
A Proof of Theorem 4

In this section, we prove Theorem 4. We begin by observing that Algorithm 2 adds an element ui
to its solution if two things happen: (i) ui is not dismissed due to the random decision and (ii) the
marginal contribution of ui with respect to the current solution is large enough compared to the value
of Ui. Since checking (ii) requires more resources than checking (i), the algorithm checks (i) first.
However, for analyzing the approximation ratio of Algorithm 2, it is useful to assume that (ii) is
checked first. Moreover, for the same purpose, it is also useful to assume that the elements that pass
(ii) but fail (i) are added to a set R. The algorithm obtained after making these changes is given as
Algorithm 3. One should note that this algorithm has the same output distribution as Algorithm 2,
and thus, the approximation ratio we prove for the first algorithm applies to the second one as well.

Algorithm 3: Streaming Algorithm for a p-Matchoid Constraint (Analysis Version)
1 Let S0 ← ∅ and R← ∅.
2 for every arriving element ui do
3 Let Si ← Si−1.
4 Let Ui ← EXCHANGE-CANDIDATE(Si−1, ui).
5 if f(ui | Si−1) ≥ (1 + c) · f(Ui : Si−1) then
6 with probability q do Let Si ← Si−1 \ Ui + ui.
7 otherwise Update R← R+ ui.

8 return Sn.

We now need the following technical observation.

Observation 6. For every two sets S, T ⊆ N , f(T | S \ T ) ≤ f(T : S).

Proof. Let us denote the elements of T by ui1 , ui2 , . . . , ui|T | , where i1 < i2 < · · · < i|T |. Then,

f(T | S \ T ) =
|T |∑

j=1

f(uij | (S ∪ T ) \ {uij , uij+1 . . . , ui|T |})

≤
|T |∑

j=1

f(uij | S \ {uij , uij+1 . . . , un})

=

|T |∑

j=1

f(uij | S ∩ {u1, u2, . . . , uij−1}) =
|T |∑

j=1

f(uij : S) = f(T : S) ,

where the inequality follows from the submodularity of f .

Recall that A is the set of elements that ever appeared in the solution maintained by the algorithm—
formally, A =

⋃n
i=1 Si. Using the last observation we can prove the following lemma and corollary

which show that the elements of A \ Sn cannot contribute much to the output solution Sn of
Algorithm 3, and thus, their absence from Sn does not make Sn much less valuable than A.

Lemma 7. f(A \ Sn : Sn) ≤ f(Sn)
c .

Proof. Fix an element ui ∈ A, then

f(Si)− f(Si−1) = f(Si−1 \ Ui + ui)− f(Si−1) = f(ui | Si−1 \ Ui)− f(Ui | Si−1 \ Ui) (1)
≥ f(ui | Si−1)− f(Ui : Si−1) ≥ c · f(Ui : Si−1) ,

where the first inequality follows from the submodularity of f and Observation 6, and the second
inequality holds since the fact that Algorithm 3 accepted ui into its solution implies f(ui | Si−1) ≥
(1 + c) · f(Ui : Si−1).
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We now observe that every element of A \Sn must have been removed exactly once from the solution
of Algorithm 3, which implies that {Ui | ui ∈ A} is a disjoint partition of A \ Sn. Using this
observation, we get

f(A \ Sn : Sn) =
∑

ui∈A
f(Ui : Sn) ≤

∑

ui∈A

f(Si)− f(Si−1)
c

=
f(Sn)− f(∅)

c
≤ f(Sn)

c
,

where the first inequality follows from Inequality (1), the second equality holds since Si = Si−1
whenever ui 6∈ A and the second inequality follows from the non-negativity of f .

Corollary 8. f(A) ≤ c+1
c · f(Sn).

Proof. Since Sn ⊆ A by definition,

f(A) = f(A \ Sn | Sn) + f(Sn) ≤ f(A \ Sn : Sn) + f(Sn)

≤ f(Sn)

c
+ f(Sn) =

c+ 1

c
· f(Sn) ,

where the first inequality follows from Observation 6 and the second from Lemma 7.

Our next goal is to show that the value of the elements of the optimal solution that do not belong to A
is not too large compared to the value of A itself. To do so, we need a mapping from the elements of
the optimal solution to elements of A. Such a mapping is given by Proposition 10. However, before
we get to this proposition, let us first present Reduction 9, which simplifies Proposition 10.
Reduction 9. For the sake of analyzing the approximation ratio of Algorithm 3, one may assume that
every element u ∈ N belongs to exactly p out of the m ground sets N1,N2, . . . ,Nm of the matroids
definingM.

Proof. For every element u ∈ N that belongs to the ground sets of only p′ < p out of the m matroids
(N1,N1), (N2,N2), . . . , (Nm, Im), we can add u to p−p′ additional matroids as a free element (i.e.,
an element whose addition to an independent set always keeps the set independent). On can observe
that the addition of u to these matroids does not affect the behavior of Algorithm 3 at all, but makes
u obey the technical property of belonging to exactly p out of the ground sets N1,N2, . . . ,Nm.

From this point on we implicitly make the assumption allowed by Reduction 9. In particular, the
proof of Proposition 10 relies on this assumption.
Proposition 10. For every set T ∈ I which does not include elements of R, there exists a mapping
φT from elements of T to multi-subsets of A such that

• every element u ∈ Sn appears at most p times in the multi-sets of {φT (u) | u ∈ T}.
• every element u ∈ A \ Sn appears at most p− 1 times in the multi-sets of {φT (u) | u ∈ T}.
• every element ui ∈ T \A obeys f(ui | Si−1) ≤ (1 + c) ·∑uj∈φT (ui)

f(uj : Sd(j)−1).

• every element ui ∈ T ∩ A obeys f(ui | Si−1) ≤ f(uj : Sd(j)−1) for every uj ∈ φT (ui),
and the multi-set φT (ui) contains exactly p elements (including repetitions).

The proof of Proposition 10 is quite long and involves many details, and thus, we defer it to
Section A.1. Instead, let us prove now a very useful technical observation. To present this observation
we need some additional definitions. Let Z = {ui ∈ N | f(ui | Si−1) < 0}. Additionally, for every
1 ≤ i ≤ n, we define

d(i) =

{
1 + max{i ≤ j ≤ n | ui ∈ Sj} if ui ∈ A ,

i otherwise .

In general, d(i) is the index of the element whose arrival made Algorithm 3 remove ui from its
solution. Two exceptions to this rule are as follows. If ui was never added to the solution, then
d(i) = i; and if ui was never removed from the solution, then d(i) = n+ 1.
Observation 11. Consider an arbitrary element ui ∈ N .
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• If ui 6∈ Z, then f(ui : Si′) ≥ 0 for every i′ ≥ i − 1. In particular, since d(i) ≥ i,
f(ui : Sd(i)−1) ≥ 0

• A ∩ (R ∪ Z) = ∅.

Proof. To see why the first part of the observation is true, consider an arbitrary element ui 6∈ Z.
Then,

0 ≤ f(ui | Si−1) ≤ f(u | Si′ ∩ {u1, u2, . . . , ui−1}) = f(u : Si′) ,

where the second inequality follows from the submodularity of f and the inclusion Si′ ∩{u1, u2, . . . ,
ui−1} ⊆ Si−1 (which holds because elements are only added by Algorithm 3 to its solution at the
time of their arrival).

It remains to prove the second part of the observation. Note that Algorithm 3 adds every arriving
element to at most one of the sets A and R, and thus, these sets are disjoint; hence, to prove the
observation it is enough to show that A and Z are also disjoint. Assume towards a contradiction that
this is not the case, and let ui be the first element to arrive which belongs to both A and Z. Then,

f(ui | Si−1) ≥ (1 + c) · f(Ui : Si−1) = (1 + c) ·
∑

uj∈Ui

f(uj : Sd(j)−1) .

To see why that inequality leads to a contradiction, notice its leftmost hand side is negative by
our assumption that ui ∈ Z, while its rightmost hand side is non-negative by the first part of this
observation since the choice of ui implies that no element of Ui ⊆ Si−1 ⊆ A ∩ {u1, u2, . . . , ui−1}
can belong to Z.

Using all the tools we have seen so far, we are now ready to prove Theorem 4. Recall that OPT is an
independent set ofM maximizing f .
Theorem 4. Assuming q−1 = (1 + c)p+ 1, E[f(Sn)] ≥ c

(1+c)2p · E[f(A ∪OPT )].

Proof. Since Si ⊆ A for every 0 ≤ i ≤ n, the submodularity of f guarantees that

f(A ∪OPT ) ≤ f(A) +
∑

ui∈OPT\(R∪A)

f(ui | A) +
∑

ui∈(OPT\A)∩R
f(ui | A)

≤ f(A) +
∑

ui∈OPT\(R∪A)

f(ui | Si−1) +
∑

ui∈(OPT\A)∩R
f(ui | Si−1)

≤ 1 + c

c
· f(Sn) +

∑

ui∈OPT\(R∪A)

f(ui | Si−1) +
∑

ui∈OPT∩R
f(ui | Si−1) ,

where the third inequality follows from Corollary 8 and the fact that A ∩R = ∅ by Observation 11.
Let us now consider the function φOPT\R whose existence is guaranteed by Proposition 10 when
we choose T = OPT \R. Then, the property guaranteed by Proposition 10 for elements of T \A
implies ∑

ui∈OPT\(R∪A)

f(ui | Si−1) ≤ (1 + c) ·
∑

ui∈OPT\(R∪A)
uj∈φOPT\R(ui)

f(uj : Sd(j)−1) .

Additionally,
∑

ui∈OPT\(R∪A)
uj∈φOPT\R(ui)

f(uj : Sd(j)−1) + p ·
∑

ui∈OPT∩A
f(ui | Si−1) ≤

∑

ui∈OPT\R
uj∈φOPT\R(ui)

f(uj : Sd(j)−1)

≤ p ·
∑

uj∈Sn

f(uj : Sn) + (p− 1) ·
∑

uj∈A\Sn

f(uj : Sd(j)−1)

≤ p · f(Sn) +
p− 1

c
· f(Sn) =

(1 + c) · p− 1

c
· f(Sn) ,

where the first inequality follows from the properties guaranteed by Proposition 10 for elements of
T ∩ A (note that the sets OPT \ (R ∪ A) and OPT ∩ A are a disjoint partition of OPT \ R by
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Observation 11) and the second inequality follows from the properties guaranteed by Proposition 10
for elements of A \ Sn and Sn because every element ui in the multisets produced by φOPT\R
belongs to A, and thus, obeys f(ui : Sd(i)−1) ≥ 0 by Observation 11. Finally, the last inequality
follows from Lemma 7 and the fact that f(uj : Sd(j)−1) ≤ f(uj : Sn) for every 1 ≤ j ≤ n.
Combining all the above inequalities, we get

f(A ∪OPT ) ≤ 1 + c

c
· f(Sn)+

(1 + c) ·
[
(1 + c) · p− 1

c
· f(Sn)− p ·

∑

ui∈OPT∩A
f(ui | Si−1)

]
+

∑

ui∈OPT∩R
f(ui | Si−1)

=
(1 + c)2 · p

c
· f(Sn)− (1 + c)p ·

∑

ui∈OPT∩A
f(ui | Si−1) +

∑

ui∈OPT∩R
f(ui | Si−1) . (2)

By the linearity of expectation, to prove the theorem it only remains to show that the expectations
of the last two terms on the rightmost hand side of Inequality (2) are equal. This is our objective in
the rest of this proof. Consider an arbitrary element ui ∈ OPT . When ui arrives, one of two things
happens. The first option is that Algorithm 3 discards ui without adding it to either its solution or to
R. The other option is that Algorithm 3 adds ui to its solution (and thus, to A) with probability q,
and to R with probability 1− q. The crucial observation here is that at the time of ui’s arrival the set
Si−1 is already determined, and thus, this set is independent of the decision of the algorithm to add u
to A or to R; which implies the following equality (given an event E , we use here 1[E ] to denote an
indicator for it).

E[1[ui ∈ A] · f(ui | Si−1)]
q

=
E[1[ui ∈ R] · f(ui | Si−1)]

1− q .

Rearranging the last equality, and summing it up over all elements ui ∈ OPT , we get

1− q
q
· E
[ ∑

ui∈OPT∩An

f(ui | Si−1)
]
= E

[ ∑

ui∈OPT∩R
f(ui | Si−1)

]
.

Recall that we assume q−1 = (c+1)p+1, which implies (1− q)/q = q−1−1 = (c+1)p. Plugging
this equality into the previous one completes the proof that the expectations of the last two terms on
the rightmost hand side of Inequality (2) are equal.

A.1 Proof of Proposition 10

In this section we prove Propsition 10. Let us first restate the proposition itself.

Proposition 10. For every set T ∈ I which does not include elements of R, there exists a mapping
φT from elements of T to multi-subsets of A such that

• every element u ∈ Sn appears at most p times in the multi-sets of {φT (u) | u ∈ T}.
• every element u ∈ A \ Sn appears at most p− 1 times in the multi-sets of {φT (u) | u ∈ T}.
• every element ui ∈ T \A obeys f(ui | Si−1) ≤ (1 + c) ·∑uj∈φT (ui)

f(uj : Sd(j)−1).

• every element ui ∈ T ∩ A obeys f(ui | Si−1) ≤ f(uj : Sd(j)−1) for every uj ∈ φT (ui),
and the multi-set φT (ui) contains exactly p elements (including repetitions).

We begin the proof of Proposition 10 by constructing m graphs, one for every one of the matroids
definingM. For every 1 ≤ ` ≤ m, the graph G` contains two types of vertices: its internal vertices
are the elements of A ∩ N`, and its external vertices are the elements of {ui ∈ N` \ (R ∪ A) |
(Si−1 + ui) ∩N` 6∈ I`}. Informally, the external elements of G` are the elements of N` which were
rejected upon arrival by Algorithm 3 and the matroidM` = (N`, I`) can be (partially) blamed for
this rejection. The arcs of G` are created using the following iterative process that creates some
arcs of G` in response to every arriving element. For every 1 ≤ i ≤ n, consider the element x`
selected by the execution of EXCHANGE-CANDIDATE on the element ui and the set Si−1. From
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this point on we denote this element by xi,`. If no xi,` element was selected by the above execution
of EXCHANGE-CANDIDATE, or ui ∈ R, then no G` arcs are created in response to ui. Otherwise,
let Ci,` be the single cycle of the matroidM` in the set (Si−1 + ui) ∩ N`—there is exactly one
cycle ofM` in this set because Si−1 is independent, but (Si−1 + ui) ∩ N` is not independent in
M`. One can observe that Ci,` − ui is equal to the set X` in the above-mentioned execution of
EXCHANGE-CANDIDATE, and thus, xi,` ∈ Ci,`. We now denote by u′i,` the vertex out of {ui, xi,`}
that does not belong to Si—notice that there is exactly one such vertex since xi,` ∈ Ui, which implies
that it appears in Si if Si = Si−1 and does not appear in Si if Si = Si−1 \ Ui + ui. Regardless of
the node chosen as u′i, the arcs of G` created in response to ui are all the possible arcs from u′i,` to
the other vertices of Ci,`. Observe that these are valid arcs for G` in the sense that their endpoints
(i.e., the elements of Ci,`) are all vertices of G`—for the elements of Ci,` − ui this is true since
Ci,` − ui ⊆ Si−1 ∩ N` ⊆ A ∩ N`, and for the element ui this is true since the existence of xi,`
implies (Si−1 + ui) ∩N` 6∈ I`.
Some properties of G` are given by the following observation. Given a graph G and a vertex u, we
denote by δ+G(u) the set of vertices to which there is a direct arc from u in G.

Observation 12. For every 1 ≤ ` ≤ m,

• every non-sink vertex u of G` is spanned by the set δ+G`
(u).

• for every two indexes 1 ≤ i, j ≤ n, if u′i,` and u′j,` both exist and i 6= j, then u′i,` 6= u′j,`.

• G` is a directed acyclic graph.

Proof. Consider an arbitrary non-sink node u of G`. Since there are arcs leaving u, u must be equal
to u′i,` for some 1 ≤ i ≤ n. This implies that u belongs to the cycle Ci,`, and that there are arcs from
u to every other vertex of Ci,`. Thus, u is spanned by the vertices of δ+G`

(u) ⊇ Ci,` − u because the
fact that Ci,` is a cycle containing u implies that Ci,` − u spans u. This completes the proof of the
first part of the observation.

Let us prove now a very useful technical claim. Consider an index 1 ≤ i ≤ n such that u′i exists, and
let j be an arbitrary value i < j ≤ n. We will prove that u′i does not belong to Cj,`. By definition, u′i
is either ui or the vertex xi,` that belongs to Si−1, and thus, arrived before ui and is not equal to uj ;
hence, in neither case u′i 6= uj . Moreover, combining the fact that u′i is either ui or arrived before
ui and the observation that u′i is never a part of Si, we get that u′i cannot belong to Sj ⊇ Cj,` − uj ,
which implies the claim together without previous observation that u′i 6= uj .

The technical claim that we proved above implies the second part of the lemma, namely that for every
two indexes 1 ≤ i, j ≤ n, if u′i,` and u′j,` both exist and i 6= j, then u′i,` 6= u′j,`. To see why that
is the case, assume without loss of generality i < j. Then, the above technical claim implies that
u′i,` 6∈ Cj,`, which implies u′i,` 6= u′j,` because u′j,` ∈ Cj,`.
At this point, let us assume towards a contradiction that the third part of the observation is not true,
i.e., that there exists a cycle L in G`. Since every vertex of L has a non-zero out degree, every such
vertex must be equal to u′i,` for some 1 ≤ i ≤ n. Thus, there must be indexes 1 ≤ i1 < i2 ≤ n

such that L contains an arc from u′i2,` to u′i1,`. Since we already proved that u′i2,` cannot be equal
to u′j,` for any j 6= i2, the arc from u′i2,` to u′i1,` must have been created in response to ui2 , hence,
u′i1,` ∈ Ci2,`, which contradicts the technical claim we have proved.

One consequence of the properties of G` proved by the last observation is given by the following
lemma. A slightly weaker version of this lemma was proved implicitly by [42], and was stated as an
explicit lemma by [8].

Lemma 13. Consider an arbitrary directed acyclic graph G = (V,E) whose vertices are elements
of some matroidM′. If every non-sink vertex u of G is spanned by δ+G(u) inM′, then for every set
S of vertices of G which is independent inM′ there must exist an injective function ψS such that, for
every vertex u ∈ S, ψS(u) is a sink of G which is reachable from u.

Proof. Let us define the width of a set S of vertices of G as the number of arcs that appear on
some path starting at a vertex of S (more formally, the width of S is the size of the set {e ∈ E |
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there is a path in G that starts in a vertex of S and includes e}). We prove the lemma by induction
of the width of S. First, consider the case that S is of width 0. In this case, the vertices of S cannot
have any outgoing arcs because such arcs would have contributed to the width of S, and thus, they
are all sinks of G. Thus, the lemma holds for the trivial function ψS mapping every element of S to
itself. Assume now that the width w of S is larger than 0, and assume that the lemma holds for every
set of width smaller than w. Let u be a non-sink vertex of S such that there is no path in G from any
other vertex of S to u. Notice that such a vertex must exist since G is acyclic. By the assumption
of the lemma, δ+(u) spans u. In contrast, since S is independent, S − u does not span u, and thus,
there must exist an element v ∈ δ+(u) \ S such that the set S′ = S − u+ v is independent.

Let us explain why the width of S′ must be strictly smaller than the width of S. First, consider an
arbitrary arc e which is on a path starting at a vertex u′ ∈ S′. If u′ ∈ S, then e is also on a path
starting in a vertex of S. On the other hand, if u′ 6∈ S, then u′ must be the vertex v. Thus, e must
be on a path P starting in v. Adding uv to the beginning of the path P , we get a path from u which
includes e. Hence, in conclusion, we have got that every arc e which appears on a path starting in
a vertex of S′ (and thus, contributes to the width of S′) also appears on a path starting in a vertex
of S (and thus, also contributes to the width of S); which implies that the width of S′ is not larger
than the width of S. To see that the width of S′ is actually strictly smaller than the width of S, it only
remains to find an arc which contributes to the width of S, but not to the width of S′. Towards this
goal, consider the arc uv. Since u is a vertex of S, the arc uv must be on some path starting in u
(for example, the path including only this arc), and thus, contributes to the width of S. Assume now
towards a contradiction that uv contributes also to the width of S′, i.e., that there is a path P starting
at a vertex w ∈ S′ which includes uv. If w = v, then this leads to a contradiction since it implies the
existence of a cycle in G. On the other hand, if w 6= v, then this implies a path in G from a vertex
w 6= u of S to u, which contradicts the definition of u. This completes the proof that the width of S′
is strictly smaller than the width of S.

Using the induction hypothesis, we now get that there exists an injective function ψS′ mapping every
vertex of S′ to a sink of G. Using ψS′ , we can define ψS as follows. For every w ∈ S,

ψS(w) =

{
ψS′(v) if w = u ,

ψS′(w) otherwise .

Since u appears in S but not in S′, and v appears in S′ but not in S, the injectiveness of ψS follows
from the injectiveness of ψS′ . Moreover, ψS clearly maps every vertex of S to a sink of G since ψS′
maps every vertex of S′ to such a sink. Finally, one can observe that ψS(w) is reachable from w for
every w ∈ S because ψS(u) = ψS′(v) is reachable from v by the definition of ψS′ , and thus, also
from u due to the existence of the arc uv.

For every 1 ≤ ` ≤ m, let T` be the set of elements of T that appear as vertices of G`. Since T is
independent and T` contains only elements of N`, Observation 12 and Lemma 13 imply together the
existence of an injective function ψT`

mapping the elements of T` to sink vertices of G`. We can now
define the function φT promised by Proposition 10. For every element u ∈ T , the function φT maps
u to the multi-set {ψT`

(u) | 1 ≤ ` ≤ m and u ∈ T`}, where we assume that repetitions are kept
when the expression ψT`

(u) evaluates to the same element for different choices of `. Let us explain
why the elements in the multi-sets produced by φT are indeed all elements of A, as is required by the
proposition. Consider an element ui 6∈ A, and let us show that it does not appear in the range of ψT`

for any 1 ≤ ` ≤ m. If ui does not appear as a vertex in G`, then this is obvious. Otherwise, the fact
that ui 6∈ A implies u′i,` = ui, and thus, the arcs of G` created in response to ui are arcs leaving ui,
which implies that ui is not a sink of G`, and hence, does not appear in the range of ψT`

.

Recall that every element u ∈ N belongs to at most p out of the ground sets N1,N2, . . . ,Nm, and
thus, is a vertex in at most p out of the graphs G1, G2, . . . , Gm. Since ψT`

maps every element to
vertexes of G`, this implies that u is in the range of at most p out of the functions ψT1

, ψT2
, . . . , ψTm

.
Moreover, since these functions are injective, every one of these functions that have u in its range
maps at most one element to u. Thus, the multi-sets produced by φT contain u at most p times. Since
this is true for every element of N , it is true in particular for the elements of Sn, which is the first
property of φT that we needed to prove.

Consider now an element u ∈ A \ Sn. Our next objective is to prove that u appears at most p− 1
times in the multi-sets produced by φT , which is the second property of φT that we need to prove.
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Above, we proved that u appears at most p times in these multi-sets by arguing that every such
appearance must be due to a function ψT`

that has u in its range, and that the function ψT`
can have

this property only for the p values of ` for which u ∈ N`. Thus, to prove that u in fact appears only
p− 1 times in the multi-sets produced by φT , it is enough to argue that there exists a value ` such
that e ∈ N`, but ψT`

does not have u in its range. Let us prove that this follows from the membership
of u in A \ Sn. Since u was removed from the solution of Algorithm 3 at some point, there must
be some index 1 ≤ i ≤ n such that both u ∈ Ui and ui was added to the solution of Algorithm 3.
Since u ∈ Ui, there must be a value 1 ≤ ` ≤ m such that u = xi,`, and since ui was added to the
solution of Algorithm 3, u′i,` = xi,`. These equalities imply together that there are arcs leaving u in
G` (which were created in response to ui). Thus, the function ψT`

does not map any element to u
because u is not a sink of G`, despite the fact that u ∈ N`.
To prove the other guaranteed properties of φT , we need the following lemma.

Lemma 14. Consider two vertices ui and uj such that uj is reachable from ui in G`. If ui ∈ A,
then f(ui : Sd(i)−1) ≤ f(uj : Sd(j)−1), otherwise, f(xi,` : Si−1) ≤ f(uj : Sd(j)−1).

Proof. We begin by proving the special case of the lemma in which ui ∈ A (i.e., is an internal vertex
of G`) and there is a direct arc from ui to uj . The existence of this arc implies that there is some
value 1 ≤ h ≤ n such that u′h,` = ui and uj ∈ Ch,`. Since ui is internal, it cannot be equal be
to uh because this would have implied that uh was rejected immediately by Algorithm 3, and is
thus, not internal. Thus, ui = xh,`. Recall now that Ch,` − uh is equal to the set X` chosen by
EXCHANGE-CANDIDATE when it is executed with the element uh and the set Sh−1. Thus, the fact
that ui = xh,` and the way xh,` is chosen out of X` implies that whenever uj 6= uh we have

f(ui : Sd(i)−1) = f(ui : Sh−1) ≤ f(uj : Sh−1) ≤ f(uj : Sd(j)−1) ,
where the equality holds since u′h,` = ui implies d(i) = h and the last inequality holds since
f(uj : Sr−1) is a non-decreasing function of r when r ≥ j and the membership of uj in Ch,` implies
j ≤ h ≤ d(j).
It remains to consider the case uj = uh. In this case, the fact that uj = uh is accepted into the
solution of Algorithm 3 implies

f(uj : Sd(j)−1) ≥ f(uj : Sj−1) = f(uj | Sj−1 ∩ {u1, u2, . . . , uj−1}) = f(uj | Sj−1)
= f(uh | Sh−1) ≥ (1 + c) · f(Uh : Sh−1) ≥ f(Uh : Sh−1)

≥ f(xh,` : Sh−1) = f(ui : Sh−1) = f(ui : Sd(i)−1) ,

where the first inequality holds since d(j) ≥ j by definition, the last equality holds since u′h,` = ui
implies d(i) = h and the two last inequalities follow from the fact that the elements of Uh ⊆ A do
not belong to Z by Observation 11, which implies (again, by Observation 11) that f(u : Sh−1) ≥ 0
for every u ∈ Uh. This completes the proof of the lemma for the special case that ui ∈ A and there is
a direct arc from ui to uj .

Next, we prove that no arc of G` goes from an internal vertex to an external one. Assume this is not
the case, and that there exists an arc uv of G` from an internal vertex u to an external vertex v. By
definition, there must be a value 1 ≤ h ≤ n such that v belongs to the cycle Ch,` and u′h,` = u. The
fact that u is an internal vertex implies that uh must have been accepted by Algorithm 3 upon arrival
because otherwise we would have gotten u = u′h,` = uh, which implies that u is external, and thus,
leads to a contradiction. Consequently, we get Ch,` ⊆ A because every element of Ch,` must either
be uh or belong to Sh−1. In particular, v ∈ A, which contradicts our assumption that v is an external
vertex.

We are now ready to prove the lemma for the case ui ∈ A (even when there is no direct arc in G`
from ui to uj). Consider some path P from ui to uj , and let us denote the vertices of this path by
ur0 , ur1 , . . . , ur|P | . Since ui is an internal vertex of G` and we already proved that no arc of G` goes
from an internal vertex to an external one, all the vertices of P must be internal. Thus, by applying
the special case of the lemma that we have already proved to every pair of adjacent vertices along
the path P , we get that the expression f(urk : Sd(rk)−1) is a non-decreasing function of k, and in
particular,

f(ui : Sd(i)−1) = f(ur0 : Sd(r0)−1) ≤ f(urk : Sd(rk)−1) = f(uj : Sd(j)−1) .
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It remains to prove the lemma for the case ui 6∈ A. Let uh denote the first vertex on some path from
ui to uj in G`. Since ui 6∈ A, we get that u′i,` = ui, which implies that the arcs of G` that were
created in response to ui go from ui to the vertices of Ci,` − ui. Since Observation 12 guarantees
that ui = u′i,` 6= u′j,` for every value 1 ≤ j ≤ n which is different from i, there cannot be any other
arcs in G` leaving ui, and thus, the existence of an arc from ui to uh implies uh ∈ Ci,` − ui. Recall
now that Ci,` − ui is equal to the set X` in the execution of EXCHANGE-CANDIDATE corresponding
to the element ui and the set Si−1, and thus, by the definition of xi,`, f(xi,` : Si−1) ≤ f(uh : Si−1).
Additionally, as an element of Ci,` − ui, uh must be a member of Si−1 ⊆ A, and thus, by the part
of the lemma we have already proved, we get f(uh : Sd(h)−1) ≤ f(uj : Sd(j)−1) because uj is
reachable from uh. Combining the two inequalities we have proved, we get

f(xi,` : Si−1) ≤ f(uh : Si−1) ≤ f(uh : Sd(h)−1) ≤ f(uj : Sd(j)−1) ,
where the second inequality holds since the fact that uh ∈ Ci,` − ui ⊆ Si−1 implies d(h) ≥ i.

Consider now an arbitrary element ui ∈ T \A. Let us denote by ur` the element ur` = ψT`
(ui) if

it exists, and recall that this element is reachable from ui in G`. Thus, the fact that ui is not in A
implies

f(ui | Si−1) ≤ (1 + c) ·
∑

u∈Ui

f(u : Si−1) = (1 + c) ·
∑

1≤`≤m
(Si−1+ui)∩N` 6∈I`

f(xi,` : Si−1)

≤ (1 + c) ·
∑

1≤`≤m
(Si−1+ui)∩N` 6∈I`

f(ur` : Sd(r`)) = (1 + c) ·
∑

uj∈φT (ui)

f(uj : Sd(j)) ,

where the inequality follows from Lemma 14 and the last equality holds since the values of ` for
which (Si−1 + ui) ∩ N` 6∈ I` are exactly the values for which ui ∈ T`, and thus, they are all also
exactly the values for which the multi-set φT (ui) includes the value of ψT`

(ui). This completes the
proof of the third property of φT that we need to prove.

Finally, consider an arbitrary element ui ∈ A ∩ T . Every element uj ∈ φT (ui) can be reached from
ui in some graph G`, and thus, by Lemma 14,

f(ui | Si−1) = f(ui | Si−1 ∩ {u1, u2, . . . , ui−1}) = f(ui : Si−1)

≤ f(ui : Sd(i)−1) ≤ f(uj : Sd(j)−1) ,
where the first inequality holds since d(i) ≥ i by definition and f(ui : Sr−1) is a non-decreasing
function of r for r ≥ i. Additionally, we observe that ui, as an element of T ∩A, belongs to T` for
every value 1 ≤ ` ≤ m for which ui ∈ N`, and thus, the size of the multi-set φT (ui) is equal to the
number of ground sets out of N1,N2, . . . ,Nm that include ui. Since we assume by Reduction 9 that
every element belongs to exactly p out of these ground sets, we get that the multi-set φT (ui) contains
exactly p elements (including repetitions), which completes the proof of Proposition 10.
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