Appendix for "Mean Field for the Stochastic Blockmodel: Optimization Landscape and Convergence Issues"

Soumendu Sunder Mukherjee* Interdisciplinary Statistical Research Unit (ISRU) Indian Statistical Institute, Kolkata Kolkata 700108, India soumendu041@gmail.com

Y. X. Rachel Wang* School of Mathematics and Statistics University of Sydney NSW 2006, Australia rachel.wang@sydney.edu.au Purnamrita Sarkar* Department of Statistics and Data Science University of Texas, Austin Austin, TX 78712 purna.sarkar@austin.utexas.edu

Bowei Yan Department of Statistics and Data Science University of Texas, Austin Austin, TX 78712 boweiy@utexas.edu

Abstract

This supplementary article contains an appendix to our paper "Mean Field for the Stochastic Blockmodel: Optimization Landscape and Convergence Issues", providing derivation of stationarity equations for the mean field log-likelihood and the proofs of our main results.

1 The Variational principle and mean field

We start with the following simple observation:

$$\begin{split} \log P(A;B,\pi) &= \log \sum_{Z} P(A,Z;B,\pi) = \log \left(\sum_{Z} \frac{P(A,Z;B,\pi)}{\psi(Z)} \psi(Z) \right) \\ &\stackrel{(\text{Jensen})}{\geq} \sum_{Z} \log \left(\frac{P(A,Z;B,\pi)}{\psi(Z)} \right) \psi(Z) \qquad \forall \psi \text{ prob. on } \mathcal{Z}. \end{split}$$

In fact, equality holds for $\psi^*(Z) = P(Z|A; B, \pi)$. Therefore, if Ψ denotes the set of all probability measures on Z, then

$$\log P(A; B, \pi) = \max_{\psi \in \Psi} \sum_{Z} \log \left(\frac{P(A, Z; B, \pi)}{\psi(Z)} \right) \psi(Z).$$
(A.1)

The crucial idea from variational inference is to replace the set Ψ above by some easy-to-deal-with subclass Ψ_0 to get a lower bound on the log-likelihood.

$$\log P(A; B, \pi) \ge \max_{\psi \in \Psi_0 \subset \Psi} \sum_{Z} \log \left(\frac{P(A, Z; B, \pi)}{\psi(Z)} \right) \psi(Z).$$
(A.2)

Also the optimal $\psi_{\star} \in \Psi_0$ is a potential candidate for an estimate of $P(Z|A; B, \pi)$. Estimating $P(Z|A; B, \pi)$ is profitable since then we can obtain an estimate of the community membership

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

^{*}Equal contribution.

matrix by setting $Z_{ia} = 1$ for the *i*th agent where

$$a = \arg\max_{b} P(Z_{ib} = 1|A; B, \pi).$$
 (A.3)

The goal now has become optimizing the lower bound in (A.2).

2 Derivation of stationarity equations

$$\frac{\partial \ell}{\partial \psi_i} = 4t \sum_{j:j \neq i} (\psi_j - \frac{1}{2})(A_{ij} - \lambda) - \log\left(\frac{\psi_i}{1 - \psi_i}\right), \\
\frac{\partial \ell}{\partial p} = \frac{1}{2} \sum_{i,j:i \neq j} (\psi_i \psi_j + (1 - \psi_i)(1 - \psi_j)) \left(A_{ij}\left(\frac{1}{p} + \frac{1}{1 - p}\right) - \frac{1}{1 - p}\right), \\
\frac{\partial \ell}{\partial q} = \frac{1}{2} \sum_{i,j:i \neq j} (\psi_i(1 - \psi_j) + (1 - \psi_i)\psi_j) \left(A_{ij}\left(\frac{1}{q} + \frac{1}{1 - q}\right) - \frac{1}{1 - q}\right). \quad (A.4)$$

Therefore

$$\begin{aligned} \frac{\partial^{2}\ell}{\partial\psi_{j}\partial\psi_{i}} &= 4t(A_{ij} - \lambda)(1 - \delta_{ij}) - \frac{1}{\psi_{i}(1 - \psi_{i})}\delta_{ij}, \\ \frac{\partial^{2}\ell}{\partial\psi_{i}\partial p} &= \frac{1}{2}\sum_{j:j\neq i} \left(\frac{1}{2} - \psi_{j}\right) \left(A_{ij}\left(\frac{1}{p} + \frac{1}{1 - p}\right) - \frac{1}{1 - p}\right), \\ \frac{\partial^{2}\ell}{\partial\psi_{i}\partial q} &= \frac{1}{2}\sum_{j:j\neq i} \left(\psi_{i} - \frac{1}{2}\right) \left(A_{ij}\left(\frac{1}{q} + \frac{1}{1 - q}\right) - \frac{1}{1 - q}\right), \\ \frac{\partial^{2}\ell}{\partial p^{2}} &= \frac{1}{2}\sum_{i,j:i\neq j} (\psi_{i}\psi_{j} + (1 - \psi_{i})(1 - \psi_{j})) \left(A_{ij}\left(-\frac{1}{p^{2}} + \frac{1}{(1 - p)^{2}}\right) - \frac{1}{(1 - p)^{2}}\right), \\ \frac{\partial^{2}\ell}{\partial q^{2}} &= \frac{1}{2}\sum_{i,j:i\neq j} (\psi_{i}(1 - \psi_{j}) + (1 - \psi_{i})\psi_{j}) \left(A_{ij}\left(-\frac{1}{q^{2}} + \frac{1}{(1 - q)^{2}}\right) - \frac{1}{(1 - q)^{2}}\right), \\ \frac{\partial^{2}\ell}{\partial q\partial p} &= 0. \end{aligned}$$
(A.5)

3 Proofs of main results

Proof of Proposition 3.1. For any a > b > 0, we have

$$\frac{a-b}{a} < \log\left(\frac{a}{b}\right) < \frac{a-b}{b},$$

which can be proved using the inequality $\log(1+x) < x$ for $x > -1, x \neq 0$. Therefore

$$\frac{p-q}{p} < \log\left(\frac{p}{q}\right) < \frac{p-q}{q}, \text{ and } \frac{p-q}{1-q} < \log\left(\frac{1-q}{1-p}\right) < \frac{p-q}{1-p}.$$

So

$$\frac{(p-q)(1+p-q)}{2(1-q)p} < t = \frac{1}{2} \left(\log\left(\frac{p}{q}\right) + \log\left(\frac{1-q}{1-p}\right) \right) < \frac{(p-q)(1-p+q)}{2(1-p)q},$$

and

$$q = \frac{\frac{p-q}{1-q}}{\frac{p-q}{q} + \frac{p-q}{1-q}} < \lambda = \frac{\log(\frac{1-q}{1-p})}{\log(\frac{p}{q}) + \log(\frac{1-q}{1-p})} < \frac{\frac{p-q}{1-p}}{\frac{p-q}{p} + \frac{p-q}{1-p}} = p.$$

This completes the proof.

3.1 **Proofs of results in Section 3.1**

Proof of Proposition 3.2. That $\psi = \frac{1}{2}\mathbf{1}$ is a stationary point is obvious from the stationarity equations (A.4). The eigenvalues of -4I + 4tM, the Hessian at $\frac{1}{2}\mathbf{1}$, are $h_i = -4 + 4t\nu_i$. We have $\nu_1 = n\alpha_+ - (p - \lambda) = \Theta(n)$, and hence so is h_1 . Also, $p - \lambda > 0$, so that $\nu_3 < 0$, and hence $h_3 < 0$. Thus we have two eigenvalues of the opposite sign. \Box

Proof of Theorem 3.3. From (5), we have

$$\psi_i^{(s+1)} = g(na_{\sigma_i}^{(s)} + b_i^{(s)}) = g(na_{\sigma_i}^{(s)}) + \delta_i^{(s)},$$

where $|\delta_i^{(s)}| = O(\exp(-n|a_{\sigma_i}^{(s)}|))$, where we have used the fact that

$$g(nx+y) - g(nx) = g(nx)g(nx+y)(e^y - 1)\exp(-(nx+y)).$$

Writing as a vector, we have

$$\psi^{(s+1)} = g(na_{+1}^{(s)})\mathbf{1}_{\mathcal{C}_1} + g(na_{-1}^{(s)})\mathbf{1}_{\mathcal{C}_2} + \delta^{(s)}, \tag{A.6}$$

where $\|\delta^{(s)}\|_{\infty} = \max_i |\delta_i^{(s)}| = O(\exp(-n\min\{|a_{+1}^{(s)}|, |a_{-1}^{(s)}|\}))$. Note that by our assumption, $\|\delta^{(0)}\|_{\infty} = O(\exp(-n\min\{|a_{+1}^{(s)}|, |a_{-1}^{(s)}|\})) = o(1)$. Now

$$\zeta_1^{(s+1)} = \frac{\langle \psi^{(s+1)}, u_1 \rangle}{n} = \frac{g(na_{\pm 1}^{(s)}) + g(na_{-1}^{(s)})}{2} + O(\|\delta^{(s)}\|_{\infty}),$$

and

$$\zeta_2^{(s+1)} = \frac{\langle \psi^{(s+1)}, u_2 \rangle}{n} = \frac{g(na_{+1}^{(s)}) - g(na_{-1}^{(s)})}{2} + O(\|\delta^{(s)}\|_{\infty})$$

Note that $g(na_{\pm 1}^{(s)}) = \mathbf{1}_{\{a_{\pm 1}^{(s)}>0\}} + O(\|\delta^{(s)}\|_{\infty})$. Now, using (A.6), we have

$$\frac{\|\psi^{(s+1)} - \ell(\psi^{(0)})\|_{2}^{2}}{n} = \frac{\|(g(na_{+1}^{(s)}) - \mathbf{1}_{\{a_{+1}^{(0)}>0\}})\mathbf{1}_{\mathcal{C}_{1}} + (g(na_{-1}^{(s)}) - \mathbf{1}_{\{a_{-1}^{(0)}>0\}})\mathbf{1}_{\mathcal{C}_{2}} + \delta^{(s)}\|^{2}}{n} \\
\leq \frac{2(\|(g(na_{+1}^{(s)}) - \mathbf{1}_{\{a_{+1}^{(0)}>0\}})\mathbf{1}_{\mathcal{C}_{1}}\|_{2}^{2} + \|(g(na_{-1}^{(s)}) - \mathbf{1}_{\{a_{-1}^{(0)}>0\}})\mathbf{1}_{\mathcal{C}_{2}}\|_{2}^{2} + \|\delta^{(s)}\|^{2})}{n} \\
\leq |g(na_{+1}^{(s)}) - \mathbf{1}_{\{a_{+1}^{(0)}>0\}}|^{2} + |g(na_{-1}^{(s)}) - \mathbf{1}_{\{a_{-1}^{(0)}>0\}}|^{2} + 2\|\delta^{(s)}\|_{\infty}^{2} \\
= |\mathbf{1}_{\{a_{+1}^{(s)}>0\}} - \mathbf{1}_{\{a_{+1}^{(0)}>0\}}|^{2} + |\mathbf{1}_{\{a_{+1}^{(s)}>0\}} - \mathbf{1}_{\{a_{-1}^{(0)}>0\}}|^{2} + O(\|\delta^{(s)}\|_{\infty}^{2}). \quad (A.7)$$

From the above representation and our assumption on $n|a_{\pm 1}^{(0)}|$, the bound for s = 1 follows. We will now consider the four different cases of different signs of $a_{\pm 1}^{(s)}$.

Case 1:
$$a_1^{(s)} > 0, a_{-1}^{(s)} > 0$$
. In this case $g(na_1^{(s)}) = g(na_{-1}^{(s)}) = 1 + O(\|\delta^{(s)}\|_{\infty})$, so that $(\zeta_1^{(s+1)}, \zeta_2^{(s+1)}) = (1, 0) + O(\|\delta^{(s)}\|_{\infty})$.

This implies that

$$a_{\pm 1}^{(s+1)} = 2t\alpha_+ + O(\|\delta^{(s)}\|_{\infty})$$

If $\alpha_+ > 0$, $a_{\pm 1}^{(s+1)}$ have the same sign as $a_{\pm 1}^{(s)}$. Otherwise, if $\alpha_+ < 0$, both of them become negative (and we thus have to go to Case 2 below). Note that, here and in the subsequent cases, we are using that fact that $\|\delta^{(s)}\|_{\infty} = o(1)$, for s = 0, by our assumption and it stays the same for $s \ge 1$ because of relations like the above (that is $a_{\pm 1}^{(1)} = -2t\alpha_+ + o(1)$, so that $\|\delta^{(1)}\|_{\infty} = \exp(-n\min\{|a_{\pm 1}^{(1)}|, |a_{-1}^{(1)}|\}) = O(\exp(-Cnt\alpha_+)) = o(1)$, and so on).

Case 2: $a_1^{(s)} < 0, a_{-1}^{(s)} < 0$. In this case $1 - g(na_1^{(s)}) = 1 - g(na_{-1}^{(s)}) = 1 + O(\|\delta^{(s)}\|_{\infty})$, so that $(\zeta_1^{(s+1)}, \zeta_2^{(s+1)}) = (0, 0) + O(\|\delta^{(s)}\|_{\infty})$.

This implies that

$$a_{\pm 1}^{(s+1)} = -2t\alpha_+ + O(\|\delta^{(s)}\|_{\infty}).$$

If $\alpha_+ > 0$, $a_{\pm 1}^{(s+1)}$ have the same sign as $a_{\pm 1}^{(s)}$. Otherwise, if $\alpha_+ < 0$, both of them become positive (and we thus have to go to Case 1 above).

Case 3:
$$a_1^{(s)} > 0, a_{-1}^{(s)} < 0$$
. In this case $g(na_1^{(s)}) = 1 - g(na_{-1}^{(s)}) = 1 + O(\|\delta^{(s)}\|_{\infty})$, so that $(\zeta_1^{(s+1)}, \zeta_2^{(s+1)}) = (\frac{1}{2}, \frac{1}{2}) + O(\|\delta^{(s)}\|_{\infty})$.

This implies that

$$a_{\pm 1}^{(s+1)} = \pm 2t\alpha_{-} + O(\|\delta^{(s)}\|_{\infty}).$$

Since $\alpha_{-} > 0$, $a_{\pm 1}^{(s+1)}$ have the same sign as $a_{\pm 1}^{(s)}$.

Case 4:
$$a_1^{(s)} < 0, a_{-1}^{(s)} > 0$$
. In this case $1 - g(na_1^{(s)}) = g(na_{-1}^{(s)}) = 1 + O(\|\delta^{(s)}\|_{\infty})$, so that $(\zeta_1^{(s+1)}, \zeta_2^{(s+1)}) = (\frac{1}{2}, -\frac{1}{2}) + O(\|\delta^{(s)}\|_{\infty})$.

This implies that

$$a_{\pm 1}^{(s+1)} = \mp 2t\alpha_{-} + O(\|\delta^{(s)}\|_{\infty}).$$

Since $\alpha_- > 0$, $a_{\pm 1}^{(s+1)}$ have the same sign as $a_{\pm 1}^{(s)}$.

Note that, in the case $\alpha_+ = 0$, $a_{\pm 1}^{(s)} = \pm 4t\zeta_2^{(s)}\alpha_-$, so that $a_{\pm 1}^{(s)}$ have opposite signs and we land in Cases 3 or 4.

We conclude that, if $\alpha_+ \ge 0$, then we stay in the same case where we began, and otherwise if $\alpha_+ < 0$ we have a cycling behavior between Cases 1 and 2. Now the desired conclusion follows from the bound (A.7).

In the proof above, we can allow sparser graphs, with $p, q \gg \frac{1}{n}$. More explicitly, let $p = \rho_n a, q = \rho_n b$, with a > b > 0 and $\rho_n \gg \frac{1}{n}$. Then, $t = \Omega(1)$, and $\alpha_+ \le p - q = \rho_n (a - b), \alpha_- = (p - q)/2 = \rho_n (a - b)/2$. So, we do have $nt|\alpha_{\pm}| \to \infty$.

Proof of Theorem 3.4. We begin by noting that $\widehat{M} - M = A - \mathbb{E}(A|Z) := A - \tilde{P}$. For the first iteration, we rewrite the sample iterations (7) as

$$\hat{\xi}^{(1)} = 4tM\left(\psi^{(0)} - \frac{1}{2}\mathbf{1}\right) + 4t(\widehat{M} - M)\left(\psi^{(0)} - \frac{1}{2}\mathbf{1}\right)$$
$$= \xi^{(1)} + \underbrace{4t(A - \tilde{P})\left(\psi^{(0)} - \frac{1}{2}\mathbf{1}\right)}_{=:nr^{(0)}}.$$

Therefore, similar to the population case, we have

$$\hat{\psi}_i^{(1)} = g(na_{\sigma_i}^{(0)} + b_i^{(0)} + nr_i^{(0)}).$$

Note that

$$r_i^{(0)} = \frac{4t}{n} \sum_{j \neq i} (A_{ij} - \tilde{P}_{ij} | Z_i, Z_j) (\psi_j^{(0)} - \frac{1}{2}).$$
(A.8)

Assume that $\psi^{(0)}$ is independent of A. Since our probability statements will be with respect to the randomness in A, we may assume that $\psi^{(0)}$ is fixed. Let $Y_{ij} = (A_{ij} - \tilde{P}_{ij})(\psi_j^{(0)} - \frac{1}{2})$. Then

the Y_{ij} are independent random variables for $j \neq i$, and $\mathbb{E}(Y_{ij}) = 0$. Also, $|Y_{ij}| \leq |\psi_j^{(0)} - \frac{1}{2}| \leq |\psi^{(0)} - \frac{1}{2}| \leq |\psi^{(0)} - \frac{1}{2}|_{\infty} = \Delta$, say, and $\mathbb{E}Y_{ij}^2 = (\psi_j^{(0)} - \frac{1}{2})^2 \operatorname{Var}(A_{ij}) = O(\rho_n(\psi_j^{(0)} - \frac{1}{2})^2)$. So, by Bernstein's inequality,

$$\mathbb{P}\left(\frac{1}{n}\sum_{j\neq i}Y_{ij} > \epsilon\right) \leq \exp\left(\frac{-\frac{1}{2}n^{2}\epsilon^{2}}{\sum_{j\neq i}\mathbb{E}Y_{ij}^{2} + \frac{1}{3}\Delta n\epsilon}\right)$$
$$\leq \exp\left(\frac{-\frac{1}{2}n^{2}\epsilon^{2}}{C\rho_{n}\|\psi^{(0)} - \frac{1}{2}\|_{2}^{2} + \frac{1}{3}\Delta n\epsilon}\right)$$
$$\leq \exp\left(\frac{-\frac{1}{2}n^{2}\epsilon^{2}}{Cn\rho_{n}\Delta^{2} + \frac{1}{3}\Delta n\epsilon}\right).$$
(A.9)

It follows from here that $nr_i^{(0)} = O(\sqrt{n\rho_n}\Delta \log n)$ with high probability, if $\sqrt{n\rho_n} = \Omega(\log n)$. In fact, by taking a suitably large constant in the big "Oh", we can show, via a union bound, that $\max_i nr_i^{(0)} = O(\sqrt{n\rho_n}\Delta \log n)$ with high probability.

Now, from our assumption $n|a_{\pm 1}^{(0)}| \gg \max\{\sqrt{n\rho_n} \|\psi^{(0)} - \frac{1}{2}\|_{\infty} \log n, 1\}$, it follows that $na_{\sigma_i}^{(0)} \gg nr_i^{(0)} + b_i^{(0)}$ with high probability, simultaneously for all *i*. Thus, similar to the population case, we can write

$$\hat{\psi}^{(1)} = g(na_{+1}^{(0)})\mathbf{1}_{\mathcal{C}_1} + g(na_{-1}^{(0)})\mathbf{1}_{\mathcal{C}_2} + \hat{\delta}^{(0)},$$

where $\|\hat{\delta}^{(0)}\|_{\infty} = O(\exp(-n\min\{|a_{+1}^{(0)}|, |a_{-1}^{(0)}|\})) = o(1)$, with high probability. After this the proof proceeds like the proof of Theorem 3.3, and so we omit it.

Let us consider the case with s = 2 and we will show $nr_i^{(1)}$ can be bounded in a general way. Now

$$\xi^{(2)} = 4t(A - \lambda(J - I))(\hat{\psi}^{(1)} - 1/2)$$

= $4tM(\hat{\psi}^{(1)} - 1/2) + nr^{(1)}$
= $4tM(\hat{\psi}^{(1)} - 1/2) + \underbrace{4t(A - \tilde{P})(\hat{\psi}^{(1)} - \ell(\psi^{(0)}))}_{R_1} + \underbrace{4t(A - \tilde{P})(\ell(\psi^{(0)}) - \frac{1}{2}\mathbf{1})}_{R_2}$

Now the analysis of the first term follows from Theorem 3.3. It is also easy to see $\max_i |R_{2,i}| = O_P(\sqrt{n\rho_n})$, since $\ell(\psi^{(0)}) \in \{\mathbf{1}_{C_1}, \mathbf{1}_{C_2}, \mathbf{1}, \mathbf{0}, \frac{1}{2}\mathbf{1}\}$. For R_1 ,

$$\max_{i} |R_{1,i}| \le ||R_1||_2 \le ||A - \tilde{P}||_{op} ||\hat{\psi}^{(1)} - \tilde{\ell}(\psi^{(0)})||_2$$

= $O_P(\sqrt{n\rho_n})\sqrt{n} \cdot O(\exp(-\Theta(n\min\{|a_{+1}^{(0)}|, |a_{-1}^{(0)}|\}))) = o_P(1),$

under our assumption that $n|a_{\pm 1}^{(0)}| \gg \max\{\sqrt{n\rho_n} \|\psi^{(0)} - \frac{1}{2}\|_{\infty} \log n, 1\}$. Hence $\max_i |nr_i^{(1)}| = O_P(\sqrt{n\rho_n})$, and $na_{\sigma_i}^{(1)} \gg nr_i^{(1)} + b_i^{(1)}$ with high probability, simultaneously for all *i*. The same analysis as in the s = 1 case follows.

The case for general s can be proved by induction using the same decomposition of $nr^{(s)}$, replacing $\ell(\psi^{(0)})$ with a more general $\tilde{\ell}(\psi^{(0)}) \in {\ell(\psi^{(0)}), \mathbf{0}, \mathbf{1}}$ depending on the signs of $a^{(0)}_{+1}, a^{(0)}_{-1}, \alpha_{+}$ as described in Theorem 3.3 for $s \geq 2$.

Proof of Corollary 3.5. From Theorem 3.3, it follows that, when $\alpha_+ > 0$,

$$\begin{split} \mathfrak{M}(\mathcal{S}_{1}) &\geq \mathfrak{M}(\{\psi^{(0)} \mid a_{+1}^{(0)} > 0, a_{-1}^{(0)} > 0, na_{\pm 1}^{(0)} \gg 1\} \\ &= \mathfrak{M}(\{\psi^{(0)} \mid a_{+1}^{(0)} \gg \frac{1}{n}, a_{-1}^{(0)} \gg \frac{1}{n}\}) \\ &\geq \mathfrak{M}(\{\psi^{(0)} \mid a_{+1}^{(0)} > \frac{1}{n^{\gamma}}, a_{-1}^{(0)} > \frac{1}{n^{\gamma}}\}), \end{split}$$

for any $0 < \gamma < 1$ and so on for the other other limit points.

More explicitly,

All in all, we have

$$\mathfrak{M}(\mathcal{S}_{\mathbf{1}}) \geq \lim_{\gamma \uparrow 1} \mathfrak{M}(H_{+}^{\gamma} \cap H_{-}^{\gamma} \cap [0,1]^{n}).$$

This completes the proof.

3.2 Proofs of results in Section 3.2

Proof of Proposition 3.6. That the described point is a stationary point is easy to verify, because of the presence of the $(\psi_i - \frac{1}{2})$ terms in the stationarity equations (A.4). Now, from (A.5), we see that the Hessian matrix at $(\frac{1}{2}\mathbf{1}, \frac{\mathbf{1}^{\top}A\mathbf{1}}{n(n-1)}, \frac{\mathbf{1}^{\top}A\mathbf{1}}{n(n-1)}, \frac{1}{2})$ is given by

$$H = \begin{pmatrix} -4I & \mathbf{0} & \mathbf{0} \\ \mathbf{0}^{\top} & -\frac{n(n-1)}{4\hat{a}(1-\hat{a})} & 0 \\ \mathbf{0}^{\top} & 0 & -\frac{n(n-1)}{4\hat{a}(1-\hat{a})} \end{pmatrix},$$

where $\hat{a} = \frac{\mathbf{1}^{\top} A \mathbf{1}}{n(n-1)}$. Clearly, *H* is negative definite. This completes the proof.

Proof of Lemma 3.1. First note that conditioning on the true labels Z, $\mathbb{E}(A|Z) = \tilde{P}$. For the update of $p^{(1)}$, we have

$$p^{(1)} = \frac{\psi^T \tilde{P} \psi + (\mathbf{1} - \psi)^T \tilde{P} (\mathbf{1} - \psi)}{\psi^T (J - I) \psi + (\mathbf{1} - \psi)^T (J - I) (\mathbf{1} - \psi)} + \frac{\psi^T (A - \tilde{P}) \psi + (\mathbf{1} - \psi)^T (A - \tilde{P}) (\mathbf{1} - \psi)}{\psi^T (J - I) \psi + (\mathbf{1} - \psi)^T (J - I) (\mathbf{1} - \psi)},$$

where the first term can be written as

$$\begin{split} & \frac{\psi^T (\frac{p+q}{2} u_1 u_1^T + \frac{p-q}{2} u_2 u_2^T - pI)\psi + (\mathbf{1} - \psi)^T (\frac{p+q}{2} u_1 u_1^T + \frac{p-q}{2} u_2 u_2^T - pI)(\mathbf{1} - \psi)}{\psi^T (u_1 u_1^T - I)\psi + (\mathbf{1} - \psi)^T (u_1 u_1^T - I)(\mathbf{1} - \psi)} \\ &= \frac{\frac{p+q}{2} n^2 (\zeta_1^2 + (1 - \zeta_1)^2) + n^2 (p-q)\zeta_2^2 - px}{\zeta_1^2 n^2 + (1 - \zeta_1)^2 n^2 - x} \\ &= \frac{p+q}{2} + \frac{(p-q)(\zeta_2^2 - x/2n^2)}{\zeta_1^2 + (1 - \zeta_1)^2 - x/n^2}, \end{split}$$

where $x = \psi^T \psi + (\mathbf{1} - \psi)^T (\mathbf{1} - \psi) \ge n^2/4$. The second term can be bounded by noting $\mathbb{E}(\psi^T(A - \tilde{P})\psi) = 0$ and $\operatorname{Var}(\psi^T(A - \tilde{P})\psi) \le 2n(n-1)p$. By Chebyshev's inequality, $\psi^T(A - \tilde{P})\psi = O_P(\sqrt{\rho_n}n)$.

This is because

$$\mathbb{E}_{\psi,A}[\psi^T(A-\tilde{P})\psi] = \mathbb{E}_{\psi}\mathbb{E}_A[\psi^T(A-\tilde{P})\psi\Big|\psi] = 0,$$

and

$$\begin{split} \operatorname{Var}_{\psi,A}[\psi^T(A-\tilde{P})\psi] &= \mathbb{E}\operatorname{Var}(\psi^T(A-\tilde{P})\psi \Big| \psi) + \operatorname{Var}(\mathbb{E}[\psi^T(A-\tilde{P})\psi \Big| \psi]) \\ &= \mathbb{E}\operatorname{Var}(\psi^T(A-\tilde{P})\psi \Big| \psi) \\ &= 4\mathbb{E}\sum_{i < j}\psi_i\psi_j\operatorname{Var}(A_{ij}) \leq 2n(n-1)p. \end{split}$$

 $(1-\psi)^T (A-\tilde{P})(1-\psi)$ can be handled similarly, and

$$\psi^{T}(J-I)\psi + (\mathbf{1}-\psi)^{T}(J-I)(\mathbf{1}-\psi)$$

= $\left(\sum_{i}\psi_{i}\right)^{2} + \left(n-\sum_{i}\psi_{i}\right)^{2} - \psi^{T}\psi - (1-\psi)^{T}(1-\psi)$
 $\geq n^{2}/2 - 2n,$

since the first two terms are minimized at $\sum_i \psi_i = n/2$.

The result for $q^{(1)}$ is proved analogously.

Proof of Proposition 3.7. Let $\psi = \zeta_1 u_1 + \zeta_2 u_2 + w$, $w \in \text{span}\{u_1, u_2\}^{\perp}$, be a stationary point. We will consider the population version of all the updates and replace A with $\mathbb{E}(A|Z) := \tilde{P}$ and $\rho_n \to 0$. By Lemma 3.1,

$$\tilde{p} = \frac{p+q}{2} + \underbrace{\frac{(p-q)(\zeta_2^2 - x/2n^2)}{\zeta_1^2 + (1-\zeta_1)^2 - x/n^2}}_{\epsilon'_1},$$

$$\tilde{q} = \frac{p+q}{2} - \underbrace{\frac{(p-q)(\zeta_2^2 + y/2n^2)}{2\zeta_1(1-\zeta_1) - y/n^2}}_{\epsilon'_2}.$$
(A.10)

In this case, the update equation (4) becomes

$$\begin{aligned} \xi &= 4\tilde{t}(\tilde{P} - \tilde{\lambda}(J - I))(\psi^{(s)} - \frac{1}{2}\mathbf{1}) \\ &= 4\tilde{t}n\left(\left(\zeta_1 - \frac{1}{2}\right)\left(\frac{p+q}{2} - \tilde{\lambda}\right)u_1 + \frac{p-q}{2}\zeta_2u_2\right) + 4\tilde{t}(\tilde{\lambda} - p)\left(\psi - \frac{1}{2}\mathbf{1}\right) \\ &:= n\tilde{a} + \tilde{b} \end{aligned}$$
(A.11)

where $\tilde{\lambda}$ and \tilde{t} are defined in terms of \tilde{p} and \tilde{q} . Since ψ is a stationary point, the above update gives $\psi = g(\xi)$.

We consider the following cases.

Case 1: $\zeta_2^2 = \Omega(1)$. Since $\zeta_1(1 - \zeta_1) \ge \zeta_2^2$, it is easy to see that (A.10) implies that $\tilde{p} > \frac{p+q}{2} > \tilde{q}$, thus $\tilde{p} - \tilde{q} = \Omega(\rho_n)$, $\tilde{t} = \Omega(1)$, $\tilde{p} < \tilde{\lambda} < \tilde{q}$. It follows then $\tilde{b}_i = O(\rho_n)$, and $|\tilde{a}_i| = \Omega(\rho_n)$ for $i \in C_1$ or $i \in C_2$ (or both). In any of these cases, $||w|| = O(\rho_n \sqrt{n}) = o(\sqrt{n})$.

Case 2: $\zeta_2 = o(1)$. Note that $\psi^T(1 - \psi) \ge 0$ implies that $\zeta_1(1 - \zeta_1) - \frac{\|w\|^2}{n} \ge \zeta_2^2$. If $\|w\|^2 = o(n)$, we are done. If $\|w\|^2 = \Omega(n)$, $\zeta_1(1 - \zeta_1) = \Omega(1)$. In this case, $\tilde{p} = \frac{p+q}{2} + O(\rho_n \zeta_2^2)$, and similarly for \tilde{q} . It follows then that $\tilde{t} = O(\zeta_2^2) = o(1)$, $\tilde{\lambda} = \frac{p+q}{2} + o(\rho_n)$ (we defer the details to (A.14)- (A.18)). Also note that $\tilde{b}_i = O(\rho_n \zeta_2^2)$. When $n|\tilde{a}_i| \gg \tilde{b}_i$, $g(\xi_i) = g(n\tilde{a}_i) + o(1)$. Since $g(n\tilde{a}) \in \text{span}\{u_1, u_2\}$, this implies that $\|w\| = o(\sqrt{n})$. When $n|\tilde{a}_i| \asymp \tilde{b}_i$, $\xi_i = o(1)$, and so we have $\|w\| = o(\sqrt{n})$ again.

Proof of Lemma 3.2. Let a = (p+q)/2. By (5), define $\kappa_1 := 4t \left(\zeta_1 - \frac{1}{2}\right) (a-\lambda)$ and $\kappa_2 = 4t\zeta_2 \frac{p-q}{2}$. Consider the initial distribution $\psi^{(0)}(i) \stackrel{iid}{\sim} f_{\mu}$, where f is a distribution supported on (0,1) with mean μ . Note that we have the following:

$$\zeta_{1} = \frac{\psi^{T} \mathbf{1}}{n} = \mu + O_{P}(1/\sqrt{n}),$$

$$\zeta_{2} = \frac{\psi^{T} u_{2}}{n} = O_{P}(1/\sqrt{n}).$$
(A.12)

Now using (10), recall that

$$p^{(1)} = \frac{p+q}{2} + \underbrace{\frac{(p-q)(\zeta_2^2 - x/2n^2)}{\zeta_1^2 + (1-\zeta_1)^2 - x/n^2}}_{\epsilon_1} + O_P(\sqrt{\rho_n}/n),$$

$$q^{(1)} = \frac{p+q}{2} - \underbrace{\frac{(p-q)(\zeta_2^2 + y/2n^2)}{2\zeta_1(1-\zeta_1) - y/n^2}}_{\epsilon_2} - O_P(\sqrt{\rho_n}/n).$$
(A.13)

This gives

$$\epsilon_{1} = \epsilon_{1}' + O_{P}\left(\frac{\sqrt{\rho_{n}}}{n}\right) = O_{P}\left(\frac{\rho_{n}}{n}\right) + O_{P}\left(\frac{\sqrt{\rho_{n}}}{n}\right) = O_{P}\left(\frac{\sqrt{\rho_{n}}}{n}\right),$$

$$\epsilon_{2} = \epsilon_{2}' + O_{P}\left(\frac{\sqrt{\rho_{n}}}{n}\right) = O_{P}\left(\frac{\sqrt{\rho_{n}}}{n}\right).$$

We will use the following logarithmic inequalities for $a > \epsilon > 0$:

$$\frac{2\epsilon}{a+\epsilon} \le \log \frac{a+\epsilon}{a-\epsilon} \le \frac{2\epsilon}{a-\epsilon}.$$
(A.14)

Now we have

$$t = \frac{1}{2} \left(\log \left(\frac{a + \epsilon_1}{a - \epsilon_2} \right) + \log \left(\frac{1 - a + \epsilon_2}{1 - a - \epsilon_1} \right) \right),$$

$$2t \ge \frac{\epsilon_1 + \epsilon_2}{a + \epsilon_1} + \frac{\epsilon_1 + \epsilon_2}{1 - a + \epsilon_2} \ge \frac{(\epsilon_1 + \epsilon_2)}{(a + \epsilon_1)(1 - a + \epsilon_2)},$$

$$2t \le \frac{(\epsilon_1 + \epsilon_2)}{(a - \epsilon_2)(1 - a - \epsilon_1)}.$$
(A.15)

For λ , if $\epsilon_1 + \epsilon_2 \ge 0$, we have

$$\lambda = \frac{\log \frac{1-q^{(1)}}{1-p^{(1)}}}{\log \frac{p^{(1)}}{q^{(1)}} + \log \frac{1-q^{(1)}}{1-p^{(1)}}} \le \frac{\epsilon_1 + \epsilon_2}{1-a-\epsilon_1} \Big/ \left(\frac{\epsilon_1 + \epsilon_2}{a+\epsilon_1} + \frac{\epsilon_1 + \epsilon_2}{1-a-\epsilon_1}\right) = a + \epsilon_1.$$
(A.16)

$$\lambda \ge \frac{\epsilon_1 + \epsilon_2}{1 - a + \epsilon_2} \bigg/ \left(\frac{\epsilon_1 + \epsilon_2}{a - \epsilon_2} + \frac{\epsilon_1 + \epsilon_2}{1 - a + \epsilon_2} \right) = a - \epsilon_2.$$
(A.17)

If $\epsilon_1 + \epsilon_2 \leq 0$,

$$\begin{aligned} +\epsilon_2 &\leq 0, \\ \lambda &= \frac{\log \frac{1-q^{(1)}}{1-p^{(1)}}}{\log \frac{p^{(1)}}{q^{(1)}} + \log \frac{1-q^{(1)}}{1-p^{(1)}}} \geq \frac{\epsilon_1 + \epsilon_2}{1-a-\epsilon_1} \Big/ \left(\frac{\epsilon_1 + \epsilon_2}{a+\epsilon_1} + \frac{\epsilon_1 + \epsilon_2}{1-a-\epsilon_1}\right) = a+\epsilon_1, \end{aligned}$$
(A.18)
$$\lambda &\leq \frac{\epsilon_1 + \epsilon_2}{1-a+\epsilon_2} \Big/ \left(\frac{\epsilon_1 + \epsilon_2}{a-\epsilon_2} + \frac{\epsilon_1 + \epsilon_2}{1-a+\epsilon_2}\right) = a-\epsilon_2. \end{aligned}$$

Now we are ready to estimate ξ_i . We define:

$$\kappa_{1} = 4t(\zeta_{1} - \frac{1}{2})(a - \lambda) \leq \left| \frac{2(\epsilon_{1} + \epsilon_{2})}{(a - \epsilon_{2})(1 - a - \epsilon_{1})} \left(\mu - \frac{1}{2} + O_{P}(1/\sqrt{n}) \right) \max(|\epsilon_{1}|, |\epsilon_{2}|) \right|$$

$$\leq \frac{4\max\{\epsilon_{1}^{2}, \epsilon_{2}^{2}\}}{a(1 - a) + O_{P}(\sqrt{\rho_{n}}/n)} \left| \mu - \frac{1}{2} + O_{P}(1/\sqrt{n}) \right| = O_{P}(1/n^{2}),$$

$$\kappa_{2} = 4t\zeta_{2} \frac{(p - q)}{2} \leq \left| \frac{2(\epsilon_{1} + \epsilon_{2})}{(a - \epsilon_{2})(1 - a - \epsilon_{1})} (p - q)O_{P}\left(\frac{1}{\sqrt{n}}\right) \right|$$

$$\leq \frac{4\max(|\epsilon_{1}|, |\epsilon_{2}|)}{a(1 - a) + O_{P}(\sqrt{\rho_{n}}/n)} (p - q)O_{P}(1/\sqrt{n}) = O_{P}(\sqrt{\rho_{n}}/n^{3/2}).$$
(A.19)

From (5) and adding the noise term from the sample version of the update,

$$\xi_i^{(1)} = n(\kappa_1 + \sigma_i \kappa_2) + b_i^{(0)} + nr_i^{(0)}, \qquad (A.20)$$

where $\max_i |b_i^{(0)}| = t \cdot O_P(\rho_n) = O_P(\sqrt{\rho_n/n})$, since $t = O_P(1/(n\sqrt{\rho_n}))$ by (A.15), and $\max_i |nr_i^{(0)}| = 4t \cdot O_P(\sqrt{n\rho_n}\log n) = O_P(\log n/\sqrt{n})$ if $n\rho_n \gg (\log n)^2$, following the bound in Eq (A.9)). Now applying the update for ψ , we have $\psi_i^{(1)} = g(\xi^{(1)}) = \frac{1}{2} + O_P(\log n/\sqrt{n})$ uniformly for all i.

Proof of Lemma 3.3. In this setting, we write $p^{(1)}, q^{(1)}$ as follows:

$$p^{(1)} = p - (p - q) \frac{\frac{\zeta_1^2 + (1 - \zeta_1)^2}{2} - \zeta_2^2}{\zeta_1^2 + (1 - \zeta_1)^2 - x/n^2} + O_P(\sqrt{\rho_n}/n),$$

$$q^{(1)} = q + (p - q) \frac{\zeta_1(1 - \zeta_1) - \zeta_2^2 - y/n^2}{2\zeta_1(1 - \zeta_1) - y/n^2} + O_P(\sqrt{\rho_n}/n).$$
(A.21)

From the proof of Lemma 3.2, Equation A.13, and Equation A.21, we have: $\epsilon_1, \epsilon_2 < \frac{p+q}{2}$.

Also note that $\epsilon_1, \epsilon_2 = \Omega_P(-(p-q)\zeta_2^2 + \sqrt{\rho_n}/n)$. Hence, by the same argument as in Lemma 3.2, $|(p+q)/2 - \lambda| \leq \max(|\epsilon_1|, |\epsilon_2|) = \frac{p-q}{2} + O_P(1/n)$ by (A.21).

Finally we see that

$$t = \Theta(\frac{\epsilon_1 + \epsilon_2}{\rho_n}) = \Theta\left((p - q)\zeta_2^2/\rho_n\right)$$

In addition, condition (13) implies that $\zeta_2^2 = \Omega_P(1)$, we see that $t = \Omega_P(1)$ using (A.15). Next, using (12) and A.19,

$$\kappa_1 + \kappa_2 = 4t \left(\frac{\mu_1 + \mu_2 - 1}{2} \left(\frac{p+q}{2} - \lambda \right) + \frac{(\mu_1 - \mu_2)(p-q)}{4} + O_P(\rho_n/\sqrt{n}) \right),$$

$$\kappa_1 - \kappa_2 = 4t \left(\frac{\mu_1 + \mu_2 - 1}{2} \left(\frac{p+q}{2} - \lambda \right) - \frac{(\mu_1 - \mu_2)(p-q)}{4} + O_P(\rho_n/\sqrt{n}) \right).$$

In (A.20), $b_i^{(0)}$ is of smaller order than the other terms and it suffices to consider $n(\kappa_1 + \sigma_i \kappa_2 + r_i^{(0)})$. Since $|r_i^{(0)}| = O_P\left(\sqrt{\frac{\rho_n \log^2 n}{n}}\right)$ (see proof of Theorem 3.4), for any pair $i \in C_1$ and $j \in C_2$ we have

$$\begin{aligned} (\kappa_1 + \kappa_2 + r_i^{(0)})(\kappa_1 - \kappa_2 + r_j^{(0)}) \\ &\leq (\kappa_1^2 - \kappa_2^2) + O\left(\max(|r_i^{(0)}|, |r_j^{(0)}|) \max(|\kappa_1|, |\kappa_2|)\right) \\ &= (\kappa_1^2 - \kappa_2^2) + O_P\left((p - q)\sqrt{\frac{\rho_n \log^2 n}{n}}\right) \\ &= t^2(p - q)^2\left((\mu_1 + \mu_2 - 1)^2 - (\mu_1 - \mu_2)^2 + O_P\left(\frac{1}{p - q}\sqrt{\frac{\rho_n \log^2 n}{n}}\right)\right) < 0. \end{aligned}$$

Thus $n(\kappa_1 + \kappa_2 + r_i^{(0)})$ and $n(\kappa_1 - \kappa_2 + r_j^{(0)})$, for i, j in different blocks, have opposite signs. We will now check if $n(\kappa_1 + \sigma_i\kappa_2 + r_i^{(0)}) \to \infty$, and it suffices to lower bound $n(|\kappa_2| - |\kappa_1| - \max_i |r_i^{(0)}|)$. Since $|\mu_1 - \mu_2| \ge 2|\mu_1 + \mu_2 - 1| + O_P\left(\frac{\sqrt{\rho_n \log^2 n/n}}{p-q}\right)$,

$$n(|\kappa_2| - |\kappa_1| - \max_i |r_i^{(0)}|) \ge nt \left(|\mu_1 - \mu_2|(p-q) - |\mu_1 + \mu_2 - 1|(p-q) - O_P\left(\sqrt{\frac{\rho_n \log^2 n}{n}}\right) \right)$$
$$\ge nct(p-q)|\mu_1 - \mu_2| = \Theta\left(|\mu_1 - \mu_2|^3 n \frac{(p-q)^2}{\rho_n} \right),$$

for some constant c, so as long as $|\mu_1 - \mu_2| \ge \left(\frac{\rho_n \log n}{n(p-q)^2}\right)^{1/3}$.

Thus $\kappa_1 + \sigma_i \kappa_2 + r_i^{(0)}$ is growing to infinity with an order bounded below by $\Omega_P(\log n)$. If $n(\kappa_1 + \kappa_2 + r_i^{(0)}) > 0$, since $\psi_i^{(1)} = g(n(\kappa_1 + \sigma_i \kappa_2) + b_i^{(0)} + nr_i^{(0)})$, we have $\psi^{(1)} = \mathbf{1}_{\mathcal{C}_1} + O_P(\exp(-\Omega(\log n)))$. The case $\kappa_1 + \kappa_2 + r_i^{(0)} < 0$ is similar. \Box