer DnCNN as strong denoiser. The task specific hand-chosen distance
embedding for this baseline should intuitively yield more sensible nearest neighbors matches than
when matching noisy input patches. (v) A baseline where we use Concrete distributions [19, 30] to
approximately reparameterize the stochastic nearest neighbors sampling. The resulting Concrete
block has an additional network for estimating the annealing parameter of the Concrete distribution.

Table 1 shows the results on the Urban100 test set (σ = 25) from which we can infer four insights:
First, the KNN baselines (iii) and (iv) improve upon the plain DnCNN model, showing that allowing
the network to access non-local information is beneficial. Second, matching denoised patches
(baseline (iv)) does not improve significantly over matching noisy patches (baseline (iii)). Third,
learning a patch embedding with our novel N3 block shows a clear improvement over all baselines.
We, moreover, evaluate a smaller version of N3Net with only two DnCNN blocks of depth 6 (ours
light). This model already outperforms the baseline DnCNN with depth 17 despite having fewer
layers (12 vs. 17) and fewer parameters (427k vs. 556k). Fourth, reparameterization with Concrete

Table 2. PSNR (dB) on Urban100 for gray-scale image denoising for varying k.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

σ = 25 30.17 30.21 30.15 30.27 30.27 30.22 30.19
σ = 50 26.76 26.81 26.78 26.86 26.83 26.80 26.82

6



(a) Clean (b) BM3D (25.21 dB) (c) FFDNet (24.92 dB) (d) NN3D (25.00 dB)

(e) Noisy (14.16 dB) (f) DnCNN (24.76 dB) (g) UNLNet (25.47 dB) (h) N3Net (25.57 dB)

Figure 3. Denoising results (cropped for better display) and PSNR values on an image from Urban100 (σ = 50).

distributions (baseline (v)) performs worse than our continuous nearest neighbors. This is probably
due to the Concrete distribution introducing stochasticity into the forward pass, leading to a less
stable training. Additional ablations are given in the supplemental material.

Next, we compare N3Nets with a varying number of selected neighbors. Table 2 shows the results on
Urban100 with σ ∈ {25, 50}. We can observe that, as expected, more neighbors improve denoising
results. However, the effect diminishes after roughly four neighbors and accuracy starts to deteriorate
again. As we refrain from selecting optimal hyper-parameters on the test set, we will stick to the
architecture with k = 7 for the remaining experiments on image denoising and SISR.

5.2 Comparison to the state of the art

We compare our full N3Net against state-of-the-art local denoising methods, i. e. the DnCNN baseline
[50], the very deep and wide (30 layers, 128 feature channels) RED30 model [31], and the recent
FFDNet [52]. Moreover, we compare against competing non-local denoisers. These include the
classical BM3D [9], which uses a hand-crafted denoising pipeline, and the state-of-the-art trainable
non-local models NLNet [23] and UNLNet [24], both learning to process non-locally aggregated
patches. We also compare against NN3D [7], which applies a non-local step on top of a pretrained
network. For fair comparison, we apply a single denoising step for NN3D using our 17-layer baseline
DnCNN. As a crucial difference to our proposed N3Net, all of the compared non-local methods use
KNN selection on a fixed feature space, thus not being able to learn an embedding for matching.

Table 3 shows the results for three different noise levels. We make three important observations:
First, our N3Net significantly outperforms the baseline DnCNN network on all tested noise levels
and all datasets. Especially for higher noise levels the margin is dramatic, e. g. +0.54dB (σ = 50)
or +0.79dB (σ = 70) on Urban100. Even the deeper and wider RED30 model does not reach
the accuracy of N3Net. Second, our method is the only trainable non-local model that is able to
outperform the local models DnCNN, RED30, and FFDNet. The competing models NLNet and

Table 3. PSNR (dB) for gray-scale image denoising on different datasets. NLNet does not provide a model for
σ = 70 and the publicly available UNLNet model was not trained for σ = 70. RED30 does not provide a model
for σ = 25 and BSD68 is part of the RED30 training set. Hence, we omit these results.

Dataset σ DnCNN BM3D NLNet UNLNet NN3D RED30 FFDNet N3Net (ours)

Set12
25 30.44 29.96 30.31 30.27 30.45 – 30.43 30.55
50 27.19 26.70 27.04 27.07 27.24 27.24 27.31 27.43
70 25.56 25.21 – – 25.61 25.71 25.81 25.90

BSD68
25 29.23 28.56 29.03 28.99 29.19 – 29.19 29.30
50 26.23 25.63 26.07 26.07 26.19 – 26.29 26.39
70 24.85 24.46 – – 24.89 – 25.04 25.14

Urban100
25 29.97 29.71 29.92 29.80 30.09 – 29.92 30.19
50 26.28 25.95 26.15 26.14 26.47 26.32 26.52 26.82
70 24.36 24.27 – – 24.53 24.63 24.87 25.15

7












