
A Proof of Theorem 3.2

Given an m-layer neural network function f : Rn0 → Rnm with pre-activation bounds l(k) and u(k)

for x ∈ Bp(x0, ε) and ∀k ∈ [m− 1], let the pre-activation inputs for the i-th neuron at layer m− 1

be y
(m−1)
i := W

(m−1)
i,: Φm−2(x) + b

(m−1)
i . The j-th output of the neural network is the following:

fj(x) =

nm−1∑
i=1

W
(m)
j,i [Φm−1(x)]i + b

(m)
j , (5)

=

nm−1∑
i=1

W
(m)
j,i σ(y

(m−1)
i ) + b

(m)
j ,

=
∑

W
(m)
j,i ≥0

W
(m)
j,i σ(y

(m−1)
i )

︸ ︷︷ ︸
F1

+
∑

W
(m)
j,i <0

W
(m)
j,i σ(y

(m−1)
i )

︸ ︷︷ ︸
F2

+b
(m)
j . (6)

Assume the activation function σ(y) is bounded by two linear functions h(m−1)U,i , h
(m−1)
L,i in Defini-

tion 3.1, we have
h
(m−1)
L,i (y

(m−1)
i ) ≤ σ(y

(m−1)
i ) ≤ h(m−1)U,i (y

(m−1)
i ).

Thus, if the associated weight W
(m)
j,i to the i-th neuron is non-negative (the terms in F1 bracket), we

have
W

(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ) ≤W

(m)
j,i σ(y

(m−1)
i ) ≤W

(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ); (7)

otherwise (the terms in F2 bracket), we have

W
(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ) ≤W

(m)
j,i σ(y

(m−1)
i ) ≤W

(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ). (8)

Upper bound. Let fU,m−1j (x) be an upper bound of fj(x). To compute fU,m−1j (x), (6), (7) and

(8) are the key equations. Precisely, for the W
(m)
j,i ≥ 0 terms in (6), the upper bound is the right-

hand-side (RHS) in (7); and for the W
(m)
j,i < 0 terms in (6), the upper bound is the RHS in (8). Thus,

we obtain:

fU,m−1j (x)

=
∑

W
(m)
j,i ≥0

W
(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ) +

∑
W

(m)
j,i <0

W
(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ) + b

(m)
j , (9)

=
∑

W
(m)
j,i ≥0

W
(m)
j,i α

(m−1)
U,i (y

(m−1)
i + β

(m−1)
U,i ) +

∑
W

(m)
j,i <0

W
(m)
j,i α

(m−1)
L,i (y

(m−1)
i + β

(m−1)
L,i ) + b

(m)
j ,

(10)

=

nm−1∑
i=1

W
(m)
j,i λ

(m−1)
j,i (y

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j , (11)

=

nm−1∑
i=1

Λ
(m−1)
j,i (

nm−2∑
r=1

W
(m−1)
i,r [Φm−2(x)]r + b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j , (12)

=

nm−1∑
i=1

Λ
(m−1)
j,i (

nm−2∑
r=1

W
(m−1)
i,r [Φm−2(x)]r) +

nm−1∑
i=1

Λ
(m−1)
j,i (b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j , (13)

=

nm−2∑
r=1

(
nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r

)
[Φm−2(x)]r +

(
nm−1∑
i=1

Λ
(m−1)
j,i (b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j

)
,

(14)

=

nm−2∑
r=1

W̃
(m−1)
j,r [Φm−2(x)]r + b̃

(m−1)
j . (15)
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From (9) to (10), we replace h(m−1)U,i (y
(m−1)
i ) and h(m−1)L,i (y

(m−1)
i ) by their definitions; from (10) to

(11), we use variables λ(m−1)j,i and ∆
(m−1)
j,i to denote the slopes in front of y

(m−1)
i and the intercepts

in the parentheses:

λ
(m−1)
j,i =

{
α
(m−1)
U,i if W

(m)
j,i ≥ 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i ≥ 0);

α
(m−1)
L,i if W

(m)
j,i < 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i < 0);

(16)

∆
(m−1)
i,j =

{
β
(m−1)
U,i if W

(m)
j,i ≥ 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i ≥ 0);

β
(m−1)
L,i if W

(m)
j,i < 0 (⇐⇒ Λ

(m)
j,: W

(m)
:,i < 0).

(17)

From (11) to (12), we replace y
(m−1)
i with its definition and let Λ

(m−1)
j,i := W

(m)
j,i λ

(m−1)
j,i . We

further let Λ
(m)
j,: = e>j (the standard unit vector with the only non-zero jth element equal to 1), and

thus we can rewrite the conditions of W
(m)
j,i in (16) and (17) as Λ

(m)
j,: W

(m)
:,i . From (12) to (13), we

collect the constant terms that are not related to x. From (13) to (14), we swap the summation order
of i and r, and the coefficients in front of [Φm−2(x)]r can be combined into a new equivalent weight
W̃

(m−1)
j,r and the constant term can combined into a new equivalent bias b̃

(m−1)
j in (15):

W̃
(m−1)
j,r =

nm−1∑
i=1

Λ
(m−1)
j,i W

(m−1)
i,r = Λ

(m−1)
j,: W(m−1)

:,r ,

b̃
(m−1)
j =

nm−1∑
i=1

Λ
(m−1)
j,i (b

(m−1)
i + ∆

(m−1)
i,j ) + b

(m)
j = Λ

(m−1)
j,: (b(m−1) + ∆

(m−1)
:,j ) + b

(m)
j .

Notice that after defining the new equivalent weight W̃
(m−1)
j,r and equivalent bias b̃

(m−1)
j , fU,m−1j (x)

in (15) and fj(x) in (5) are in the same form. Thus, we can repeat the above procedure again to
obtain an upper bound of fU,m−1j (x), i.e. fU,m−2j (x):

Λ
(m−2)
j,i = W̃

(m−1)
j,i λ

(m−2)
j,i

= Λ
(m−1)
j,: W

(m−1)
:,i λ

(m−2)
j,i

W̃
(m−2)
j,r = Λ

(m−2)
j,: W(m−2)

:,r

b̃
(m−2)
j = Λ

(m−2)
j,: (b(m−2) + ∆

(m−2)
:,j ) + b̃

(m−1)
j

λ
(m−2)
j,i =

{
α
(m−2)
U,i if W̃

(m−1)
j,i ≥ 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i ≥ 0);

α
(m−2)
L,i if W̃

(m−1)
j,i < 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i < 0);

∆
(m−2)
i,j =

{
β
(m−2)
U,i if W̃

(m−1)
j,i ≥ 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i ≥ 0);

β
(m−2)
L,i if W̃

(m−1)
j,i < 0 (⇐⇒ Λ

(m−1)
j,: W

(m−1)
:,i < 0).

and repeat again iteratively until obtain the final upper bound fU,1j (x), where fj(x) ≤ fU,m−1j (x) ≤
fU,m−2j (x) ≤ . . . ≤ fU,1j (x). We let fj(x) denote the final upper bound fU,1j (x), and we have

fUj (x) = Λ
(0)
j,: x +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j )

and (� is the Hadamard product)

Λ
(k−1)
j,: =

{
e>j if k = m+ 1;

(Λ
(k)
j,: W(k))� λ(k−1)j,: if k ∈ [m].

and ∀i ∈ [nk],

λ
(k)
j,i =


α
(k)
U,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
L,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.
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∆
(k)
i,j =


β
(k)
U,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
L,i if k ∈ [m− 1], Λ

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.

Lower bound. The above derivations of upper bound can be applied similarly to deriving lower
bounds of fj(x), and the only difference is now we need to use the LHS of (7) and (8) (rather
than RHS when deriving upper bound) to bound the two terms in (6). Thus, following the same
procedure in deriving the upper bounds, we can iteratively unwrap the activation functions and obtain
a final lower bound fL,1j (x), where fj(x) ≥ fL,m−1j (x) ≥ fL,m−2j (x) ≥ . . . ≥ fL,1j (x). Let
fLj (x) = fL,1j (x), we have:

fLj (x) = Ω
(0)
j,: x +

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j )

Ω
(k−1)
j,: =

{
e>j if k = m+ 1;

(Ω
(k)
j,: W(k))� ω(k−1)

j,: if k ∈ [m].

and ∀i ∈ [nk],

ω
(k)
j,i =


α
(k)
L,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
U,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.

Θ
(k)
i,j =


β
(k)
L,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
U,i if k ∈ [m− 1], Ω

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.

Indeed, λ(k)j,i and ω(k)
j,i only differs in the conditions of selecting α(k)

U,i or α(k)
L,i; similarly for ∆

(k)
i,j and

Θ
(k)
i,j .

B Proof of Corollary 3.3

Definition B.1 (Dual norm). Let ‖ · ‖ be a norm on Rn. The associated dual norm, denoted as ‖ · ‖∗,
is defined as

‖a‖∗ = {sup
y

a>y | ‖y‖ ≤ 1}.

Global upper bound. Our goal is to find a global upper and lower bound for them-th layer network
output fj(x),∀x ∈ Bp(x0, ε). By Theorem 3.2, for x ∈ Bp(x0, ε), we have fLj (x) ≤ fj(x) ≤
fUj (x) and fUj (x) = Λ

(0)
j,: x +

∑m
k=1 Λ

(k)
j,: (b(k) + ∆

(k)
:,j ). Thus define γUj := maxx∈Bp(x0,ε) f

U
j (x),

and we have
fj(x) ≤ fUj (x) ≤ max

x∈Bp(x0,ε)
fUj (x) = γUj ,

since ∀x ∈ Bp(x0, ε). In particular,

max
x∈Bp(x0,ε)

fUj (x) = max
x∈Bp(x0,ε)

[
Λ

(0)
j,: x +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j )

]

=

[
max

x∈Bp(x0,ε)
Λ

(0)
j,: x

]
+

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ) (18)

= ε

[
max

y∈Bp(0,1)
Λ

(0)
j,: y

]
+ Λ

(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ) (19)

= ε‖Λ(0)
j,: ‖q + Λ

(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ). (20)
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From (18) to (19), let y := x−x0

ε , and thus y ∈ Bp(0, 1). From (19) to (20), apply Definition B.1
and use the fact that `q norm is dual of `p norm for p, q ∈ [1,∞].

Global lower bound. Similarly, let γLj := minx∈Bp(x0,ε) f
L
j (x), we have

fj(x) ≥ fLj (x) ≥ min
x∈Bp(x0,ε)

fLj (x) = γLj .

Since fLj (x) = Ω
(0)
j,: x +

∑m
k=1 Ω

(k)
j,: (b(k) + Θ

(k)
:,j ), we can derive γLj (similar to the derivation of

γUj ) below:

min
x∈Bp(x0,ε)

fLj (x) = min
x∈Bp(x0,ε)

[
Ω

(0)
j,: x +

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j )

]

=

[
min

x∈Bp(x0,ε)
Ω

(0)
j,: x

]
+

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j )

= −ε
[

max
y∈Bp(0,1)

−Ω
(0)
j,: y

]
+ Ω

(0)
j,: x0 +

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j )

= −ε‖Ω(0)
j,: ‖q + Ω

(0)
j,: x0 +

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j ).

Thus, we have

(global upper bound) γUj = ε‖Λ(0)
j,: ‖q + Λ

(0)
j,: x0 +

m∑
k=1

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ),

(global lower bound) γLj = −ε‖Ω(0)
j,: ‖q + Ω

(0)
j,: x0 +

m∑
k=1

Ω
(k)
j,: (b(k) + Θ

(k)
:,j ),

C Illustration of linear upper and lower bounds on sigmoid activation
function.

(a) r ∈ S+
k (b) r ∈ S−k (c) r ∈ S±k

Figure 3: The linear upper and lower bounds for σ(y) = sigmoid

D fU
j (x) and fL

j (x) by Quadratic approximation

Upper bound. Let fUj (x) be an upper bound of fj(x). To compute fUj (x) with quadratic approxi-

mations, we can still apply (7) and (8) except that h(k)U,r(y) and h(k)L,r(y) are replaced by the following
quadratic functions:

h
(k)
U,r(y) = η

(k)
U,ry

2 + α
(k)
U,r(y + β

(k)
U,r), h

(k)
L,r(y) = η

(k)
L,ry

2 + α
(k)
L,r(y + β

(k)
L,r).
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(a) r ∈ S+
k (b) r ∈ S−k (c) r ∈ S±k

Figure 4: The linear upper and lower bounds for σ(y) = ReLU. For the cases (a) and (b), the
linear upper bound and lower bound are exactly the function σ(y) in the region (grey-shaded). For
(c), we plot three out of many choices of lower bound, and they are h(k)L,r(y) = 0 (dashed-dotted),

h
(k)
L,r(y) = y (dashed), and h(k)L,r(y) =

u(k)
r

u
(k)
r −l(k)

r

y (dotted).

Therefore,

fUj (x) =
∑

W
(m)
j,i ≥0

W
(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ) +

∑
W

(m)
j,i <0

W
(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ) + b

(m)
j , (21)

=

nm−1∑
i=1

W
(m)
j,i

(
τ
(m−1)
j,i y

(m−1)2
i + λ

(m−1)
j,i (y

(m−1)
i + ∆

(m−1)
i,j )

)
+ b

(m)
j , (22)

= y(m−1)>diag(q
(m−1)
U,j )y(m−1) + Λ

(m−1)
j,: y(m−1) + W

(m)
j,: ∆

(m−1)
:,j , (23)

= Φm−2(x)>Q
(m−1)
U Φm−2(x) + 2p

(m−1)
U Φm−2(x) + s

(m−1)
U . (24)

From (21) to (22), we replace h(m−1)U,i (y
(m−1)
i ) and h(m−1)L,i (y

(m−1)
i ) by their definitions and let

(τ
(m−1)
j,i , λ

(m−1)
j,i ,∆

(m−1)
i,j ) =

{
(η

(m−1)
U,i , α

(m−1)
U,i , β

(m−1)
U,i ) if W

(m)
j,i ≥ 0;

(η
(m−1)
L,i , α

(m−1)
L,i , β

(m−1)
L,i ) if W

(m)
j,i < 0.

From (22) to (23), we let q
(m−1)
U,j = W

(m)
j,: � τ

(m−1)
j,i , and write in the matrix form. From (23)

to (24), we substitute y(m−1) by its definition: y(m−1) = W(m−1)Φ(m−2)(x) + b(m−1) and then
collect the quadratic terms, linear terms and constant terms of Φ(m−2)(x), where

Q
(m−1)
U = W(m−1)>diag(q

(m−1)
U,j )W(m−1),

p
(m−1)
U = b(m−1)> � q

(m−1)
U,j + Λ

(m−1)
j,: ,

s
(m−1)
U = p

(m−1)
U b(m−1) + W

(m)
j,: ∆

(m−1)
:,j .

Lower bound. Similar to the above derivation, we can simply swap h(k)U,r and h(k)L,r and obtain lower
bound fLj (x):

fLj (x) =
∑

W
(m)
j,i <0

W
(m)
j,i · h

(m−1)
U,i (y

(m−1)
i ) +

∑
W

(m)
j,i ≥0

W
(m)
j,i · h

(m−1)
L,i (y

(m−1)
i ) + b

(m)
j ,

= Φm−2(x)>Q
(m−1)
L Φm−2(x) + 2p

(m−1)
L Φm−2(x) + s

(m−1)
L ,

where
Q

(m−1)
L = W(m−1)>diag(q

(m−1)
L,j )W(m−1), q

(m−1)
L,j = W

(m)
j,: � ν

(m−1)
j,i ; (25)

p
(m−1)
U = b(m−1)> � q

(m−1)
U,j + Λ

(m−1)
j,: , p

(m−1)
L = b(m−1)> � q

(m−1)
L,j + Ω

(m−1)
j,: ; (26)

s
(m−1)
U = p

(m−1)
U b(m−1) + W

(m)
j,: ∆

(m−1)
:,j , s

(m−1)
L = p

(m−1)
L b(m−1) + W

(m)
j,: Θ

(m−1)
:,j , (27)

and

(ν
(m−1)
j,i , ω

(m−1)
j,i ,Θ

(m−1)
i,j ) =

{
(η

(m−1)
L,i , α

(m−1)
L,i , β

(m−1)
L,i ) if W

(m)
j,i ≥ 0;

(η
(m−1)
U,i , α

(m−1)
U,i , β

(m−1)
U,i ) if W

(m)
j,i < 0.

(28)
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E Additional Experimental Results

E.1 Results on CROWN-Ada

Table 6: Comparison of our proposed certified lower bounds for ReLU with adaptive lower bounds
(CROWN-Ada), Fast-Lin and Fast-Lip and Op-nrom. LP-full and Reluplex cannot finish within a
reasonable amount of time for all the networks reported here. We also include Op-norm, where we
directly compute the operator norm (for example, for p = 2 it is the spectral norm) for each layer
and use their products as a global Lipschitz constant and then compute the robustness lower bound.
CLEVER is an estimated robustness lower bound, and attacking algorithms (including CW [6] and
EAD [32]) provide upper bounds of the minimum adversarial distortion. For each norm, we consider
the robustness against three targeted attack classes: the runner-up class (with the second largest
probability), a random class and the least likely class. It is clear that CROWN-Ada notably improves
the lower bound comparing to Fast-Lin, especially for larger and deeper networks, the improvements
can be up to 28%.

Networks Lower bounds and upper bounds (Avg.) Time per Image (Avg.)

Config p Target
Lower Bounds (certified) improvements Uncertified Lower Bounds

[20] [3] Our algorithm over [27] Attacks [20] Our bound
Fast-Lin Fast-Lip Op norm CROWN-Ada Fast-Lin CLEVER CW/EAD Fast-Lin Fast-Lip CROWN-Ada

MNIST
2× [1024]

∞
runner-up 0.02256 0.01802 0.00159 0.02467 +9.4% 0.0447 0.0856 163 ms 179 ms 128 ms

rand 0.03083 0.02512 0.00263 0.03353 +8.8% 0.0708 0.1291 176 ms 213 ms 166 ms
least 0.03854 0.03128 0.00369 0.04221 +9.5% 0.0925 0.1731 176 ms 251 ms 143 ms

2
runner-up 0.46034 0.42027 0.24327 0.50110 +8.9% 0.8104 1.1874 154 ms 184 ms 110 ms

rand 0.63299 0.59033 0.40201 0.68506 +8.2% 1.2841 1.8779 141 ms 212 ms 133 ms
least 0.79263 0.73133 0.56509 0.86377 +9.0% 1.6716 2.4556 152 ms 291 ms 116 ms

1
runner-up 2.78786 3.46500 0.20601 3.01633 +8.2% 4.5970 9.5295 159 ms 989 ms 136 ms

rand 3.88241 5.10000 0.35957 4.17760 +7.6% 7.4186 17.259 168 ms 1.15 s 157 ms
least 4.90809 6.36600 0.48774 5.33261 +8.6% 9.9847 23.933 179 ms 1.37 s 144 ms

MNIST
3× [1024]

∞
runner-up 0.01830 0.01021 0.00004 0.02114 +15.5% 0.0509 0.1037 805 ms 1.28 s 1.33 s

rand 0.02216 0.01236 0.00007 0.02576 +16.2% 0.0717 0.1484 782 ms 859 ms 1.37 s
least 0.02432 0.01384 0.00009 0.02835 +16.6% 0.0825 0.1777 792 ms 684 ms 1.37 s

2
runner-up 0.35867 0.22120 0.06626 0.41295 +15.1% 0.8402 1.3513 732 ms 1.06 s 1.26 s

rand 0.43892 0.26980 0.10233 0.50841 +15.8% 1.2441 2.0387 711 ms 696 ms 1.26 s
least 0.48361 0.30147 0.13256 0.56167 +16.1% 1.4401 2.4916 723 ms 655 ms 1.25 s

1
runner-up 2.08887 1.80150 0.00734 2.39443 +14.6% 4.8370 10.159 685 ms 2.36 s 1.15 s

rand 2.59898 2.25950 0.01133 3.00231 +15.5% 7.2177 17.796 743 ms 2.69 s 1.25 s
least 2.87560 2.50000 0.01499 3.33231 +15.9% 8.3523 22.395 729 ms 3.08 s 1.31 s

MNIST
4× [1024]

∞
runner-up 0.00715 0.00219 0.00001 0.00861 +20.4% 0.0485 0.08635 1.54 s 3.42 s 3.23 s

rand 0.00823 0.00264 0.00001 0.00997 +21.1% 0.0793 0.1303 1.53 s 2.17 s 3.57 s
least 0.00899 0.00304 0.00001 0.01096 +21.9% 0.1028 0.1680 1.74 s 2.00 s 3.87 s

2
runner-up 0.16338 0.05244 0.11015 0.19594 +19.9% 0.8689 1.2422 1.79 s 2.58 s 3.52 s

rand 0.18891 0.06487 0.17734 0.22811 +20.8% 1.4231 1.8921 1.78 s 1.96 s 3.79 s
least 0.20671 0.07440 0.23710 0.25119 +21.5% 1.8864 2.4451 1.98 s 2.01 s 4.01 s

1
runner-up 1.33794 0.58480 0.00114 1.58151 +18.2% 5.2685 10.079 1.87 s 1.93 s 3.34 s

rand 1.57649 0.72800 0.00183 1.88217 +19.4% 8.9764 17.200 1.80 s 2.04 s 3.54 s
least 1.73874 0.82800 0.00244 2.09157 +20.3% 11.867 23.910 1.94 s 2.40 s 3.72 s

CIFAR
5× [2048]

∞
runner-up 0.00137 0.00020 0.00000 0.00167 +21.9% 0.0062 0.00950 18.2 s 38.2 s 33.1 s

rand 0.00170 0.00030 0.00000 0.00212 +24.7% 0.0147 0.02351 19.6 s 48.2 s 36.7 s
least 0.00188 0.00036 0.00000 0.00236 +25.5% 0.0208 0.03416 20.4 s 50.5 s 38.6 s

2
runner-up 0.06122 0.00948 0.00156 0.07466 +22.0% 0.2712 0.3778 24.2 s 39.4 s 41.0 s

rand 0.07654 0.01417 0.00333 0.09527 +24.5% 0.6399 0.9497 26.0 s 31.2 s 42.5 s
least 0.08456 0.01778 0.00489 0.10588 +25.2% 0.9169 1.4379 25.0 s 33.2 s 44.4 s

1
runner-up 0.93836 0.22632 0.00000 1.13799 +21.3% 4.0755 7.6529 24.7 s 45.1 s 40.5 s

rand 1.18928 0.31984 0.00000 1.47393 +23.9% 9.7145 21.643 25.7 s 36.2 s 44.0 s
least 1.31904 0.38887 0.00001 1.64452 +24.7% 12.793 34.497 26.0 s 31.7 s 44.9 s

CIFAR
6× [2048]

∞
runner-up 0.00075 0.00005 0.00000 0.00094 +25.3% 0.0054 0.00770 27.6 s 64.7 s 47.3 s

rand 0.00090 0.00007 0.00000 0.00114 +26.7% 0.0131 0.01866 28.1 s 72.3 s 49.3 s
least 0.00095 0.00008 0.00000 0.00122 +28.4% 0.0199 0.02868 28.1 s 76.3 s 49.4 s

2
runner-up 0.03462 0.00228 0.00476 0.04314 +24.6% 0.2394 0.2979 37.0 s 60.7 s 65.8 s

rand 0.04129 0.00331 0.01079 0.05245 +27.0% 0.5860 0.7635 40.0 s 56.8 s 71.5 s
least 0.04387 0.00385 0.01574 0.05615 +28.0% 0.8756 1.2111 40.0 s 56.3 s 72.5 s

1
runner-up 0.59636 0.05647 0.00000 0.73727 +23.6% 3.3569 6.0112 37.2 s 65.6 s 66.8 s

rand 0.72178 0.08212 0.00000 0.91201 +26.4% 8.2507 17.160 39.5 s 53.5 s 71.6 s
least 0.77179 0.09397 0.00000 0.98331 +27.4% 12.603 28.958 40.7 s 42.1 s 72.5 s

CIFAR
7× [1024]

∞
runner-up 0.00119 0.00006 0.00000 0.00148 +24.4% 0.0062 0.0102 8.98 s 20.1 s 16.2 s

rand 0.00134 0.00008 0.00000 0.00169 +26.1% 0.0112 0.0218 8.98 s 20.3 s 16.7 s
least 0.00141 0.00010 0.00000 0.00179 +27.0% 0.0148 0.0333 8.81 s 22.1 s 17.4 s

2
runner-up 0.05279 0.00308 0.00020 0.06569 +24.4% 0.2661 0.3943 12.7 s 20.9 s 20.7 s

rand 0.05937 0.00407 0.00029 0.07496 +26.3% 0.5145 0.9730 12.6 s 18.7 s 21.8 s
least 0.06249 0.00474 0.00038 0.07943 +27.1% 0.6253 1.3709 12.9 s 20.7 s 22.2 s

1
runner-up 0.76648 0.07028 0.00000 0.95204 +24.2% 4.815 7.9987 12.8 s 21.0 s 21.9 s

rand 0.86468 0.09239 0.00000 1.09067 +26.1% 8.630 22.180 13.2 s 19.8 s 22.4 s
least 0.91127 0.10639 0.00000 1.15687 +27.0% 11.44 31.529 13.3 s 17.6 s 22.9 s
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E.2 Results on CROWN-general

Table 7: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-
general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activa-
tions achieve much worse accuracy than other networks and are thus excluded. For each norm, we
consider the robustness against three targeted attack classes: the runner-up class (with the second
largest probability), a random class and the least likely class.

Network Certified Bounds by CROWN-general Average Computation Time (sec)
`p norm target tanh sigmoid arctan tanh sigmoid arctan

MNIST
3× [1024]

`∞
runner-up 0.0164 0.0225 0.0169 0.3374 0.3213 0.3148
random 0.0230 0.0325 0.0240 0.3185 0.3388 0.3128

least 0.0306 0.0424 0.0314 0.3129 0.3586 0.3156

`2
runner-up 0.3546 0.4515 0.3616 0.3139 0.3110 0.3005
random 0.5023 0.6552 0.5178 0.3044 0.3183 0.2931

least 0.6696 0.8576 0.6769 0.3869 0.3495 0.2676

`1
runner-up 2.4600 2.7953 2.4299 0.2940 0.3339 0.3053
random 3.5550 4.0854 3.5995 0.3277 0.3306 0.3109

least 4.8215 5.4528 4.7548 0.3201 0.3915 0.3254

MNIST
4× [1024]

`∞
runner-up 0.0091 0.0162 0.0107 1.6794 1.7902 1.7099
random 0.0118 0.0212 0.0136 1.7783 1.7597 1.7667

least 0.0147 0.0243 0.0165 1.8908 1.8483 1.7930

`2
runner-up 0.2086 0.3389 0.2348 1.6416 1.7606 1.8267
random 0.2729 0.4447 0.3034 1.7589 1.7518 1.6945

least 0.3399 0.5064 0.3690 1.8206 1.7929 1.8264

`1
runner-up 1.8296 2.2397 1.7481 1.5506 1.6052 1.6704
random 2.4841 2.9424 2.3325 1.6149 1.7015 1.6847

least 3.1261 3.3486 2.8881 1.7762 1.7902 1.8345

MNIST
5× [1024]

`∞
runner-up 0.0060 0.0150 0.0062 3.9916 4.4614 3.7635
random 0.0073 0.0202 0.0077 3.5068 4.4069 3.7387

least 0.0084 0.0230 0.0091 3.9076 4.6283 3.9730

`2
runner-up 0.1369 0.3153 0.1426 4.1634 4.3311 4.1039
random 0.1660 0.4254 0.1774 4.1468 4.1797 4.0898

least 0.1909 0.4849 0.2096 4.5045 4.4773 4.5497

`1
runner-up 1.1242 2.0616 1.2388 4.4911 3.9944 4.4436
random 1.3952 2.8082 1.5842 4.4543 4.0839 4.2609

least 1.6231 3.2201 1.9026 4.4674 4.5508 4.5154

CIFAR-10
5× [2048]

`∞
runner-up 0.0005 - 0.0006 37.3918 - 37.1383
random 0.0008 - 0.0009 38.0841 - 37.9199

least 0.0010 - 0.0011 39.1638 - 39.4041

`2
runner-up 0.0219 - 0.0256 47.4896 - 48.3390
random 0.0368 - 0.0406 54.0104 - 52.7471

least 0.0460 - 0.0497 55.8924 - 56.3877

`1
runner-up 0.3744 - 0.4491 46.4041 - 47.1640
random 0.6384 - 0.7264 54.2138 - 51.6295

least 0.8051 - 0.8955 56.2512 - 55.6069

CIFAR-10
6× [2048]

`∞
runner-up 0.0004 - 0.0003 59.5020 - 58.2473
random 0.0006 - 0.0006 59.7220 - 58.0388

least 0.0006 - 0.0007 60.8031 - 60.9790

`2
runner-up 0.0177 - 0.0163 78.8801 - 72.1884
random 0.0254 - 0.0251 84.2228 - 83.1202

least 0.0294 - 0.0306 86.2997 - 86.9320

`1
runner-up 0.3043 - 0.2925 78.7486 - 70.2496
random 0.4406 - 0.4620 89.7717 - 83.7972

least 0.5129 - 0.5665 87.2094 - 86.6502

CIFAR-10
7× [1024]

`∞
runner-up 0.0006 - 0.0005 20.8612 - 20.5169
random 0.0008 - 0.0007 21.4550 - 21.2134

least 0.0008 - 0.0008 21.3406 - 21.1804

`2
runner-up 0.0260 - 0.0225 27.9442 - 27.0240
random 0.0344 - 0.0317 30.3782 - 29.8086

least 0.0376 - 0.0371 30.7492 - 30.7321

`1
runner-up 0.3826 - 0.3648 28.1898 - 27.1238
random 0.5087 - 0.5244 29.6373 - 30.5106

least 0.5595 - 0.6171 31.3457 - 30.6481
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