Appendix

6.1 Proof of Lemmas

Lemma 6.1. E, (.)[V.logqu(Z)] =0
Proof.

O
Lemma 6.2. Let h(w) € R be a random variable, C(w) € RE*P a matrix of random variables

such that each element has mean zero. For a € RL, define §(w) = h(w) + C(w)a. The value of a
that minimizes T ||g(w)||? for a given w is

a*(w) = — o)t Th).
(w) p<c]51|w> [ctc]  E[C'h] (6)
Proof.
ElgTg) = E[(h+Ca)T(h+ Ca)]

= ERTh+2hTCa+ aTCTCa
= E[RTh) +2E[RTCla+ aTE[CTCa

Differentiating with respect to a, and making the result equal to 0 gives us

2E[WTC) 4 2E[CTCla =0 — a* = —E[CTC] ' E[C"h]

6.2 Proof of Theorem 4.1

First we state Lemma 6.3 and Lemma 6.4, which will use to prove the main theorem 4.1.

Lemma 6.3. Suppose that

Pa|w) = h(z) exp((w, T'(x)) — A(w))

be some exponential family, and let

P(w]|rg) o exp ({19, w) — noA(w))

be the conjugate prior to that family. If x1, ..., x N are i.i.d. variables and X is new data from the
distribution, then

70

ET(X)|z1,...,zN] = fo T (1= r)i,
where ,EL = % 2712[:1 T((En) and Kk = noan.

For a proof see Jordan [10].

Lemma 6.4. Given some observations C1, hq,...,Cyr, hag, the decision rule that minimizes the
Bayes regret is

a(Cy,hy, ..., Car, har) = E[CCT|Cy, by, ..., Cor, Rt E[CR|CY, ba s .y, Cias,y hir]

Where the expectations are over all possible values of 8, C' and h, given the observed data.
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Proof. We have

a*(Cl,hl,...,C’M,hM) = argminaE[Hh—i—CaH2|Cl,h1,...,CM,hM]

= argmin, E [(h+ Ca)” (h + Ca)|C1, hi, ..., Car, b |

The solution to this is to find the derivative of the above expression with respect to a and find a such
that

0=E[h"Ca+h+a"C"CalCy, h,...,Chi, hai]
This gives a* = E[CCT|01, hi,....,Cur, h]w]_l E[C h|Cl, hi,...,Chr, hM]
O

Now we prove Theorem 4.1 for an arbitrary Vj, using Lemma 6.3 and Lemma 6.4. Consider the same
setting as in Section 4. Let hy, ..., has be observed gradients and C1, ..., Cj; be observed control
variates. We define a probabilistic model composed by the likelihood p(h, C|6) and the prior p(6).

Theorem 6.5. If we choose the likelihood to be a Gaussian,
. h _ _
P(h,C10 = (n,A)) = Gau551an( { vee(C) ] lp=A"1n, T =A 1)
the prior (conjugate) to be

P(0 = (n,A)) oc exp(tgn — tr(Vg A) — noA(n, A))

where Vi can be written as:

T T T
Vir Ve, V;_Ll_c2 e V,_LFCL
th1 VVC161 chcl ’ ‘/;LC1
VO = VhC2 ‘/(,'2(:1
thL ‘/CLCI o ‘/CLCL

then the decision rule that minimizes the Bayesian regret is

a*(h1,Ch, ..., har,Car) = —E[CTC|hy, Ch, ..oy har, Car) “ E[CT h|hy, Cy,y ooy b, Cor] - (8)

Where
tthcl
K l‘thcz -
E[CTh|hy,Cy, ...y har, Crp] = — } + (1 - &)CTh.
0 :
tthCL
and
trVe ¢, terfcl . terfc1
- K trVese, _
E[C*Clhy,Ch,y .y hpg, Oy = — . + (1 —-r)CTC.
0 : :
trVe, ey e trVe,ep

With CTC = +; Z%Zl CnC1; being an empircal average and CTh = 4; Zi\f:l CTL h,, also
being an empirical average.
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Proof. The expression for a* in equation 8§ is obtained using Lemma 6.4. We need to find
E[CTChy,Cy, ..., har, Cpr) and E[CTh|hy, Oy, ..., har, Chg]. Using Lemma 6.3, given observa-
tions hy, C1, ..., has, Cpr we have a closed form expression form

:H%Jru—m){ Vecféc) } { Vecf(bc) r ©

E H veolC) } { veolC) r|h1,ol,...,hM,cM

Where vec(C') is a vector with the columns of C' concatenated. Noticing that

cf'n
OTh — CQTh
c{h

it can be concluded that each component of E[CT h|hy, Cy, ..., har, Cas] corresponds to the sum of
d components of the matrix on the right hand side of equation 9. Using the decomposition for V;
shown above, we get:

tthcl
T tthC2 _
E[C h|h1,01,...,hM,CM] = . —l—(l—IﬂJ)CTh. (10)
trV.th

A similar reasoning can be used for E[CTC|hy, Cy, ..., hyr, Carl, getting:

Ve, VI, oo uaVEI
- trVe, e, .
E[CTC|hy1, Ch,y ooy hiar, Cri] = .| +a-mTTC  an
trVe, e, trVe, o

Replacing these expressions in a*(h1, C1, ..., har, Cas) concludes the proof.

O
Using the result above we now prove Theorem 4.1, which takes Vp = vg I.
Theorem 4.1. If p(C, h|0) is a Gaussian parameterized as
p(C,h|f = (n,MN)) = Gaussian( [vec(C), h) ‘,u =Alp,¥ = A1>,
and the prior is a Normal-Wishart, parameterized as p(0 = (n,A)) o exp(tfn — trace(ViEA) —
noA(n, A)), then the decision rule that minimizes the Bayesian regret for Vo = vol is
y dvg . ——\ "=
« (Cl,hl,...,CM,hM) = — ﬁl—i—CTC‘ CTh @)

Where h € R%, CTC = L™ €,CT and CTh = L. M CTh,..
Proof. The expression for a* is given in eq. 8. We need to find the expressions for

E[CTChy,Cy, ..., har, O] and E[CTh|hy, Cy, ..., har, Cas] when Vy = vg I. In this particular
case we get that trV4,., = 0for ! = 1, ..., L. Combining this with eq. 10 gives

E[CThlhy,C4,...,har,Cry] = (1 — K)CTh.

When Vy = vg I we also get
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o trV . =0fork #1
o trVy,,, =d

Combining these two facts with eq. 11 gives

E[CTClhy, Cy, ey hag, Crt] = ——dvg I+ (1 — K)CTC.
no

Finally,
—_— 71 —_—
a*(h1,C1, .. har, Cyp) = — <1f0dvo I+ (1- /{)CTC> (1-k)CTh

-1
- ( (MduoHCTc) CTh

-1
= <de°I+CTC’) CTh

ng
no+M

Where in the last equality we used kK =

6.3 Adaptation of control variate introduced by Miller et al. [17] to full covariance
Gaussians

The derivation of the variate introduced by Miller et al. [17] was done for the case in which g, is a
Gaussian distribution with a diagonal covariance matrix. This section of the appendix explains how
to use the CV in the case in which ¢,, is a Gaussian distribution with full covariance matrix, in which
case w = [Cly, fiw], where C, CL = ¥ and p1,, is the mean of the distribution.

Following the procedure in Miller et al. [17], we build an approximation for g(w) =V Eq, [f(Z2)]

as §(w) = Vo By, [/(2)] = [V, By, f(2), Ve, Eq, f(Z)), where f(2) is a second order Taylor
expansion. The difference between g(w) computed exactly (lemma 6.6) and its estimation using
reparameterization is used as a control variate.

Lemma 6.6. Let q,, = N (p, CyCT) and f(2) be a second order Taylor expansion of f, then
Vi Equ, f(Z) =V /f(20) and V¢, Eq., f(Z) = VQf(ZO)C'

Proof. Applying reparameterization we can express Vo, Eq., f(Z) = Vi Eq f(To(r)), where 1 ~
g=N(0,1)and Ty, (r) = CopT + fhep-

Introducing the Taylor expansion we get

Eqlf(Tu(r))] Eqlf(20) + (Z = 20)" V f(20) + 3(Z = 20)"V?f(20)(Z = 20)] 27, (1)
= f(20) + (ETw(r) = 20)Vf(20) + 3 E [tr(V2f(20) (T (r) = 20)(Two(r) — 20)")]

= f(20) + (hw — 20)Vf(20) + 5t:(V*f(20) E[(To (r) = 20) (T () — 20)")])

(12)
Where
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E[(Tw(r) = 20)(Tw(r) = 20)"] = El(Cur + pw — 20)(Cu? + pw — 20)"]

= CuE[rr"]|CL 4 Cuw E[r] (ptw — 20)T
e el

+(pw — 20) Blr] Cofy + (pw — 20) (ptr — 20)”
-~

0
= chz; + (/-Lw - ZO)(,U'UJ - ZO)T
= CuCy + puwpey — Pw?o — 20fiu + 2020

And thus

(V2 f (20) E[(Tu (1) = 20)(Tw(r) = 20))]) = te(V?f(20)(CwCliy + prawpt = prw25 — 20ptar))
= tr(CEVQf(zo)Cw)

+ 1105 V2 (20) o — 225 V2 (20) oo
(13)

Using the results from eq. 13 in eq. 12 we get

Eqlf(Tu(r)] = f(20) + (1w — 20)V f(20)

+3tr(Ch V2 £(20)Cw) + 1y V2 £ (20) st — 220 V7 f (20) fhaw

Finally, computing the gradient V,,, E4[V., f (72 (7))] and Vo, Eq[Vo f(To ()] and evaluating the
results in zg = p,, (following [17]) yields

Vquq[f(ﬁu(r))]lzD:Hw = V() + 2V f (ptw) . = 2V f (ft) s
= vf(;u'w)
Ve Bal (T, _,. = V2F(p)Cu
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6.4 Previously used Control Variates

In this section we show how many of the control variates described and used in previous work fit the
proposed framework. For convenience, we repeat our generic recipe for control variates.

) Ist estimate
i T
Pick Term ¢(w). t Approximate ~— ' (SE,RP, CF, etc) —, Take Difference
1 !
(Part of g1, g2, 93) Term (optional) ——  2nd Estimate /T? T-T
(SE, RP, CF, etc.)

Also, recall our decomposition of the full gradient into different terms:

— Vo Elog qu(2)|

v=w "
qv

v=w

g(w) =V Elogp(x|Z)+ Vy Elogp(Z) — Vy Elogg,(Z)]
quw qw qu

g1(w): Dataterm  go(w): Prior term  g3(w): Variational term  g4(w): Score term

The rest of this section gives seven examples of existing control variates, and how they can be seen as
instantiations of the above generic recipe.

Closed form

7 T
¢ No — entropy T Take Difference

t=gs _ty o :
Approximation  — g e function — r=r

or Reparam.

o+

Figure 6: Even if the exact entropy can be computed, it may be preferable to approximate it when
qw ~ p [23]. This suggests a control variate consisting of the difference of the exact entropy gradient
and an approximation of it. In general, it is most beneficial to include the same estimator as used to
estimate gradients of the data and prior terms.

¢ Second order _t -  Closed form — T Take Difference

t=91+9 Taylor expansion - T-T

. >
Score function it

Figure 7: To estimate gradients Paisley et al. [19] approximate f = g; + g2 using a second order
Taylor expansion and upper/lower bounds, leading to {(w) = E,, (») f(Z). The difference between
the approximate term computed in closed form and its estimation using the score function is used as
a control variate.

_t Closedform  __T. Tyke Difference

t=gi+92 — LowerBound T_ T

. >
i Score function il

Figure 8: To estimate gradients Paisley et al. [19] approximate f = g; + g using a second order
Taylor expansion and upper/lower bounds, leading to £(w) = Eq, (=) f(Z). The difference between
the approximate term computed in closed form and its estimation using the score function is used as
a control variate.
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¢ Second order _t —  Closed form — T Take Difference

1 i
Taylor expansion - Reparam. — T_—-T

Figure 9: To estimate gradients Miller et al. [17] approximate the data term using a second order
Taylor expansion of f, leading to t(w) = Eq, (») f(Z). The difference between the approximate term
computed in closed form and its estimation using reparameterization is used as a control variate.

Reparam. (q,,) +

t T
=g t Second order —— Closedform (D) — T, 1 Difference
= . !
Taylor expansion = Reparam. (¢u) + /T,> T-T
Minibatch

Figure 10: To estimate gradients Wang et al. [30] approximate the data term using a second order
Taylor expansion of f, for which the expectation with respect to D (distribution over minibatches) can
be computed in closed form. We adapt this idea to the VI setting, leading to {(w) = Eq,, () Ep fa(Z).
The difference between the results obtained by computing the inner expectation in closed form
and estimating it with a random minibatch (in both cases estimating the outer expectation using
reparameterization) is used as a control variate.

t Concrete _t_ Scorefunction __T, Tyke Difference

t=g1+92+93 —— .
relaxation w Reparam. /’7’,? T-—-T

Figure 11: To estimate gradients for problems with discrete variables Tucker et al. [28] use a
continuous relaxation [9, 16] for the discrete variational distribution g, (2), G, (2), leading to (w) =
Eg, (=) f(Z). Then, the difference of a score function and reparameterization estimate is used as a
control variate.

t Surrogate neural _t . Score function — T, Take Difference

t=g1+g2+9g3 —
network - Reparam. /';? T-T

Figure 12: To estimate gradients Grathwohl et al. [7] train a surrogate neural network f to approximate
f»leading to #(w) = E f(Z). Then, the difference of a score function and reparameterization estimate
is used as a control variate. The neural network is trained to minimize the variance of the resulting
estimator. (For discrete variational distributions they also use a continuous relaxation [9, 16] to
approximate q,.)
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