
A Other measures of algorithmic complexity

It might be felt that Proposition 7 depends on using only the Kolmogorov/algorithmic complexity of
L. For example, it seems that though the algorithm defining Rπ in subsubsection 5.1.1 is short, the
running time of (pg, Rπ) might be much longer than other compatible (p,R) pairs. This is because
pg defines an argmax over actions while Rπ(s, a) runs π on s. Hence applying pg to Rπ requires
running π(s) as many times as ||A||, which is very inefficient.

We could instead use a measure of complexity that also uses the number of operations required to
compute a pair [Schmidhuber, 2002].

For any object S, let αS be an algorithm that generates S as an output. If S is a function that can
be applied to another object T , then αS(αT) generates S(T) by generating S with αS , whenever S
needs to look at T , it uses αT to generate T .

For example, if α is an algorithm in the language of L, l(α) its length, and t(α) its running time, we
could define the time-bounded Kolmogorov complexity,

KtL(p,R) = min
αp,αR

l(αp) + l(αR) + log(t(αp(αR)))

KTL(p,R) = min
αp,αR

l(αp) + l(αR) + t(αp(αR)).

The KtL derives from Levin [1984], while KTL is closely related to the example in Allender [2001].
Note that instead of l(αp) + l(αR) we could consider the length of a single algorithm that generates
both p and R; however, for the degenerate pairs we are considering, the length of such an algorithm
is very close to l(αp) + l(αR), as either αp or αR would be trivial.

The main result is that neither KtL nor KTL complexity remove the No Free Lunch Theorem. For
the degenerate pair (pπ̇, 0), nothing is gained, because its running time is comparable to π̇. For
the other two degenerate pairs, consider the situation where a planner takes as input not a reward
function R ∈ R, but the source code in L of an algorithm that computes R. In that case, the previous
proposition still applies:

Proposition 10. The results of Proposition 7 still apply to (pπ̇, 0) if KtL or KTL are used instead
of KL. If planner can take in algorithms generating reward functions, rather than simply reward
functions, then the results of Proposition 7 still apply to (pg, Rπ̇) and (−pg,−Rπ̇) in this situation.

Proof. The proof will only be briefly sketched. If L is reasonable, l(α0) can be very small (it’s simply
the zero function), and since pπ̇ need not actually look at its input, t(αpπ̇ (α0)) can be simplified to
t(απ̇). Thus KtL(pπ̇, 0) and KTL(pπ̇, 0) are close to the KtL and KTL complexities of π̇ itself.

For (pg, Rπ̇), let αpg and απ̇ be the algorithms that generates pg and π̇ which are of lowest KtL-
complexity.

Then define the algorithm W (απ̇). This algorithm wraps απ̇ up: first it takes inputs s and a, then
runs απ̇ on s, then returns 1 if the output of that is a and 0 otherwise. Thus W (απ̇) is an algorithm
for Rπ̇ .

We also wrap αpg into W ′(αpg). Here, W ′(αpg), when provided with an input algorithm β, will
check whether it is in the specific form β = W (α). If it is, it will run α, and output its output. If it is
not, it will run αpg on β.

If L is reasonable, then W (απ̇) is of length only slightly longer than απ̇, and of runtime also only
slightly longer, and the same goes for W ′(αpg) and αpg (indeed W ′(αpg) can have a shorter runtime
than αpg).

Now W (απ̇) is an algorithm for Rπ̇ , while W ′(αpg) always has the same output as αpg . Notice that,
when running the algorithm W ′(αpg) with W (απ̇) as input, this is only slightly longer in both senses
than simply running απ̇: W ′(αpg) will analyse W (απ̇), notice it is in the form W of απ̇, and then
simply run απ̇ .

Thus the KtL complexity of (pg, Rπ̇) is only slightly higher than that of π̇. The same goes for the
KTL complexity, and for (−pg,−Rπ̇).

13

Some other alternatives suggested have focused on bounding the complexity either of the reward
function or the planner, rather than of both. This would clearly not help, as (pπ̇, 0) has a reward
function of minimal complexity, while (pg, Rπ) and (−pg,−Rπ) have minimal complexity planner.

Some other ad-hoc ideas suggested that the complexity of the planner and the reward need to be
comparable15. This would rule out the three standard degenerate solutions, but should allow others
that spread complexity between planner and reward in whatever proportion is desired16.

It seems that similar tricks could be performed with many other types of complexity measures. Thus
simplicity of any form does not seem sufficient for resolving this No Free Lunch result.

B Overriding human reward functions

ML systems may, even today, influence humans by showing manipulative adds, and then naı̈vely
concluding that the humans really like those products (since they then buy them). Even though the
(p,R) formalism was constructed to model rationality and reward function in a human, it turns out
that it can also model situations where human preferences are overridden or modified.

That’s because the policy π̇ encodes the human action in all situations, including situations where they
are manipulated or coerced. Therefore, overridden reward functions can be detected by divergence
between π̇ and a more optimal policy for the reward function R.

Manipulative ads are a very mild form of manipulation. More extreme versions could involve manip-
ulative propaganda, drug injections or even coercive brain surgery — a form of human wireheading
[Everitt and Hutter, 2016], where the agent changes the human’s behaviour and apparent preferences.
All these methods of manipulation17 will be designated as the agent overriding the human reward
function.

In the (p,R) formalism, the reward function R can be used to detect such overriding, distinguishing
between legitimate optimisation (eg informative adds) and illegitimate manipulation/reward overriding
(eg manipulative adds).

To model this, the agent needs to be able to act, so the setup needs to be extended. Let M∗ be the
same MDP/R as M , except each state is augmented with an extra boolean variable: S∗ = S × {0, 1}.
The extra boolean never changes, and its only effect is to change the human policy.

On S0 = S × {0}, the human follows π̇; on S1 = S × {1}, the human follows an alternative policy
πa = π∗Ra , which is defined as the policy that maximises the expectation of a reward function Ra.

The agent can choose actions from within the set Aa. It can choose either 0, in which case the human
starts in ŝ0 = ŝ×{0} without any override and standard policy π̇. Or it can choose (1, Ra), in which
case the human starts in ŝ1 = ŝ×{1}, with their policy overridden into πa, the policy that maximises
Ra. Otherwise, the agent has no actions.

Let π̇′ be the mixed policy that is π̇ on S0, and πa on S1. This is the policy the human will actually
be following.

We’ll only consider two planners: pr, the fully rational planner, and p0, the planner that is fully
rational on S0 and indifferent on S1, mapping any R to πa.

Let Ṙ be a reward function that is compatible with pr and π̇ on S0. It can be extended to all of S∗ by
just forgetting about the boolean factor. Define the ‘twisted’ reward function Ṙa as being Ṙ on S0

and Ra on S1. We’ll only consider these two reward functions, Ṙ and Ṙa.

15 Most of the suggestions along these lines that the authors have heard are not based on some principled
understanding of planners and reward, but of a desire to get around the No Free Lunch results.

16 For example, if there was a simple function g : S → {0, 1} that split S into two sets, then one could
use combine (pπ̇, 0) on g−1(0) with (pg, Rπ̇) on g−1(1). This may not be the simplest pair with the required
properties, but there is no reason to suppose a ‘reasonable’ pair was any simpler.

17 Note that there are no theoretical limits as to how successful an agent could be at manipulating human
actions.

14

Then there are three planner-reward pairs that are compatible with π̇′: (pr, Ṙ
a), (p0, Ṙ

a), and (p0, Ṙ)

(the last pair, (pr, Ṙ), makes the false prediction that the human will behave the same way on S0 and
S1).

The first pair, (pr, Ṙ
a), encodes the assessment that the human is still rational even after being

overridden, so they are simply maximising the twisted reward function Ṙa. The second pair (p0, Ṙ
a)

encodes the assessment that the human rationality has been overridden in S1, but, by coincidence,
it has been overridden in exactly the right way to continue to maximise the correct twisted reward
function Ṙa.

But the pair (p0, Ṙ) is the most interesting. Its assessment is that the correct human reward function
is Ṙ (same on S0 as on S1), but that the agent has overridden human reward function in S1 and forced
the human into policy πa.

B.1 Regret and reward override

‘Overridden’, ‘forced’: these terms seem descriptively apt, but is there a better way of formalising
that intuition? Indeed there is, with regret.

We can talk about the regret, with respect to Ṙ, of the agent’s actions; for a ∈ Aa,

Reg(M∗, a, Ṙ) = max
b∈Aa

[
V
π̇′|b
Ṙ
− V π̇

′|a
Ṙ

]
(1)

(when the state is not specified in expressions like V π̇
′|b

Ṙ
, this means the expectation is taken from the

very beginning of the MDP).

We already know that π̇ is optimal with respect to Ṙ (by definition), so the regret for a = 0 is 0.
Using that optimality (and the fact that Ṙ is the same on S0 and S1), we get that for a = (1, πa),

Reg(M∗, (1, πa), Ṙ) = V ∗
Ṙ
− V π

a

Ṙ
.

This allows the definition:
Definition 11. Given a compatible (p,R), the agent’s action a overrides the human reward function
when it puts the human in a situation where the human policy leads to high regret for R.

Notice that there is no natural zero or default, so if the agent does not aid the human to become
perfectly rational, then that also counts as an override of R. So if the policy π̇ were less-than rational,
there would be much scope for ‘improving’ the human through overriding their policy18.

Notice that overriding is not encoded as a change in p or R; instead, (p,R) outputs the observed
human policy, even after overriding, but its format notes that the new behaviour is not one compatible
with maximising that reward function.

B.2 Overriding is expected given a non-rational human

Under any reasonable prior that captures our intuitions, the probability of Ṙa being a correct human
reward function should be very low, say ε << 1. However, the agent may focus on unlikely reward
functions, if the expected gain is high enough19.

If the agent models the human as having reward function Ṙ with probability 1 − ε, and Ṙa with
probability ε, then the agent’s action 0 gives expected reward

V ∗
Ṙ
,

since Ṙ and Ṙa agree given 0. But (1, πa) gives

εV ∗Ra + (1− ε)V π
a

Ṙ
, (2)

18 The main problem is that the concepts of ‘mental integrity’ or ‘self-determination’ are not yet captured in
this formalism.

19 This is similar to the ‘Pascal’s wager’ argument for the existence of God: divine existence may be
improbable, but the reward of belief are claimed to be high enough to overcome that improbability in expectation.

15

since Ṙa and Ra agree given action 1.

However, the agent gets to choose Ra, which then determines πa. The best choice for (1, Ra) is the
one such that

argmax
Ra∈R

[
εV ∗Ra + (1− ε)V π

a

Ṙ

]
.

At the very least, (1, Ṙ) will result in a value in equation (2) being equal to the value of V ∗
Ṙ

. It is very
plausible that the value can go higher: it just needs an Ra that is very easy to maximise (given perfect
rationality) and whose optimising policy πa does not penalise Ṙ much. In that situation, overriding
the human preferences maximises the agent’s expected reward.

If the human is not fully rational, then the value of action 0 is V π̇
Ṙ

, which is strictly less than V ∗
Ṙ

, the
value of (1, Ṙ). Here the agent definitely gains by overriding the human policy — if nothing else, to
make the human into a rational Ṙ-maximiser20.

Milli et al. [2017] argued that a robot that best served human preferences, should not be blindly
obedient to an irrational human. Here is the darker side of that argument: a robot that best served
human preferences would take control away from an irrational human.

C The preferences of the Alice algorithm

We imagine a situation where Alice is playing Bob at poker, and has the choice of calling or folding;
after her decision, the hand ends and any money is paid to the winner. Specifically, one could
imagine that they are playing Texas Hold’em, the board (the cards the players have in common) is
{7♥, 10♣, 10♠, Q♣,K♦}. Alice holds {K♣,K♥}, allowing her to make a full house with kings
and tens.

Bob must have a weaker hand than Alice’s, unless he holds {10♦, 10♥}, giving him four tens. This is
unlikely from a probability perspective, but he has been playing very confidently this hand, suggesting
he has very strong cards.

What does Alice want? Well, she may be simply wanting to maximise her money, giving her a reward
function R$. Or she might actually want Bob, and, in order to seduce him, would like to flatter
his ego by letting him win big, giving her a reward function Rª. In this specific situation, the two
reward functions are exact negatives of each other, R$ = −Rª. We’ll assume that Alice is rational
for maximising her reward function, given her estimate of Bob’s hand.

Alice has decided to call rather than fold. Thus we can conclude that either Alice has reward function
R$ and that she is using probabilities to assess the quality of Bob’s hand, or that she has reward
function Rª and is assessing Bob psychologically. Without looking at anything else about her
behaviour, is there any possibility of distinguishing the two possibilities?

Possibly. Imagine that Alice was following the algorithm given in Code 1a. Then it seems clear she
is a money maximiser. In contrast, if she was following the algorithm given in Code 1b, then she
clearly wants Bob.

Thus by looking into the details of Alice’s algorithm, we may be able to assess her preferences and
rationality, even if this assessment is not available from her actions or policy21.

Of course, doing so only works if we are confident that the variables and functions with names
like Alicecards, board, Bobbehave, Pwin, cardestimate, and playerestimate, actually mean what they seem to
mean.

This is the old problem of symbol grounding, and the difference between syntax (symbols inside an
agent) and semantics (the meaning of those symbols). Except in this case, since we are trying to

20 See footnote 18.
21In practice, for a human Alice, we would be able to ‘tell’ whether Alice wanted love or money,

by observing her behaviour in other circumstances - such as when she knew what Bob’s hand was.
However, when analysing the behaviour of other humans, we are already making huge amounts
of normative assumptions already. See https://www.lesswrong.com/posts/YfQGZderiaGv3kBJ8/
figuring-out-what-alice-wants-non-human-alice for a longer discussion of this.

16

https://www.lesswrong.com/posts/YfQGZderiaGv3kBJ8/figuring-out-what-alice-wants-non-human-alice
https://www.lesswrong.com/posts/YfQGZderiaGv3kBJ8/figuring-out-what-alice-wants-non-human-alice

Code 1: Two possible algorithms for Alice.

(a) Alice algorithm for money.

Alice poker algorithm I
1: Inputs: Alicecards, board,Bobbehave
2: Pwin = cardestimate(Alicecards, board)
3: if Pwin > 0.5:
4: return ‘call’
5: else:
6: return ‘fold’
7: end if

(b) Alice algorithm for love.

Alice poker algorithm II
1: Inputs: Alicecards, board,Bobbehave
2: Pwin = playerestimate(Bobbehave)
3: if Pwin < 0.5:
4: return ‘call’
5: else:
6: return ‘fold’
7: end if

understand the preferences of a human, the problem is grounding the ‘symbols’ in the human brain —
whatever those might be — rather than in a computer program.

17

	Other measures of algorithmic complexity
	Overriding human reward functions
	Regret and reward override
	Overriding is expected given a non-rational human

	The preferences of the Alice algorithm

