
Supplementary material for HOUDINI: Lifelong
Learning as Program Synthesis

Lazar Valkov
University of Edinburgh
L.Valkov@sms.ed.ac.uk

Dipak Chaudhari
Rice University

dipakc@rice.edu

Akash Srivastava
University of Edinburgh

Akash.Srivastava@ed.ac.uk

Charles Sutton
University of Edinburgh,

The Alan Turing Institute, and Google Brain
charlessutton@google.com

Swarat Chaudhuri
Rice University
swarat@rice.edu

A Assigning Types to HOUDINI Programs

A program e in HOUDINI is assigned a type using the following rules:

• e = e′ ◦ e′′ is assigned a type iff e′ has type ττ ′ and e′′ has type τ ′τ ′′. In this case, e has type ττ ′′.
• e =ατ e′ is assigned a type iff e′ has the type ττ ′. In this case, the type of e is ατατ ′.
• e =ατ e′ z is assigned a type iff e′ has the type τ ′(ττ ′) and z has the type τ ′. In this case, e has

type αττ ′.
• e =ατ e′ is assigned a type iff e′ has the type listττ ′. In this case, e has type ατατ ′.

If it is not possible to assign a type to the program e, then it is considered type-inconsistent and
excluded from the scope of synthesis.

B Symbolic Program Synthesis

In this appendix we provide implementation details of our synthesis algorithms.

B.1 Synthesis Using Top-down Iterative Refinement

Now we give more details on the implementation of based on iterative refinement. To explain this
algorithm, we need to define a notion of a partial program. The grammar for partial programs e
is obtained by augmenting the HOUDINI grammar (Figure ??) with an additional rule: e ::= τ .
The form τ represents a hole, standing for missing code. A program with holes has no operational
meaning; however, we do have a type system for such programs. This type system follows the rules in
Appendix A, but in addition, axiomatically assumes any subterm τ to be of type τ . A partial program
that cannot be assigned a type is automatically excluded from the scope of synthesis.

Now, the initial input to the algorithm is the type τ of the function we want to learn. The procedure
proceeds iteratively, maintaining a priority queue Q of synthesis subtasks of the form (e, f), where e
is a type-safe partial or complete program of type τ , and f is either a hole of type τ ′ in e, or a special
symbol ⊥ indicating that e is complete (i.e., free of holes). The interpretation of such a task is to find
a replacement e′ of type τ ′ for the hole f such that the program e′′ obtained by substituting f by e′ is
complete. (Because e is type-safe by construction, e′′ is of type τ .) The queue is sorted according to
a heuristic cost function that prioritizes simpler programs.

Initially, Q has a single element (e, f), where e is an “empty” program of form τ , and f is a reference
to the hole in e. The procedure iteratively processes subtasks in the queue Q, selecting a task (e, f)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

in the beginning of each iteration. If the program e is complete, it is sent to the neural module for
parameter learning. Otherwise, the algorithm expands the program e by proposing a partial program
that fills the hole f . To do this, the algorithm selects a production rule for partial programs from the
grammar for partial programs. Suppose the right hand side of this rule is α. The algorithm constructs
an expression e′ from α by replacing each nonterminal in α by a hole with the same type as the
nonterminal. If e′ is not of the same type as f , it is automatically rejected. Otherwise, the algorithm
constructs the program e′′ = e[f 7→ e′]. For each hole f ′ in e′′, the algorithm adds to Q a new task
(e′′, f ′). If e′′ has no hole, it adds to Q a task (e′′,⊥).

B.2 Evolutionary Synthesis

The evolutionary synthesis algorithm is an iterative procedure that maintains a population of programs.
The population is initialized with a set of randomly generated type-safe parameterized programs.
Each iteration of the algorithm performs the following steps.

1. Each program in the population is sent to the neural module , which computes a fitness score
(the loss under optimal parameters) for the program.

2. We perform random proportional selection, in which a subset of the (parameterized) pro-
grams are retained, while the other programs are filtered out. Programs with higher fitness
are more likely to remain in the population.

3. We perform a series of crossover operations, each of which draws a random pair of programs
from the population and swaps a pair of randomly drawn subterms of the same type in these
programs.

4. We perform a series of mutation operations, each of which randomly chooses a program and
replaces a random subterm the program with a new subterm of the same type.

Because the crossover and mutation operations only replace terms with other terms of the same type,
the programs in the population are always guaranteed to be type-consistent. This fact is key to the
performance of the algorithm.

C Details of Experimental Setup

The initial library models, which have trainable weights, have the following architecture. MLP
modules have one hidden layer of size 1024, followed by batch normalization and dropout, followed
by an output layer. CNNs have two convolutional layers with 32 and 64 output channels respectively,
each with a 5x5 kernel, stride 1 and 0 padding, and each followed by max pooling, followed by spatial
dropout. RNN modules are long short-term memory (LSTM) networks with a hidden dimension of
100, followed by an output layer, which transforms the last hidden state. For a given task, we use the
input and output types of the new function to decide between MLP, CNN, or RNN, and also deduce
the output activation function.

The standalone baseline for counting uses an architecture of the form λx.RNN((MLP ◦ CNN(x))),
which is intuitively appropriate for the task, and also matches the shape of some programs commonly
returned by HOUDINI. As for the shortest path sequences, the first task for GS1 and GS2 is regression,
which we train using a network with architecture MLP ◦CNN, in which the last layer is linear. In the
RNN baseline for the other tasks in the graph sequences, we map a learned MLP ◦ CNN regression
module to each image in the grid. Afterwards, we linearize the grid row-wise, converting it into a list,
and then we process it using an LSTM (RNN) with hidden state of size 100. The number was chosen
so that both our implementation and the baseline have almost the same number of parameters.

For multi-class classification (Sequence SS - Task 1) and regression (GS1 - Task1, GS2 - Task 1), we
used all training images available. For the rest of the tasks in GS1, GS2, GS3 and SS, we use 12000
data points for training, with 2100 for testing. The list lengths for training are [2, 3, 4, 5], and [6,
7, 8] for testing in order to evaluate the generalization to longer sequences. We train for 20 epochs
on all list-related tasks and for 1000 epochs for the regression tasks. The training datasets for the
graph shortest path tasks (GS1 - Task 2; GS2 - Task2, GS2 - Task3) consists of 70,000 3x3 grids and
1,000,000 4x4 grids, while the testing datasets consists of 10,000 5x5 grids. The number of epochs
for these tasks is 5. In GS2 - Task3, the low-level transfer baseline reuses the regression function
learned in GS2 - Task1, thus, the image dimensions from MNIST and the colored GTSRB need to

2

match. Therefore, we expanded the MNIST digit images, used for the graph sequences GS1 and GS2,
to 28x28x3 dimensionality and resized the images from GTSRB from 32x32x3 to 28x28x3.

For all experiments, we use early stopping, reporting the the test error at the epoch where the
validation error was minimized.

D Programs Discovered in Experiments

Tables 1-22 list the top 3 programs and the corresponding classification errors/RMSEs, on a test
dataset, for most of our task sequences. The programs are ordered by their performance on a validaiton
dataset. Finally, the presented programs are the ones evaluated for all (100%) of the training dataset.
Here we use the syntax to denote function composition. Program terms with prefix “nn ” denote
neural modules trained during the corresponding tasks whereas terms with prefix “lib.” denote already
trained neural modules in the library. For example, in Counting Sequence 1 (Table 1), “nn cs1 1”
is the neural module trained during Task 1 (recognize digit(d1)). After completion of this task, the
neural module is added to the library and is available for use during the subsequent tasks. For example,
the top performing program for Task 3 (count digit(d1)) uses the neural module “lib.nn cs1 1” from
the library (and a freshly trained neural module “nn cs1 5”) to construct a program for the counting
task.

E Summing Experiment

In this section we present the result from task sequence SS in Figure 3 of the main paper. This
sequence was designed to demonstrate low-level transfer of a multi-class classifier as well as the
advantage of functional methods like foldl in specific situations. The first task of the sequence is
a simple MNIST classifier, on which all competing methods do equally well. The second task is a
regression task, to learn to sum all of the digits in the sequence. The standalone method, low level
transfer one and the progressive neural networks all perform equally poorly (note that their lines are
overplotted in the Figure), but the synthesized program from HOUDINI is able to learn this function
easily because it is able to use a foldl operation. We also add a new baseline ”standalone with fold”,
which reuses the program found by HOUDINI, but trains the parameter from a random initialization.

(a) Task 2: Sum digits

Figure 1: Lifelong learning for “learning to sum” (Sequence SS).

F Full Experimental Results on Counting Tasks

In the paper, we present results for the counting sequences on for the later tasks, in which transfer
learning is possible. For completeness, in this section we present results on all of the tasks in the
sequences. See Figures 2–4. We note that for the early tasks in each task sequence (e.g. CS1 tasks 1
and 2), there is little relevant information that can be transferred from early tasks, so as expected all
methods perform similarly; e.g., the output of HOUDINI is a single library function.

3

Table 1: Counting Sequence 1(CS1). “CE” denotes classification error and “RMSE” denotes root
mean square error.

Task Top 3 programs Error
Task 1: recognize digit(d1) 1. (nn cs1 1, nn cs1 2) 1% CE

Task 2: recognize digit(d2)
1. (nn cs1 3, nn cs1 4) 1% CE
2. (nn cs1 5, lib.nn cs1 2) 1% CE
3. (lib.nn cs1 1, nn cs1 6) 1% CE

Task 3: count digit(d1)
1. (nn cs1 7, ((nn cs1 8, lib.nn cs1 2))) 0.38 RMSE
2. ((nn cs1 9, (nn cs1 10)), (nn cs1 11)) 0.38 RMSE
3. (nn cs1 12, ((nn cs1 13), (lib.nn cs1 2))) 0.40 RMSE

Task 4: count digit(d2)
1. (nn cs1 14, ((lib.nn cs1 1), (nn cs1 15))) 0.32 RMSE
2. (lib.nn cs1 7, ((nn cs1 16, lib.nn cs1 4))) 0.37 RMSE
3. (lib.nn cs1 7, ((nn cs1 17), (lib.nn cs1 4))) 0.37 RMSE

Table 2: Counting Sequence 2(CS2)

Task Top 3 programs Error
Task 1: recognize digit(d1) 1. (nn cs2 1, nn cs2 2) 1% CE

Task 2: count digit(d1) 1. (nn cs2 3, ((nn cs2 4), (nn cs2 5))) 0.35 RMSE
2. (nn cs2 6, ((nn cs2 7, nn cs2 8))) 0.40 RMSE
3. ((nn cs2 9, (nn cs2 10)), (nn cs2 11)) 0.41 RMSE

Task 3: count digit(d2)
1. (lib.nn cs2 3, ((nn cs2 12), (lib.nn cs2 2))) 0.34 RMSE
2. (lib.nn cs2 3, ((nn cs2 13, lib.nn cs2 2))) 0.33 RMSE
3. (lib.nn cs2 3, ((nn cs2 14), (nn cs2 15))) 0.33 RMSE

Task 4: recognize digit(d2)
1. (nn cs2 16, nn cs2 17) 1% CE
2. (nn cs2 18, lib.nn cs2 2) 1% CE
3. (lib.nn cs2 12, lib.nn cs2 2) 1% CE

Table 3: Counting Sequence 3(CS3)

Task Top 3 Programs Error
Task 1: recognize digit(d) 1. (nn cs3 1, nn cs3 2) 1% CE

Task 2: count digit(d) 1. (nn cs3 3, ((nn cs3 4, nn cs3 5))) 0.40 RMSE
2. (nn cs3 6, ((nn cs3 7, lib.nn cs3 2))) 0.40 RMSE
3. (nn cs3 8, ((nn cs3 9), (lib.nn cs3 2))) 0.41 RMSE

Task 3: count toy(t)
1. (lib.nn cs3 3, ((nn cs3 10), (nn cs3 11))) -0.73
2. (lib.nn cs3 3, ((nn cs3 12, nn cs3 13))) 0.67 RMSE
3. (lib.nn cs3 3, ((lib.nn cs3 1), (nn cs3 14))) 0.96 RMSE

Task 4: recognize toy(t)
1. (nn cs3 15, lib.nn cs3 11) 7% CE
2. (nn cs3 16, nn cs3 17) 5% CE
3. (lib.nn cs3 10, lib.nn cs3 11) 6% CE

Table 4: Summing Sequence(SS)

Task Top 3 programs Error
Task 1: classify digit 1. (nn ss 1, nn ss 2) 1% CE

Task 2: sum digits 1. ((nn ss 3 zeros(1)), ((nn ss 4, lib.nn ss 2))) 2.15 RMSE
2. ((nn ss 5 zeros(1)), ((nn ss 6, nn ss 7))) 2.58 RMSE
3. ((nn ss 8 zeros(1)), ((lib.nn ss 1, lib.nn ss 2))) 4.30 RMSE

Table 5: Graph Sequence 1(GS1)

Task Top 3 Programs Error
Task 1: regress speed 1. (nn gs1 1, nn gs1 2) 0.64 RMSE

Task 2: shortest path street
1. (10(nn gs1 3), ((lib.nn gs1 1, lib.nn gs1 2))) 1.88 RMSE
2. (9(nn gs1 4), ((lib.nn gs1 1, lib.nn gs1 2))) 2.02 RMSE
3. (10(nn gs1 5), ((nn gs1 6, nn gs1 7))) 6.76 RMSE

Table 6: Graph Sequence 2(GS2)

Task Top 3 Programs Error
Task 1: regress mnist 1. (nn gs2 1, nn gs2 2) 1.47 RMSE

Task 2: shortest path mnist
1. (10(nn gs2 3), ((lib.nn gs2 1, lib.nn gs2 2))) 1.57 RMSE
2. (9(nn gs2 4), ((lib.nn gs2 1, lib.nn gs2 2))) 1.73 RMSE
3. (9(nn gs2 5), ((nn gs2 6, nn gs2 7))) 4.99 RMSE

Task 3: shortest path street
1. (10(lib.nn gs2 3), ((nn gs2 8, nn gs2 9))) 3.48 RMSE
2. (9(lib.nn gs2 3), ((nn gs2 10, nn gs2 11))) 3.84 RMSE
3. (10(lib.nn gs2 3), ((lib.nn gs2 1, lib.nn gs2 2))) 6.92 RMSE

4

Table 7: Long Sequence 1(LS1).

Task Top 3 Programs Error

Task 1: count digit(7)
1. ((nn ls1 1, (nn ls1 2)), (nn ls1 3)) 0.46 RMSE
2. (nn ls1 4, ((nn ls1 5, nn ls1 6))) 0.49 RMSE
3. (nn ls1 7, ((nn ls1 8), (nn ls1 9))) 0.51 RMSE

Task 2: count digit(4)
1. (lib.nn ls1 1, ((nn ls1 10), (nn ls1 11))) 1.50 RMSE
2. (lib.nn ls1 1, ((nn ls1 12, nn ls1 13))) 1.61 RMSE
3. ((lib.nn ls1 1, (nn ls1 14)), (nn ls1 15)) 1.64 RMSE

Task 3: recognize toy(0)
1. (nn ls1 16, lib.nn ls1 11) 9.81% CE
2. (nn ls1 17, nn ls1 18) 8.86% CE
3. (nn ls1 19, lib.nn ls1 3) 12.86% CE

Task 4: recognize digit(9)
1. (nn ls1 20, nn ls1 21) 1.38% CE
2. (nn ls1 22, lib.nn ls1 3) 2.14% CE
3. (lib.nn ls1 2, nn ls1 23) 1.95% CE

Task 5: count digit(2)
1. (nn ls1 24, ((nn ls1 25), (nn ls1 26))) 1.08 RMSE
2. (lib.nn ls1 1, ((nn ls1 27, nn ls1 28))) 1.02 RMSE
3. (lib.nn ls1 1, ((lib.nn ls1 16, nn ls1 29))) 0.95 RMSE

Task 6: count digit(9)
1. (lib.nn ls1 1, ((nn ls1 30, nn ls1 31))) 0.49 RMSE
2. (lib.nn ls1 1, ((nn ls1 32, lib.nn ls1 21))) 0.49 RMSE
3. (lib.nn ls1 1, ((nn ls1 33, lib.nn ls1 3))) 0.49 RMSE

Task 7: count digit(0)
1. (nn ls1 34, ((lib.nn ls1 16, lib.nn ls1 11))) 0.94 RMSE
2. (lib.nn ls1 1, ((nn ls1 35, nn ls1 36))) 0.81 RMSE
3. (nn ls1 37, ((nn ls1 38, nn ls1 39))) 0.85 RMSE

Task 8: recognize digit(7)
1. (lib.nn ls1 2, lib.nn ls1 3) 0.86% CE
2. (nn ls1 40, lib.nn ls1 3) 1.19% CE
3. (nn ls1 41, lib.nn ls1 21) 1.05% CE

Task 9: count digit(2)
1. (nn ls1 42, ((nn ls1 43, lib.nn ls1 26))) 0.43 RMSE
2. (lib.nn ls1 1, ((nn ls1 44, nn ls1 45))) 0.45 RMSE
3. (lib.nn ls1 1, ((nn ls1 46, lib.nn ls1 3))) 0.45 RMSE

Table 8: Long Sequence 2(LS2).

Task Top 3 Programs Error

Task 1: count digit(1)
1. (nn ls2 1, ((nn ls2 2, nn ls2 3))) 0.43 RMSE
2. (nn ls2 4, ((nn ls2 5), (nn ls2 6))) 0.45 RMSE
3. ((nn ls2 7, (nn ls2 8)), (nn ls2 9)) 0.48 RMSE

Task 2: count digit(0)
1. (nn ls2 10, ((nn ls2 11), (nn ls2 12))) 0.96 RMSE
2. (lib.nn ls2 1, ((nn ls2 13, nn ls2 14))) 0.84 RMSE
3. ((lib.nn ls2 1, (nn ls2 15)), (nn ls2 16)) 0.92 RMSE

Task 3: recognize toy(1)
1. (nn ls2 17, nn ls2 18) 5.05% CE
2. (nn ls2 19, lib.nn ls2 12) 4.00% CE
3. (lib.nn ls2 2, nn ls2 20) 10.52% CE

Task 4: recognize digit(5)
1. (nn ls2 21, nn ls2 22) 0.76% CE
2. (nn ls2 23, lib.nn ls2 3) 0.86% CE
3. (lib.nn ls2 17, nn ls2 24) 0.81% CE

Task 5: count digit(4)
1. (lib.nn ls2 1, ((nn ls2 25, nn ls2 26))) 1.68 RMSE
2. (lib.nn ls2 1, ((nn ls2 27, lib.nn ls2 18))) 1.51 RMSE
3. (lib.nn ls2 1, ((nn ls2 28, lib.nn ls2 12))) 1.46 RMSE

Task 6: count digit(5)
1. (nn ls2 29, ((nn ls2 30, nn ls2 31))) 0.43 RMSE
2. (nn ls2 32, ((lib.nn ls2 21, lib.nn ls2 22))) 0.43 RMSE
3. (lib.nn ls2 1, ((nn ls2 33, lib.nn ls2 22))) 0.45 RMSE

Task 7: count digit(1)
1. (nn ls2 34, ((lib.nn ls2 25, nn ls2 35))) 0.64 RMSE
2. (nn ls2 36, ((nn ls2 37, nn ls2 38))) 0.74 RMSE
3. (nn ls2 39, ((nn ls2 40, lib.nn ls2 26))) 0.83 RMSE

Task 8: recognize digit(1)
1. (nn ls2 41, lib.nn ls2 3) 0.29% CE
2. (nn ls2 42, lib.nn ls2 12) 0.19% CE
3. (nn ls2 43, lib.nn ls2 22) 0.24% CE

Task 9: count digit(8)
1. (nn ls2 44, ((nn ls2 45, lib.nn ls2 31))) 0.46 RMSE
2. (nn ls2 46, ((nn ls2 47, lib.nn ls2 26))) 0.45 RMSE
3. (nn ls2 48, ((nn ls2 49, lib.nn ls2 3))) 0.47 RMSE

5

Table 9: Long Sequence 3(LS3).

Task Top 3 Programs Error

Task 1: count digit(9)
1. (nn ls3 1, ((nn ls3 2), (nn ls3 3))) 0.46 RMSE
2. (nn ls3 4, ((nn ls3 5, nn ls3 6))) 0.48 RMSE
3. ((nn ls3 7, (nn ls3 8)), (nn ls3 9)) 0.55 RMSE

Task 2: count digit(1)
1. (lib.nn ls3 1, ((nn ls3 10, nn ls3 11))) 0.63 RMSE
2. (lib.nn ls3 1, ((nn ls3 12), (nn ls3 13))) 0.68 RMSE
3. ((lib.nn ls3 1, (nn ls3 14)), (nn ls3 15)) 0.63 RMSE

Task 3: recognize toy(2)
1. (nn ls3 16, nn ls3 17) 8.19% CE
2. (nn ls3 18, lib.nn ls3 11) 9.95% CE
3. (lib.nn ls3 2, nn ls3 19) 14.00% CE

Task 4: recognize digit(1)
1. (nn ls3 20, lib.nn ls3 3) 0.38% CE
2. (nn ls3 21, lib.nn ls3 17) 0.48% CE
3. (nn ls3 22, nn ls3 23) 0.24% CE

Task 5: count digit(3)
1. (lib.nn ls3 1, ((nn ls3 24, nn ls3 25))) 0.51 RMSE
2. (lib.nn ls3 1, ((nn ls3 26, lib.nn ls3 17))) 0.66 RMSE
3. (lib.nn ls3 1, ((nn ls3 27, lib.nn ls3 11))) 0.61 RMSE

Task 6: count digit(1)
1. (nn ls3 28, ((nn ls3 29, lib.nn ls3 11))) 0.38 RMSE
2. (nn ls3 30, ((nn ls3 31, lib.nn ls3 3))) 0.37 RMSE
3. (lib.nn ls3 1, ((nn ls3 32, lib.nn ls3 3))) 0.40 RMSE

Task 7: count digit(2)
1. (nn ls3 33, ((nn ls3 34, lib.nn ls3 17))) 0.96 RMSE
2. (lib.nn ls3 1, ((nn ls3 35, nn ls3 36))) 0.99 RMSE
3. (lib.nn ls3 1, ((nn ls3 37, lib.nn ls3 17))) 0.90 RMSE

Task 8: recognize digit(9)
1. (nn ls3 38, nn ls3 39) 1.52% CE
2. (lib.nn ls3 2, nn ls3 40) 2.43% CE
3. (lib.nn ls3 2, lib.nn ls3 3) 1.43% CE

Task 9: count digit(3)
1. (nn ls3 41, ((nn ls3 42, nn ls3 43))) 0.39 RMSE
2. (nn ls3 44, ((nn ls3 45, lib.nn ls3 39))) 0.42 RMSE
3. (nn ls3 46, ((nn ls3 47, lib.nn ls3 3))) 0.44 RMSE

Table 10: Long Sequence 4(LS4).

Task Top 3 Programs Error

Task 1: count digit(6)
1. (nn ls4 1, ((nn ls4 2), (nn ls4 3))) 0.40 RMSE
2. (nn ls4 4, ((nn ls4 5, nn ls4 6))) 0.45 RMSE
3. ((nn ls4 7, (nn ls4 8)), (nn ls4 9)) 0.48 RMSE

Task 2: count digit(2)
1. (lib.nn ls4 1, ((nn ls4 10), (nn ls4 11))) 0.89 RMSE
2. (lib.nn ls4 1, ((nn ls4 12, nn ls4 13))) 0.99 RMSE
3. ((lib.nn ls4 1, (nn ls4 14)), (nn ls4 15)) 0.91 RMSE

Task 3: recognize toy(3)
1. (nn ls4 16, lib.nn ls4 11) 4.95% CE
2. (nn ls4 17, nn ls4 18) 4.00% CE
3. (lib.nn ls4 10, nn ls4 19) 2.43% CE

Task 4: recognize digit(8)
1. (nn ls4 20, lib.nn ls4 3) 0.71% CE
2. (nn ls4 21, nn ls4 22) 0.52% CE
3. (nn ls4 23, lib.nn ls4 11) 0.86% CE

Task 5: count digit(1)
1. (lib.nn ls4 1, ((nn ls4 24, nn ls4 25))) 0.64 RMSE
2. (lib.nn ls4 1, ((nn ls4 26, lib.nn ls4 11))) 0.57 RMSE
3. (lib.nn ls4 1, ((lib.nn ls4 16, nn ls4 27))) 0.70 RMSE

Task 6: count digit(8)
1. (lib.nn ls4 1, ((nn ls4 28, lib.nn ls4 3))) 0.39 RMSE
2. (lib.nn ls4 1, ((nn ls4 29, nn ls4 30))) 0.38 RMSE
3. (lib.nn ls4 1, ((nn ls4 31, lib.nn ls4 11))) 0.40 RMSE

Task 7: count digit(3)
1. (lib.nn ls4 1, ((nn ls4 32, lib.nn ls4 11))) 0.61 RMSE
2. (lib.nn ls4 1, ((nn ls4 33, nn ls4 34))) 0.54 RMSE
3. (lib.nn ls4 1, ((nn ls4 35, lib.nn ls4 25))) 0.60 RMSE

Task 8: recognize digit(6)
1. (nn ls4 36, lib.nn ls4 3) 0.81% CE
2. (lib.nn ls4 20, nn ls4 37) 0.90% CE
3. (nn ls4 38, nn ls4 39) 0.86% CE

Task 9: count digit(5)
1. (lib.nn ls4 1, ((nn ls4 40, nn ls4 41))) 0.37 RMSE
2. (lib.nn ls4 1, ((nn ls4 42, lib.nn ls4 3))) 0.39 RMSE
3. (lib.nn ls4 1, ((nn ls4 43, lib.nn ls4 11))) 0.39 RMSE

6

Table 11: Long Sequence 5(LS5).

Task Top 3 Programs Error

Task 1: count digit(4)
1. (nn ls5 1, ((nn ls5 2), (nn ls5 3))) 0.45 RMSE
2. (nn ls5 4, ((nn ls5 5, nn ls5 6))) 0.46 RMSE
3. ((nn ls5 7, (nn ls5 8)), (nn ls5 9)) 0.48 RMSE

Task 2: count digit(3)
1. (nn ls5 10, ((nn ls5 11), (lib.nn ls5 3))) 0.60 RMSE
2. (lib.nn ls5 1, ((nn ls5 12), (nn ls5 13))) 0.63 RMSE
3. ((lib.nn ls5 1, (nn ls5 14)), (nn ls5 15)) 0.58 RMSE

Task 3: recognize toy(4)
1. (nn ls5 16, nn ls5 17) 20.33% CE
2. (lib.nn ls5 11, nn ls5 18) 17.76% CE
3. (nn ls5 19, lib.nn ls5 3) 21.38% CE

Task 4: recognize digit(7)
1. (nn ls5 20, nn ls5 21) 1.19% CE
2. (nn ls5 22, lib.nn ls5 3) 0.90% CE
3. (lib.nn ls5 2, nn ls5 23) 1.62% CE

Task 5: count digit(0)
1. (lib.nn ls5 10, ((nn ls5 24, nn ls5 25))) 0.90 RMSE
2. (lib.nn ls5 10, ((nn ls5 26, lib.nn ls5 17))) 0.90 RMSE
3. (lib.nn ls5 10, ((nn ls5 27, lib.nn ls5 3))) 0.86 RMSE

Task 6: count digit(7)
1. (lib.nn ls5 1, ((nn ls5 28, nn ls5 29))) 0.47 RMSE
2. (lib.nn ls5 1, ((nn ls5 30, lib.nn ls5 21))) 0.47 RMSE
3. (nn ls5 31, ((lib.nn ls5 16, nn ls5 32))) 0.47 RMSE

Task 7: count digit(4)
1. (nn ls5 33, ((nn ls5 34, lib.nn ls5 25))) 1.72 RMSE
2. (nn ls5 35, ((nn ls5 36, lib.nn ls5 17))) 1.50 RMSE
3. (lib.nn ls5 1, ((nn ls5 37, nn ls5 38))) 1.80 RMSE

Task 8: recognize digit(4)
1. (nn ls5 39, lib.nn ls5 3) 0.29% CE
2. (nn ls5 40, lib.nn ls5 21) 0.38% CE
3. (lib.nn ls5 20, nn ls5 41) 0.48% CE

Task 9: count digit(0)
1. (nn ls5 42, ((nn ls5 43, nn ls5 44))) 0.37 RMSE
2. (nn ls5 45, ((lib.nn ls5 24, nn ls5 46))) 0.40 RMSE
3. (nn ls5 47, ((nn ls5 48, lib.nn ls5 21))) 0.40 RMSE

Table 12: Counting Sequence 1(CS1), Evolutionary Algorithm. “CE” denotes classification error and
“RMSE” denotes root mean square error.

Task Top 3 programs Error

Task 1: recognize digit(d1)
1. (nn cs1 1, nn cs1 2) 0.57% CE
2. (nn cs1 3, nn cs1 2) 0.38% CE
3. (nn cs1 4, nn cs1 2) 0.76% CE

Task 2: recognize digit(d2)
1. (nn cs1 5, nn cs1 6) 0.38% CE
2. (nn cs1 7, nn cs1 8) 0.48% CE
3. (nn cs1 9, nn cs1 10) 0.43% CE

Task 3: count digit(d1)
1. (nn cs1 11, ((nn cs1 12, lib.nn cs1 2))) 0.38 RMSE
2. (nn cs1 13, ((nn cs1 14, lib.nn cs1 2))) 0.38 RMSE
3. (nn cs1 15, ((lib.nn cs1 1, lib.nn cs1 2))) 0.40 RMSE

Task 4: count digit(d2) No Solution

Table 13: Counting Sequence 2(CS2), Evolutionary Algorithm.

Task Top 3 programs Error

Task 1: recognize digit(d1)
1. (nn cs2 1, nn cs2 2) 1% CE
2. (nn cs2 3, nn cs2 4) 1% CE
3. (nn cs2 5, nn cs2 2) 1% CE

Task 2: count digit(d1)
1. (nn cs2 6, ((lib.nn cs2 1, lib.nn cs2 2))) 0.38 RMSE
2. (nn cs2 6, ((nn cs2 7, lib.nn cs2 2))) 0.38 RMSE
3. (nn cs2 8, ((nn cs2 9, nn cs2 10))) 0.39 RMSE

Task 3: count digit(d2) No Solution

Task 4: recognize digit(d2)
1. (nn cs2 11, nn cs2 12) 1% CE
2. (nn cs2 13, nn cs2 14) 1% CE
3. (lib.nn cs2 1, nn cs2 15) 1% CE

Table 14: Counting Sequence 3(CS3), Evolutionary Algorithm.

Task Top 3 Programs Error

Task 1: recognize digit(d) 1. (nn cs3 1, nn cs3 2) 0.57% CE
2. (nn cs3 3, nn cs3 4) 0.67% CE
3. (nn cs3 5, nn cs3 6) 0.62% CE

Task 2: count digit(d) 1. (nn cs3 7, ((nn cs3 8, lib.nn cs3 2))) 0.36 RMSE
2. (nn cs3 7, ((nn cs3 9, nn cs3 10))) 0.39 RMSE
3. (nn cs3 11, ((nn cs3 12, nn cs3 13))) 0.39 RMSE

Task 3: count toy(t)
1. (lib.nn cs3 7, ((nn cs3 14, nn cs3 15))) 0.70 RMSE
2. (lib.nn cs3 7, ((nn cs3 16, nn cs3 17))) 0.61 RMSE
3. (lib.nn cs3 7, ((nn cs3 18, nn cs3 19))) 0.64 RMSE

Task 4: recognize toy(t)
1. (nn cs3 20, lib.nn cs3 15) 5.62% CE
2. (lib.nn cs3 14, lib.nn cs3 15) 5.38% CE
3. (nn cs3 21, lib.nn cs3 15) 5.76% CE

7

Table 15: Summing Sequence(SS), Evolutionary Algorithm

Task Top 3 programs Error
Task 1: classify digit 1. (nn ss 1, nn ss 2) 1% CE

Task 2: sum digits 1. ((nn ss 3 zeros(1)), ((nn ss 4, lib.nn ss 2))) 6.64 RMSE
2. ((nn ss 5 zeros(1)), ((nn ss 6, lib.nn ss 2))) 6.66 RMSE
3. ((nn ss 7 zeros(1)), ((nn ss 8, lib.nn ss 2))) 6.70 RMSE

Table 16: Graph Sequence 1(GS1), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: regress speed 1. (nn gs1 1, nn gs1 2) 0.80 RMSE

Task 2: shortest path street
1. ((nn gs1 3, lib.nn gs1 2)) 8.36 RMSE
2. ((nn gs1 4, nn gs1 5)) 8.37 RMSE
3. ((nn gs1 6, lib.nn gs1 2)) 8.35 RMSE

Table 17: Graph Sequence 2(GS2), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: regress mnist 1. (nn gs2 1, nn gs2 2) 1.47 RMSE

Task 2: shortest path mnist
1. ((lib.nn gs2 1, nn gs2 3)) 6.58 RMSE
2. ((lib.nn gs2 1, nn gs2 4)) 6.59 RMSE
3. ((lib.nn gs2 1, nn gs2 5)) 6.63 RMSE

Task 3: shortest path street
1. ((lib.nn gs2 1, nn gs2 6)) 7.82 RMSE
2. ((lib.nn gs2 1, nn gs2 7)) 7.87 RMSE
3. ((nn gs2 8, nn gs2 9)) 7.96 RMSE

Table 18: Long Sequence 1(LS1), Evolutionary Algorithm.

Task Top 3 Programs Error

Task 1: count digit(7)
1. (nn ls1 1, ((nn ls1 2, nn ls1 3))) 0.42 RMSE
2. (nn ls1 4, ((nn ls1 5, nn ls1 6))) 0.44 RMSE
3. (nn ls1 1, ((nn ls1 7, nn ls1 8))) 0.50 RMSE

Task 2: count digit(4)
1. (lib.nn ls1 1, ((nn ls1 9, nn ls1 10))) 1.65 RMSE
2. (lib.nn ls1 1, ((nn ls1 11, nn ls1 12))) 1.53 RMSE
3. (lib.nn ls1 1, ((nn ls1 13, nn ls1 14))) 1.60 RMSE

Task 3: recognize toy(0)
1. (nn ls1 15, lib.nn ls1 10) 9.81% CE
2. (nn ls1 16, nn ls1 17) 9.76% CE
3. (nn ls1 18, lib.nn ls1 10) 8.76% CE

Task 4: recognize digit(9)
1. (nn ls1 19, nn ls1 20) 1.43% CE
2. (nn ls1 21, nn ls1 22) 1.43% CE
3. (nn ls1 23, nn ls1 24) 1.62% CE

Task 5: count digit(2)
1. (nn ls1 25, ((lib.nn ls1 19, nn ls1 26))) 0.90 RMSE
2. (lib.nn ls1 1, ((nn ls1 27, nn ls1 28))) 0.94 RMSE
3. (lib.nn ls1 1, ((nn ls1 29, nn ls1 30))) 0.98 RMSE

Task 6: count digit(9) No Solution
Task 7: count digit(0) No Solution

Task 8: recognize digit(7)
1. (nn ls1 31, lib.nn ls1 26) 1.29% CE
2. (nn ls1 32, lib.nn ls1 3) 0.71% CE
3. (nn ls1 33, nn ls1 34) 1.19% CE

Task 9: count digit(2)
1. (nn ls1 35, ((nn ls1 36, lib.nn ls1 3))) 0.36 RMSE
2. (lib.nn ls1 25, ((nn ls1 36, nn ls1 37))) 0.38 RMSE
3. (nn ls1 38, ((nn ls1 39, nn ls1 40))) 0.37 RMSE

Table 19: Long Sequence 2(LS2), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(1) No Solution
Task 2: count digit(0) No Solution

Task 3: recognize toy(1)
1. (nn ls2 1, nn ls2 2) 5.43% CE
2. (nn ls2 3, nn ls2 4) 5.81% CE
3. (nn ls2 5, nn ls2 6) 5.05% CE

Task 4: recognize digit(5)
1. (nn ls2 7, nn ls2 8) 0.71% CE
2. (nn ls2 9, nn ls2 10) 0.43% CE
3. (nn ls2 9, nn ls2 11) 0.62% CE

Task 5: count digit(4) No Solution
Task 6: count digit(5) No Solution
Task 7: count digit(1) No Solution

Task 8: recognize digit(1)
1. (nn ls2 12, nn ls2 13) 0.19% CE
2. (nn ls2 14, lib.nn ls2 2) 0.29% CE
3. (nn ls2 15, lib.nn ls2 2) 0.33% CE

Task 9: count digit(8) No Solution

8

Table 20: Long Sequence 3(LS3), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(9) No Solution
Task 2: count digit(1) No Solution

Task 3: recognize toy(2)
1. (nn ls3 1, nn ls3 2) 10.52% CE
2. (nn ls3 3, nn ls3 2) 9.14% CE
3. (nn ls3 4, nn ls3 2) 10.81% CE

Task 4: recognize digit(1)
1. (nn ls3 5, nn ls3 6) 0.48% CE
2. (nn ls3 7, lib.nn ls3 2) 0.33% CE
3. (nn ls3 8, nn ls3 9) 0.24% CE

Task 5: count digit(3) No Solution

Task 6: count digit(1)
1. (nn ls3 10, ((nn ls3 11, lib.nn ls3 6))) 0.38 RMSE
2. (nn ls3 12, ((nn ls3 13, nn ls3 14))) 0.37 RMSE
3. (nn ls3 15, ((nn ls3 11, lib.nn ls3 6))) 0.39 RMSE

Task 7: count digit(2)
1. (lib.nn ls3 10, ((nn ls3 16, nn ls3 17))) 1.02 RMSE
2. (lib.nn ls3 10, ((nn ls3 18, nn ls3 17))) 0.92 RMSE
3. (lib.nn ls3 10, ((nn ls3 16, nn ls3 19))) 0.96 RMSE

Task 8: recognize digit(9)
1. (nn ls3 20, nn ls3 21) 1.05% CE
2. (nn ls3 22, nn ls3 23) 1.14% CE
3. (nn ls3 24, lib.nn ls3 17) 1.86% CE

Task 9: count digit(3)
1. (lib.nn ls3 10, ((nn ls3 25, lib.nn ls3 21))) 0.45 RMSE
2. (lib.nn ls3 10, ((nn ls3 26, lib.nn ls3 17))) 0.47 RMSE
3. (lib.nn ls3 10, ((nn ls3 25, lib.nn ls3 21))) 0.46 RMSE

Table 21: Long Sequence 4(LS4), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(6) No Solution
Task 2: count digit(2) No Solution

Task 3: recognize toy(3)
1. (nn ls4 1, nn ls4 2) 5.10% CE
2. (nn ls4 3, nn ls4 4) 3.57% CE
3. (nn ls4 5, nn ls4 6) 4.24% CE

Task 4: recognize digit(8)
1. (nn ls4 7, nn ls4 8) 0.33% CE
2. (nn ls4 9, nn ls4 10) 0.48% CE
3. (nn ls4 11, nn ls4 12) 0.90% CE

Task 5: count digit(1) No Solution

Task 6: count digit(8)
1. (nn ls4 13, ((nn ls4 14, nn ls4 15))) 0.41 RMSE
2. (nn ls4 16, ((nn ls4 17, lib.nn ls4 8))) 0.44 RMSE
3. (nn ls4 18, ((nn ls4 19, lib.nn ls4 8))) 0.44 RMSE

Task 7: count digit(3)
1. (lib.nn ls4 13, ((nn ls4 20, nn ls4 21))) 0.56 RMSE
2. (lib.nn ls4 13, ((nn ls4 22, lib.nn ls4 2))) 0.59 RMSE
3. (lib.nn ls4 13, ((nn ls4 20, lib.nn ls4 2))) 0.57 RMSE

Task 8: recognize digit(6)
1. (nn ls4 23, lib.nn ls4 15) 0.48% CE
2. (nn ls4 24, lib.nn ls4 15) 0.62% CE
3. (nn ls4 25, lib.nn ls4 15) 0.71% CE

Task 9: count digit(5)
1. (lib.nn ls4 13, ((nn ls4 26, nn ls4 27))) 0.41 RMSE
2. (lib.nn ls4 13, ((nn ls4 26, nn ls4 27))) 0.41 RMSE
3. (lib.nn ls4 13, ((nn ls4 28, nn ls4 29))) 0.41 RMSE

Table 22: Long Sequence 5(LS5), Evolutionary Algorithm.

Task Top 3 Programs Error
Task 1: count digit(4) No Solution
Task 2: count digit(3) No Solution

Task 3: recognize toy(4)
1. (nn ls5 1, nn ls5 2) 17.00% CE
2. (nn ls5 3, nn ls5 4) 21.62% CE
3. (nn ls5 5, nn ls5 6) 16.52% CE

Task 4: recognize digit(7)
1. (nn ls5 7, nn ls5 8) 1.14% CE
2. (nn ls5 9, nn ls5 10) 0.95% CE
3. (nn ls5 11, nn ls5 12) 1.00% CE

Task 5: count digit(0) No Solution
Task 6: count digit(7) No Solution
Task 7: count digit(4) No Solution

Task 8: recognize digit(4)
1. (nn ls5 13, nn ls5 14) 0.38% CE
2. (nn ls5 15, lib.nn ls5 8) 0.33% CE
3. (nn ls5 15, nn ls5 16) 0.33% CE

Task 9: count digit(0)
1. (nn ls5 17, ((nn ls5 18, lib.nn ls5 8))) 0.38 RMSE
2. (nn ls5 17, ((nn ls5 19, lib.nn ls5 2))) 0.38 RMSE
3. (nn ls5 17, ((nn ls5 20, lib.nn ls5 8))) 0.40 RMSE

9

(a) Task 1: recognize digit(d1) (b) Task 2: recognize digit(d2)

(c) Task 3: count digit(d1) (d) Task 4: count digit(d2)

Figure 2: Lifelong learning for “learning to count” (Sequence CS1), demonstrating low-level transfer
of perceptual recognizers.

G Results on Longer Task Sequence LS

We report the performance of all methods on the longer task sequences on Figure 5. To save space,
we report performance of all methods when trained on 10% of the data. The full learning curves
follow similar patterns as the other task sequences. We report the classification and regression tasks
from LS separately, because the error functions for the two tasks have different dynamic ranges.
Please note that in the Figure, the tasks are labelled starting from 0. On the classification tasks, we
note that all methods have similar performance. Examining the task sequence LS from Figure ??,
we see that these tasks have no opportunity to transfer from earlier tasks. On the regression tasks
however, there is opportunity to transfer, and we see that HOUDINI shows much better performance
than the other methods.

10

(a) Task 1: recognize digit(d1) (b) Task 2: count digit(d1)

(c) Task 3: count digit(d2) (d) Task 4: recognize digit(d2)

Figure 3: Lifelong learning for “learning to count” (Sequence CS2), demonstrating high-level transfer
of a counting network across categories.

(a) Task 1: recognize digit(d1) (b) Task 2: count digit(d1)

(c) Task 3: count toy(t1) (d) Task 4: recognize toy(t1)

Figure 4: Lifelong learning for “learning to count” (Sequence CS3), demonstrating high-level transfer
across different types of images. After learning to count MNIST digits, the same network can be used
to count images of toys.

11

Figure 5: Performance of transfer learning systems on task sequence LS1. At top: regression tasks.
At bottom: classification tasks

12

