A Figures

Figures [6] [8and [9]are referenced from the main paper.

(e) Young (f) Male

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an
image along a vector corresponding to the attribute, with the middle image being the original image.

Figure 7: Samples from model trained on 5-bit LSUN bedrooms, at temperature 0.875. Resolutions
64,96 and 128 respectivelyﬂ

Figure 8: Effect of change of temperature. From left to right, samples obtained at temperatures
0,0.25,0.6,0.7,0.8,0.9, 1.0.

11

Figure 9: Samples from shallow model on left vs deep model on right. Shallow model has L = 4
levels, while deep model has L = 6 levels.

12

B Additional quantitative results

See Table[3

Table 3: Quantiative results in bits per dimension on the test set.

Dataset | Glow
CIFAR-10, 32x32, 5-bit ‘ 1.67
ImageNet, 32x32, 5-bit | 1.99
ImageNet, 64 x 64, 5-bit | 1.76

CelebA HQ, 256256, 5-bit | 1.03

C Simple python implementation of the invertible 1 x 1 convolution

Invertible 1x1 conv

def invertible_1x1_conv(z, logdet, forward=True):
Shape
height, width, channels = z.shape[1:]

Sample a random orthogonal matrix to initialise weights
w_init = np.linalg.qr(np.random.randn(channels,channels)) [0]
w = tf.get_variable("W", initializer=w_init)

Compute log determinant
dlogdet = height * width * tf.log(abs(tf.matrix_determinant(w)))

if forward:
Forward computation
_w = tf.reshape(w, [1,1,channels,channels])
z = tf.nn.conv2d(z, _w, [1,1,1,1], ’SAME’)
logdet += dlogdet

return z, logdet
else:

Reverse computation
= tf.matrix_inverse(w)
= tf.reshape(_w, [1,1,channels,channels])
z = tf.nn.conv2d(z, _w, [1,1,1,1], ’SAME’)
logdet -= dlogdet

_w
W

return z, logdet

D Optimization details

We use the Adam optimizer (Kingma and Bal 2015) with a = 0.001 and default 5; and S5. In out
quantitative experiments (Section [5| Table[2) we used the following hyperparameters (Table).

In our qualitative experiments (Section[6), we used the following hyperparameters (Table [3])

E Extra samples from qualitative experiments

For the class conditional CIFAR-10 and 32 x 32 ImageNet samples, we used the same hyperparameters
as the quantitative experiments, but with a class dependent prior at the top-most level. We also added

13

Table 4: Hyperparameters for results in Section Table

Dataset | Minibatch Size | Levels (L) | Depth per level (K) | Coupling
CIFAR-10 | 512 3 | 32 | Affine
ImageNet, 32x32 | 512 | 3 | 48 | Affine
ImageNet, 64x64 | 128 | 4 | 48 | Affine
LSUN, 64 x64 ‘ 128 ‘ 4 ‘ 48 ‘ Affine

Table 5: Hyperparameters for results in Section@

Dataset | Minibatch Size | Levels (L) | Depth per level (K) | Coupling
LSUN, 64 x64, 5-bit | 128 | 4 | 48 | Additive
LSUN, 9696, 5-bit | 320 s | 64 | Additive
LSUN, 128x128, 5-bit | 160 E | 64 | Additive
CelebA HQ, 256x256, 5-bit | 40 |6 | 32 | Additive

a classification loss to predict the class label from the second last layer of the encoder, with a weight
of A = 0.01. The results are in Figure

F Extra samples from the quantitative experiments

For direct comparison with other work, datasets are preprocessed exactly as in Dinh et al.[(2016).
Results are in Figure [TT]and Figure[12]

14

. H "
(a) Class conditional CIFAR-10 samples.

g - Vil
s .

Figure 10: Class conditional samples on 5-bit CIFAR-10 and 32 x 32 ImageNet respectively. Tem-
perature 0.75

15

Figure 11: Samples from 8-bit, 64 x 64 LSUN bedrooms, church and towers respectively. Temperature
1.0.

16

Figure 12: Samples from an unconditional model with affine coupling layers trained on the CIFAR-10
dataset with temperature 1.0.

17

	Figures
	Additional quantitative results
	Simple python implementation of the invertible 1 1 convolution
	Optimization details
	Extra samples from qualitative experiments
	Extra samples from the quantitative experiments

