
Sample-Efficient Reinforcement Learning
with Stochastic Ensemble Value Expansion

Jacob Buckman∗ Danijar Hafner George Tucker Eugene Brevdo Honglak Lee
Google Brain, Mountain View, CA, USA

jacobbuckman@gmail.com, mail@danijar.com,
{gjt,ebrevdo,honglak}@google.com

Abstract

Integrating model-free and model-based approaches in reinforcement learning has
the potential to achieve the high performance of model-free algorithms with low
sample complexity. However, this is difficult because an imperfect dynamics model
can degrade the performance of the learning algorithm, and in sufficiently complex
environments, the dynamics model will almost always be imperfect. As a result,
a key challenge is to combine model-based approaches with model-free learning
in such a way that errors in the model do not degrade performance. We propose
stochastic ensemble value expansion (STEVE), a novel model-based technique
that addresses this issue. By dynamically interpolating between model rollouts
of various horizon lengths for each individual example, STEVE ensures that the
model is only utilized when doing so does not introduce significant errors. Our
approach outperforms model-free baselines on challenging continuous control
benchmarks with an order-of-magnitude increase in sample efficiency, and in
contrast to previous model-based approaches, performance does not degrade in
complex environments.

1 Introduction

Deep model-free reinforcement learning has had great successes in recent years, notably in playing
video games [23] and strategic board games [27]. However, training agents using these algorithms
requires tens to hundreds of millions of samples, which makes many practical applications infeasible,
particularly in real-world control problems (e.g., robotics) where data collection is expensive.

Model-based approaches aim to reduce the number of samples required to learn a policy by modeling
the dynamics of the environment. A dynamics model can be used to increase sample efficiency in
various ways, including training the policy on rollouts from the dynamics model [28], using rollouts
to improve targets for temporal difference (TD) learning [7], and using information gained from
rollouts as inputs to the policy [31]. Model-based algorithms such as PILCO [4] have shown that it is
possible to learn from orders-of-magnitude fewer samples.

These successes have mostly been limited to environments where the dynamics are simple to model.
In noisy, complex environments, it is difficult to learn an accurate model of the environment. When
the model makes mistakes in this context, it can cause the wrong policy to be learned, hindering
performance. Recent work has begun to address this issue. Kalweit and Boedecker [17] train a
model-free algorithm on a mix of real and imagined data, adjusting the proportion in favor of real
data as the Q-function becomes more confident. Kurutach et al. [20] train a model-free algorithm
on purely imaginary data, but use an ensemble of environment models to avoid overfitting to errors
made by any individual model.

∗This work was completed as part of the Google AI Residency program.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

0 2000 4000 6000 8000 10000
Updates

0

1000

2000

Er
ro

r

STEVE (H=5)
MVE (H=5)
TD Learning (Model-Free)

Toy Environment + Oracle Dynamics Model

0 2000 4000 6000 8000 10000
Updates

0

1000

2000

Er
ro

r

Toy Environment + Noisy Dynamics Model

Figure 1: Value error per update on a value-estimation task (fixed policy) in a toy environment. H is
the maximum rollout horizon (see Section 3). When given access to a perfect dynamics model, hybrid
model-free model-based approaches (MVE and STEVE) solve this task with 5× fewer samples
than model-free TD learning. However, when only given access to a noisy dynamics model, MVE
diverges due to model errors. In contrast, STEVE converges to the correct solution, and does so with
a 2× speedup over TD learning. This is because STEVE dynamically adapts its rollout horizon to
accommodate model error. See Appendix A for more details.

We propose stochastic ensemble value expansion (STEVE), an extension to model-based value
expansion (MVE) proposed by Feinberg et al. [7]. Both techniques use a dynamics model to compute
“rollouts” that are used to improve the targets for temporal difference learning. MVE rolls out a fixed
length into the future, potentially accumulating model errors or increasing value estimation error
along the way. In contrast, STEVE interpolates between many different horizon lengths, favoring
those whose estimates have lower uncertainty, and thus lower error. To compute the interpolated
target, we replace both the model and Q-function with ensembles, approximating the uncertainty of
an estimate by computing its variance under samples from the ensemble. Through these uncertainty
estimates, STEVE dynamically utilizes the model rollouts only when they do not introduce significant
errors. For illustration, Figure 1 compares the sample efficiency of various algorithms on a tabular toy
environment, which shows that STEVE significantly outperforms MVE and TD-learning baselines
when the dynamics model is noisy. We systematically evaluate STEVE on several challenging
continuous control benchmarks and demonstrate that STEVE significantly outperforms model-free
baselines with an order-of-magnitude increase in sample efficiency.

2 Background

Reinforcement learning aims to learn an agent policy that maximizes the expected (discounted) sum
of rewards [29]. The agent starts at an initial state s0 ∼ p(s0), where p(s0) is the distribution of
initial states of the environment. Then, the agent deterministically chooses an action at according
to its policy πφ(st) with parameters φ, deterministically transitions to a subsequent state st+1

according to the Markovian dynamics T (st, at) of the environment, and receives a reward rt =
r(st, at, st+1). This generates a trajectory of states, actions, and rewards τ = (s0, a0, r0, s1, a1, . . .).
If a trajectory reaches a terminal state, it concludes without further transitions or rewards; however,
this is optional, and trajectories may instead be infinite in length. We abbreviate the trajectory by
τ . The goal is to maximize the expected discounted sum of rewards along sampled trajectories
J(θ) = Es0 [

∑∞
t=0 γ

trt] where γ ∈ [0, 1) is a discount parameter.

2.1 Value Estimation with TD-learning

The action-value functionQπ(s0, a0) =
∑∞
t=0 γ

trt is a critical quantity to estimate for many learning
algorithms. Using the fact that Qπ(s, a) satisfies a recursion relation

Qπ(s, a) = r(s, a) + γ(1− d(s′))Qπ(s′, π(s′)),

where s′ = T (s, a) and d(s′) is an indicator function which returns 1 when s′ is a terminal state and
0 otherwise. We can estimate Qπ(s, a) off-policy with collected transitions of the form (s, a, r, s′)
sampled uniformly from a replay buffer [29]. We approximate Qπ(s, a) with a deep neural network,
Q̂πθ (s, a). We learn parameters θ to minimize the mean squared error (MSE) between Q-value

2

estimates of states and their corresponding TD targets:

T TD(r, s′) = r + γ(1− d(s′))Q̂πθ−(s′, π(s′)) (1)

Lθ = E(s,a,r,s′)

[
(Q̂πθ (s, a)− T TD(r, s′))2

]
(2)

This expectation is taken with respect to transitions sampled from our replay buffer. Note that we use
an older copy of the parameters, θ−, when computing targets [23].

Since we evaluate our method in a continuous action space, it is not possible to compute a policy from
our Q-function by simply taking maxa Q̂

π
θ (s, a). Instead, we use a neural network to approximate

this maximization function [21], by learning a parameterized function πφ to minimize the negative
Q-value:

Lφ = −Q̂πθ (s, πφ(s)). (3)

In this work, we use DDPG as the base learning algorithm, but our technique is generally applicable
to other methods that use TD objectives.

2.2 Model-Based Value Expansion (MVE)

Recently, Feinberg et al. [7] showed that a learned dynamics model can be used to improve value
estimation. MVE forms TD targets by combining a short term value estimate formed by unrolling the
model dynamics and a long term value estimate using the learned Q̂πθ− function. When the model is
accurate, this reduces the bias of the targets, leading to improved performance.

The learned dynamics model consists of three learned functions: the transition function T̂ξ(s, a),
which returns a successor state s′; a termination function d̂ξ(s), which returns the probability that s
is a terminal state; and the reward function r̂ψ(s, a, s′), which returns a scalar reward. This model is
trained to minimize

Lξ,ψ = E(s,a,r,s′)

[
||T̂ξ(s, a)− s′||2 + H

(
d(s′), d̂ξ(T̂ξ(s, a))

)
+ (r̂ψ(s, a, s′)− r)2

]
, (4)

where the expectation is over collected transitions (s, a, r, s′), and H is the cross-entropy. In this
work, we consider continuous environments; for discrete environments, the first term can be replaced
by a cross-entropy loss term.

To incorporate the model into value estimation, Feinberg et al. [7] replace the standard Q-learning
target with an improved target, T MVE

H , computed by rolling the learned model out for H steps.

s′0 = s′, a′i = πφ(s′i), s′i = T̂ξ(s
′
i−1, a

′
i−1), Di = d(s′)

i∏
j=1

(1− d̂ξ(s′j))

(5)

T MVE
H (r, s′) = r +

(
H∑
i=1

Diγir̂ψ(s′i−1, a
′
i−1, s

′
i)

)
+DH+1γH+1Q̂πθ−(s′H , a

′
H). (6)

To use this target, we substitute T MVE
H in place of T TD when training θ using Equation 2.2 Note that

when H = 0, MVE reduces to TD-learning (i.e., T TD = T MVE
0).

When the model is perfect and the learned Q-function has similar bias on all states and actions,
Feinberg et al. [7] show that the MVE target with rollout horizon H will decrease the target error by
a factor of γ2H . Errors in the learned model can lead to worse targets, so in practice, we must tune H
to balance between the errors in the model and the Q-function estimates. An additional challenge
is that the bias in the learned Q-function is not uniform across states and actions [7]. In particular,

2This formulation is a minor generalization of the original MVE objective in that we additionally model
the reward function and termination function; Feinberg et al. [7] consider “fully observable” environments in
which the reward function and termination condition were known, deterministic functions of the observations.
Because we use a function approximator for the termination condition, we compute the accumulated probability
of termination, Di, at every timestep, and use this value to discount future returns.

3

Figure 2: Visualization of how the set of possible values for each candidate target is computed, shown
for a length-two rollout with M,N,L = 2. Colors correspond to ensemble members. Best viewed in
color.

they find that the bias in the Q-function on states sampled from the replay buffer is lower than when
the Q-function is evaluated on states generated from model rollouts. They term this the distribution
mismatch problem and propose the TD-k trick as a solution; see Appendix B for further discussion of
this trick.

While the results of Feinberg et al. [7] are promising, they rely on task-specific tuning of the rollout
horizon H . This sensitivity arises from the difficulty of modeling the transition dynamics and the Q-
function, which are task-specific and may change throughout training as the policy explores different
parts of the state space. Complex environments require much smaller rollout horizon H , which limits
the effectiveness of the approach (e.g., Feinberg et al. [7] used H = 10 for HalfCheetah-v1, but had
to reduce to H = 3 on Walker2d-v1). Motivated by this limitation, we propose an approach that
balances model error and Q-function error by dynamically adjusting the rollout horizon.

3 Stochastic Ensemble Value Expansion

From a single rollout ofH timesteps, we can computeH+1 distinct candidate targets by considering
rollouts of various horizon lengths: T MVE

0 ,T MVE
1 ,T MVE

2 ,...,T MVE
H . Standard TD learning uses T MVE

0

as the target, while MVE uses T MVE
H as the target. We propose interpolating all of the candidate

targets to produce a target which is better than any individual. Conventionally, one could average the
candidate targets, or weight the candidate targets in an exponentially-decaying fashion, similar to
TD(λ) [29]. However, we show that we can do still better by weighting the candidate targets in a way
that balances errors in the learnedQ-function and errors from longer model rollouts. STEVE provides
a computationally-tractable and theoretically-motivated algorithm for choosing these weights. We
describe the algorithm for STEVE in Section 3.1, and justify it in Section 3.2.

3.1 Algorithm

To estimate uncertainty in our learned estimators, we maintain an ensemble of parameters for our
Q-function, reward function, and model: θ = {θ1, ..., θL}, ψ = {ψ1, ..., ψN}, and ξ = {ξ1, ..., ξM},
respectively. Each parameterization is initialized independently and trained on different subsets of
the data in each minibatch.

We roll out an H step trajectory with each of the M models, τ ξ1 , ..., τ ξM . Each trajectory consists of
H + 1 states, τ ξm0 , ..., τ ξmH , which correspond to s′0, ..., s

′
H in Equation 5 with the transition function

parameterized by ξm. Similarly, we use the N reward functions and L Q-functions to evaluate
Equation 6 for each τ ξm at every rollout-length 0 ≤ i ≤ H . This gives us M ·N · L different values
of T MVE

i for each rollout-length i. See Figure 2 for a visualization of this process.

Using these values, we can compute the empirical mean T µi and variance T σ2

i for each partial rollout
of length i. In order to form a single target, we use an inverse variance weighting of the means:

T STEVE
H (r, s′) =

H∑
i=0

w̃i∑
j w̃j
T µi , w̃−1i = T σ

2

i (7)

4

To learn a value function with STEVE, we substitute in T STEVE
H in place of T TD when training θ

using Equation 2.

3.2 Derivation

We wish to find weights wi, where
∑
i wi = 1 that minimize the mean-squared error between the

weighted-average of candidate targets T MVE
0 ,T MVE

1 ,T MVE
2 ,...,T MVE

H and the true Q-value.

E

(H∑
i=0

wiT MVE
i −Qπ(s, a)

)2
 = Bias

(∑
i

wiT MVE
i

)2

+ Var

(∑
i

wiT MVE
i

)

≈ Bias

(∑
i

wiT MVE
i

)2

+
∑
i

w2
i Var(T MVE

i),

where the expectation considers the candidate targets as random variables conditioned on the collected
data and minibatch sampling noise, and the approximation is due to assuming the candidate targets
are independent3.

Our goal is to minimize this with respect to wi. We can estimate the variance terms using empirical
variance estimates from the ensemble. Unfortunately, we could not devise a reliable estimator for
the bias terms, and this is a limitation of our approach and an area for future work. In this work, we
ignore the bias terms and minimize the weighted sum of variances∑

i

w2
i Var(T MVE

i).

With this approximation, which is equivalent to in inverse-variance weighting [8], we achieve state-
of-the-art results. Setting each wi equal to 1

Var(T MVE
i)

and normalizing yields the formula for T STEVE
H

given in Equation 7.

3.3 Note on ensembles

This technique for calculating uncertainty estimates is applicable to any family of models from which
we can sample. For example, we could train a Bayesian neural network for each model [22], or use
dropout as a Bayesian approximation by resampling the dropout masks each time we wish to sample
a new model [10]. These options could potentially give better diversity of various samples from the
family, and thus better uncertainty estimates; exploring them further is a promising direction for
future work. However, we found that these methods degraded the accuracy of the base models. An
ensemble is far easier to train, and so we focus on that in this work. This is a common choice, as the
use of ensembles in the context of uncertainty estimations for deep reinforcement learning has seen
wide adoption in the literature. It was first proposed by Osband et al. [25] as a technique to improve
exploration, and subsequent work showed that this approach gives a good estimate of the uncertainty
of both value functions [17] and models [20].

4 Experiments

4.1 Implementation

We use DDPG [21] as our baseline model-free algorithm. We train two deep feedforward neural
networks, a Q-function network Q̂πθ (s, a) and a policy network πφ(s), by minimizing the loss
functions given in Equations 2 and 3. We also train another three deep feedforward networks to
represent our world model, corresponding to function approximators for the transition T̂ξ(s, a),
termination d̂ξ(t | s), and reward r̂ψ(s, a, s′), and minimize the loss function given in Equation 4.

When collecting rollouts for evaluation, we simply take the action selected by the policy, πφ(s), at
every state s. (Note that only the policy is required at test-time, not the ensembles of Q-functions,

3Initial experiments suggested that omitting the covariance cross terms provided significant computational
speedups at the cost of a slight performance degradation. As a result, we omitted the terms in the rest of the
experiments.

5

Figure 3: Learning curves comparing sample efficiency of our method to both model-free and
model-based baselines. Each experiment was run four times.

dynamics models, or reward models.) Each run was evaluated after every 500 updates by computing
the mean total episode reward (referred to as score) across many environment restarts. To produce
the lines in Figures 3, 4, and 5, these evaluation results were downsampled by splitting the domain
into non-overlapping regions and computing the mean score within each region across several runs.
The shaded area shows one standard deviation of scores in the region as defined above.

When collecting rollouts for our replay buffer, we do ε-greedy exploration: with probability ε, we
select a random action by adding Gaussian noise to the pre-tanh policy action.

All algorithms were implemented in Tensorflow [1]. We use a distributed implementation to parallelize
computation. In the style of ApeX [16], IMPALA [6], and D4PG [2], we use a centralized learner with
several agents operating in parallel. Each agent periodically loads the most recent policy, interacts
with the environment, and sends its observations to the central learner. The learner stores received
frames in a replay buffer, and continuously loads batches of frames from this buffer to use as training
data for a model update. In the algorithms with a model-based component, there are two learners: a
policy-learner and a model-learner. In these cases, the policy-learner periodically reloads the latest
copy of the model.

All baselines reported in this section were re-implementations of existing methods. This allowed us to
ensure that the various methods compared were consistent with one another, and that the differences
reported are fully attributable to the independent variables in question. Our baselines are competitive
with state-of-the-art implementations of these algorithms [7, 14]. All MVE experiments utilize the
TD-k trick. For hyperparameters and additional implementation details, please see Appendix C.4

4.2 Comparison of Performance

We evaluated STEVE on a variety of continuous control tasks [3, 19]; we plot learning curves in
Figure 3. We found that STEVE yields significant improvements in both performance and sample
efficiency across a wide range of environments. Importantly, the gains are most substantial in the
complex environments. On the most challenging environments: Humanoid-v1, RoboschoolHumanoid-

4Our code is available open-source at: https://github.com/tensorflow/models/tree/master/
research/steve

6

