Supplementary Figures for PG-T'S: Improved
Thompson Sampling for Logistic Contextual
Bandits

The effect of the burn-in step M in Gaussian Simulations

PG-TS relies on approximating an integral using a double sampling of an ap-
propriate Markov Chain. Hence, the burn-in Gibbs step M affects the con-
vergence behavior of PG-TS with respect to the cumulative regret (Fig. SI).
Due to diminishing returns illustrated in our empirical studies, we set M to
100 throughout the paper. In practice, setting M to a large value allows for
appropriate mixing and has substantial impact on performance, as seen in the
news recommendation application.
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Figure S1: Comparison of the average cumulative regret of the PG-TS algo-
rithm with varying number of burn-in iterations on the simulated data set with
Gaussian 8* over 100 runs with 1,000 trials. The lower the regret, the better
the performance.



Variance of the Cumulative Regret Performance

The methods considered show very diverse behavior across experiments even
in the simple Gaussian simulation case. In particular, while both PG-TS and
PG-TS-stream converge across experiments, Laplace-TS shows high variability
and significantly higher cumulative regret across the same trials.
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Figure S2: Trace plots of cumulative regret for PG-TS and PG-TS-stream (Top),
and Laplace-TS (Bottom) on the simulated data set with Gaussian 6* over 100
runs with 1,000 trials.

Furthermore, Laplace-TS is sensitive to multimodality. We found that the
misspecified model does not prevent the PG-TS algorithms from consistently
finding the correct arm, while Laplace-TS exhibits poor average behavior (Fig. S3).
For our similations, we do not show comparison to GLM-UCB as previous stud-
ies address the superiority of Laplace-TS [Chapelle and Li, 2011, Russo and
Van Roy, 2014].
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Figure S3: Comparison of the average cumulative regret of the PG-TS, PG-TS-
stream, and the Laplace-TS algorithms on simulated data with mixed Gaussian
6* over 100 runs with 5,000 trials (standard deviation shaded). Laplace-TS
performs better during earlier trials, yet struggles to settle on an optimal arm.

Langevin Alternatives

We compared our method to Langevin-TS [Russo et al., 2017], and we found
that PG-TS significantly outperforms Langevin-T'S in our simulations (Fig. S5).
We note that the Langevin implementation is very sensitive to learning rate,
step size and numerous other initialization parameters, unlike PG-TS whose
performance is consistent across our simulations.
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Figure S4: Comparison of the average cumulative regret of the PG-TS-iter, PG-
TS-stream, and Laplace-TS algorithms and Langevin on the simulated data set
with Gaussian 6* over 100 runs with 1,000 trials (standard deviation shown as
shaded region)

We further note that PG-TS outperforms a variance reduced stochastic gra-
dient Monte Carlo approach extension to Langevin-TS [Chatterji et al., 2018].
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Figure S5: Comparison of the average cumulative regret of the PG-TS-iter, PG-
TS-stream, and Laplace-TS algorithms and Langevin on the simulated data set
with Gaussian 6* over 100 runs with 1,000 trials (standard deviation shown as
shaded region)

Exploration and Exploitation comparison across Gaussian
simulations
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Figure S6: Comparison of the arm choices for the GLM-UCB (Left) and PG-TS-
stream (Right) algorithms on the simulated data set with Gaussian 6* across
1,000 trials. The arms were sorted by expected reward in decreasing order, with
arm 0 giving the highest reward, and arm 99 the lowest. The selected arms are
colored according to the distance of their expected reward from the optimal
reward (regret). GLM-UCB takes many trials to settle on the optimal arm,
while both PG-TS algorithms explore successfully and settle on the optimal
one. Recall that Laplace-TS gets stuck on a sub-optimal arm.



Pseudocode for the algorithms mentioned

Algorithm 1 Generic Contextual Bandit Algorithm

Initialize Dy = 0
fort=1,2,... do

Observe K; arms A;

Receive context x¢ , € R

Select a; given x¢ q,Di—1

Observe reward 74 4,

Update Dy = D1 U {X¢t.q,, 01,7t}
end for

Algorithm 2 Laplace-TS [Chapelle and Li, 2011]

Input: Regularization parameter A = 1
m; =0,q; =\, fori=1,2,...d
fort=1to T do

Receive context x; 4

Q = diag (ql_l,qz_l7 . ..qd_l)

Draw 0, ~ MV N (m, Q)

Select a; = arg max, it (xzaet)

Receive reward

yr =21y — 1 J

. 2
w = arg min,, % Y it @i (w; —my)” — log (,u (thZatW))
m=w

p=p (X0, W)
a=q+p(l—-p)x7,,
end for

Algorithm 3 GLM-UCB [Filippi et al., 2010]

Input: Admissible parameter set ©, slowly increasing function p(t)
fort=1,2,...do

Receive context x; 4

2
0, = argming g HZ::(TI — u(xZaiO))xiyai

\%

Select a; = argmax, {z; ,0; + p(t) |
Receive reward r; € {0,1}

t T
Vigi=2 Xi,a; X q;
end for

iy,
rrallyi}
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