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Abstract

This paper seeks to answer the question: as the (near-) orthogonality of weights is
found to be a favorable property for training deep convolutional neural networks,
how can we enforce it in more effective and easy-to-use ways? We develop novel
orthogonality regularizations on training deep CNNs, utilizing various advanced
analytical tools such as mutual coherence and restricted isometry property. These
plug-and-play regularizations can be conveniently incorporated into training almost
any CNN without extra hassle. We then benchmark their effects on state-of-the-art
models: ResNet, WideResNet, and ResNeXt, on several most popular computer
vision datasets: CIFAR-10, CIFAR-100, SVHN and ImageNet. We observe consis-
tent performance gains after applying those proposed regularizations, in terms of
both the final accuracies achieved, and faster and more stable convergences. We
have made our codes and pre-trained models publicly available.1.

1 Introduction

Despite the tremendous success of deep convolutional neural networks (CNNs) [1], their training
remains to be notoriously difficult both theoretically and practically, especially for state-of-the-art
ultra-deep CNNs. Potential reasons accounting for such difficulty lie in multiple folds, ranging from
vanishing/exploding gradients [2], to feature statistic shifts [3], to the proliferation of saddle points
[4], and so on. To address these issues, various solutions have been proposed to alleviate those issues,
examples of which include parameter initialization [5], residual connections [6], normalization of
internal activations [3], and second-order optimization algorithms [4].

This paper focuses on one type of structural regularizations: orthogonality, to be imposed on linear
transformations between hidden layers of CNNs. The orthogonality implies energy preservation,
which is extensively explored for filter banks in signal processing and guarantees that energy of
activations will not be amplified [7]. Therefore, it can stabilize the distribution of activations
over layers within CNNs [8, 9] and make optimization more efficient. [5] advocates orthogonal
initialization of weight matrices, and theoretically analyzes its effects on learning efficiency using
deep linear networks. Practical results on image classification using orthogonal initialization are
also presented in [10]. More recently, a few works [11–15] look at (various forms of) enforcing
orthogonality regularizations or constraints throughout training, as part of their specialized models for
applications such as classification [14] or person re-identification [16]. They observed encouraging
result improvements. However, a dedicated and thorough examination on the effects of orthogonality
for training state-of-the-art general CNNs has been absent so far.

1https://github.com/nbansal90/Can-we-Gain-More-from-Orthogonality
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Even more importantly, how to evaluate and enforce orthogonality for non-square weight matrices
does not have a sole optimal answer. As we will explain later, existing works employ the most
obvious but not necessarily appropriate option. We will introduce a series of more sophisticated
regularizers that lead to larger performance gains.

This paper investigates and pushes forward various ways to enforce orthogonality regularizations on
training deep CNNs. Specifically, we introduce three novel regularization forms for orthogonality,
ranging from the double-sided variant of standard Frobenius norm-based regularizer, to utilizing
Mutual Coherence (MC) and Restricted Isometry Property (RIP) tools [17–19]. Those orthogonality
regularizations have a plug-and-play nature, i.e., they can be incorporated with training almost any
CNN without hassle. We extensively evaluate the proposed orthogonality regularizations on three
state-of-the-art CNNs: ResNet [6], ResNeXt [20], and WideResNet [21]. In all experiments, we
observe the consistent and remarkable accuracy boosts (e.g., 2.31% in CIFAR-100 top-1 accuracy
for WideResNet), as well as faster and more stable convergences, without any other change made to
the original models. It implies that many deep CNNs may have not been unleashed with their full
powers yet, where orthogonality regularizations can help. Our experiments further reveal that larger
performance gains can be attained by designing stronger forms of orthogonality regularizations. We
find the RIP-based regularizer, which has better analytical grounds to characterize near-orthogonal
systems [22], to consistently outperform existing Frobenius norm-based regularizers and others.

2 Related Work

To remedy unstable gradient and co-variate shift problems, [2, 23] advocated near constant variances
of each layer’s output for initialization. [3] presented a major breakthrough in stabilizing training, via
ensuring each layer’s output to be identical distributions which reduce the internal covariate shift.
[24] further decoupled the norm of the weight vector from its phase(direction) while introducing
independences between minibatch examples, resulting in a better optimization problem. Orthogonal
weights have been widely explored in Recurrent Neural Networks (RNNs) [25–30] to help avoid
gradient vanishing/explosion. [25] proposed a soft constraint technique to combat vanishing gradient,
by forcing the Jacobian matrices to preserve energy measured by Frobenius norm. The more recent
study [29] investigated the effect of soft versus hard orthogonal constraints on the performance of
RNNs, the former by specifying an allowable range for the maximum singular value of the transition
matrix and thus allowing for its small intervals around one.

In CNNs, orthogonal weights are also recognized to stabilize the layer-wise distribution of activations
[8] and make optimization more efficient. [5, 10] presented the idea of orthogonal weight initialization
in CNNs, which is driven by the norm-preserving property of orthogonal matrix: a similar outcome
which BN tried to achieve. [5] analyzed the non-linear dynamics of CNN training. Under simplified
assumptions, they concluded that random orthogonal initialization of weights will give rise to the
same convergence rate as unsupervised pre-training, and will be superior than random Gaussian
initialization. However, a good initial condition such as orthogonality does not necessarily sustain
throughout training. In fact, the weight orthogonality and isometry will break down easily when
training starts, if not properly regularized [5]. Several recent works [12, 13, 15] considered Stiefel
manifold-based hard constraints of weights. [12] proposed a Stiefel layer to guarantee fully connected
layers to be orthogonal by using Reimannian gradients, without considering similar handling for
convolutional layers; their performance reported on VGG networks [31] were less than promising.
[13] extended Riemannian optimization to convolutional layers and require filters within the same
channel to be orthogonal. To overcome the challenge that CNN weights are usually rectangular rather
than square matrices, [15] generalized Stiefel manifold property and formulated an Optimization over
Multiple Dependent Stiefel Manifolds (OMDSM) problem. Different from [13], it ensured filters
across channels to be orthogonal. A related work [11] adopted a Singular Value Bounding (SVB)
method, via explicitly thresholding the singular values of weight matrices between a pre-specified
narrow band around the value of one.

The above methods [11–13, 15] all fall in the category of enforcing “hard orthogonality constraints”
into optimization ([11] could be viewed as a relaxed constraint), and have to repeat singular value
decomposition (SVD) during training. The cost of SVD on high-dimensional matrices is expensive
even in GPUs, which is one reason why we choose not to go for the “hard constraint” direction in
this paper. Moreover, since CNN weight matrices cannot exactly lie on a Stiefel manifold as they are
either very “thin” or “fat” (e.g., WTW = I may never happen for an overcomplete “fat” W due to
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rank deficiency of its gram matrix), special treatments are needed to maintain the hard constraint. For
example, [15] proposed group based orthogonalization to first divide an over-complete weight matrix
into “thin” column-wise groups, and then applying Stiefel manifold constraints group-wise. The
strategy was also motivated by reducing the computational burden of computing large-scale SVDs.
Lately, [32, 33] interpreted CNNs as Template Matching Machines, and proposed a penalty term to
force the templates to be orthogonal with each other, leading to significantly improved classification
performance and reduced overfitting with no change to the deep architecture.

A recent work [14] explored orthogonal regularization, by enforcing the Gram matrix of each weight
matrix to be close to identity under Frobenius norm. It constrains orthogonality among filters
in one layer, leading to smaller correlations among learned features and implicitly reducing the
filter redundancy. Such a soft orthonormal regularizer is differentiable and requires no SVD, thus
being computationally cheaper than its “hard constraint” siblings. However, we will see later that
Frobenius norm-based orthogonality regularization is only a rough approximation, and is inaccurate
for “fat” matrices as well. The authors relied on a backward error modulation step, as well as similar
group-wise orthogonalization as in [15]. We also notice that [14] displayed the strong advantage of
enforcing orthogonality in training the authors’ self-designed plain deep CNNs (i.e. without residual
connections). However, they found fewer performance impacts when applying the same to training
prevalent network architectures such as ResNet [6]. In comparison, our orthogonality regularizations
can be added to CNNs as “plug-and-play” components, without any other modification needed. We
observe evident improvements brought by them on most popular ResNet architectures.

Finally, we briefly outline a few works related to orthogonality in more general senses. One may
notice that enforcing matrix to be (near-)orthogonal during training will lead to its spectral norm
being always equal (or close) to one, which links between regularizing orthogonality and spectrum.
In [34], the authors showed that the spectrum of Extended Data Jacobian Matrix (EDJM) affected the
network performance, and proposed a spectral soft regularizer that encourages major singular values
of EDJM to be closer to the largest one. [35] claimed that the maximum eigenvalue of the Hessian
predicted the generalizability of CNNs. Motivated by that, [36] penalized the spectral norm of weight
matrices in CNNs. A similar idea was later extended in [37] for training generative adversarial
networks, by proposing a spectral normalization technique to normalize the spectral norm/Lipschitz
norm of the weight matrix to be one.

3 Deriving New Orthogonality Regularizations

In this section, we will derive and discuss several orthogonality regularizers. Note that those
regularizers are applicable to both fully-connected and convolutional layers. The default mathematical
expressions of regularizers will be assumed on a fully-connected layer W ∈ m×n (m could be either
larger or smaller than n). For a convolutional layer C ∈ S×H×C×M , where S,H,C,M are filter
width, filter height, input channel number and output channel number, respectively, we will first
reshape C into a matrix form W ′ ∈m′ × n′, where m′ = S ×H × C and n′ =M . The setting for
regularizing convolutional layers follows [14, 15] to enforces orthogonality across filter, encouraging
filter diversity. All our regularizations are directly amendable to almost any CNN: there is no change
needed on the network architecture, nor any other training protocol (unless otherwise specified).

3.1 Baseline: Soft Orthogonality Regularization

Previous works [14, 32, 33] proposed to require the Gram matrix of the weight matrix to be close to
identity, which we term as Soft Orthogonality (SO) regularization:

(SO) λ||WTW − I||2F , (1)

where λ is the regularization coefficient (the same hereinafter). It is a straightforward relaxation from
the “hard orthogonality” assumption [12, 13, 15, 38] under the standard Frobenius norm, and can
be viewed as a different weight decay term limiting the set of parameters close to a Stiefel manifold
rather than inside a hypersphere. The gradient is given in an explicit form: 4λW (WTW − I), and
can be directly appended to the original gradient w.r.t. the current weight W .

However, SO (1) is flawed for an obvious reason: the columns of W could possibly be mutually
orthogonal, if and only if W is undercomplete (m ≥ n). For overcomplete W (m < n), its gram
matrix WTW ∈ Rn×n cannot be even close to identity, because its rank is at most m, making
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||WTW − I||2F a biased minimization objective. In practice, both cases can be found for layer-
wise weight dimensions. The authors of [15, 14] advocated to further divide overcomplete W into
undercomplete column groups to resolve the rank deficiency trap. In this paper, we choose to simply
use the original SO version (1) as a fair comparison baseline.

The authors of [14] argued against the hybrid utilization of the original `2 weight decay and the
SO regularization. They suggested to stick to one type of regularization all along training. Our
experiments also find that applying both together throughout training will hurt the final accuracy.
Instead of simply discarding `2 weight decay, we discover a scheme change approach which is
validated to be most beneficial to performance, details on this can be found in Section 4.1.

3.2 Double Soft Orthogonality Regularization

The double soft orthogonality regularization extends SO in the following form:

(DSO) λ(||WTW − I||2F + ||WWT − I||2F ). (2)

Note that an orthogonal W will satisfy WTW =WWT = I; an overcomplete W can be regularized
to have small ||WWT − I||2F but will likely have large residual ||WTW − I||2F , and vice versa for an
under-complete W . DSO is thus designed to cover both over-complete and under-complete W cases;
for either case, at least one term in (2) can be well suppressed, requiring either rows or columns of W
to stay orthogonal. It is a straightforward extension from SO.

Another similar alternative to DSO is “selective” soft orthogonality regularization, defined as:
λ||WTW − I||2F , if m > n; λ||WWT − I||2F if m ≤ n. Our experiments find that DSO always
outperforms the selective regularization, therefore we only report DSO results.

3.3 Mutual Coherence Regularization

The mutual coherence [18] of W is defined as:

µW = max
i 6=j

|〈wi, wj〉|
||wi|| · ||wj ||

, (3)

where wi denotes the i-th column of W , i = 1, 2, ..., n. The mutual coherence (3) takes values
between [0,1], and measures the highest correlation between any two columns of W . In order for W
to have orthogonal or near-orthogonal columns, µW should be as low as possible (zero if m ≥ n).

We wish to suppress µW as an alternative way to enforce orthogonality. Assume W has been first
normalized to have unit-norm columns, 〈wi, wj〉 is essentially the (i, j)-the element of the Gram
matrix WTW , and i 6= j requires us to consider off-diagonal elements only. Therefore, we propose
the following mutual coherence (MC) regularization term inspired by (3:

(MC) λ||WTW − I||∞. (4)

Although we do not explicitly normalize the column norm of W to be one, we find experimentally
that minimizing (4) often tends to implicitly encourage close-to-unit-column-norm W too, making
the objective of (4) a viable approximation of mutual coherence (3)2.

The gradient of ||WTW − I||∞ could be explicitly solved by applying a smoothing technique
to the nonsmooth `∞ norm, e.g., [39]. However, it will invoke an iterative routine each time to
compute `1-ball proximal projection, which is less efficient in our scenario where massive gradient
computations are needed. In view of that, we turn to using auto-differentiation to approximately
compute the gradient of (4) w.r.t. W .

3.4 Spectral Restricted Isometry Property Regularization

Recall that the RIP condition [17] of W assumes:

Assumption 1 For all vectors z ∈ Rn that is k-sparse, there exists a small δW ∈ (0, 1) s.t. (1 −
δW ) ≤ ||Wz||2

||z||2 ≤ (1 + δW ).

2We also tried to first normalize columns of W and then apply (4), without finding any performance benefits.
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The above RIP condition essentially requires that every set of columns in W , with cardinality no
larger than k, shall behave like an orthogonal system. If taking an extreme case with k = n, RIP
then turns into another criterion that enforces the entire W to be close to orthogonal. Note that both
mutual incoherence and RIP are well defined for both under-complete and over-complete matrices.

We rewrite the special RIP condition with k = n in the form below:∣∣∣∣ ||Wz||2

||z||2
− 1

∣∣∣∣ ≤ δW , ∀z ∈ Rn (5)

Notice that σ(W ) = supz∈Rn,z 6=0
||Wz||
||z|| is the spectral norm of W , i.e., the largest singular value

of W . As a result, σ(WTW − I) = sup
z∈Rn,z 6=0

| ||Wz||2
||z||2 − 1|. In order to enforce orthogonality to W

from an RIP perspective, one may wish to minimize the RIP constant δW in the special case k = n,
which according to the definition should be chosen as sup

z∈Rn,z 6=0
| ||Wz||2
||z||2 − 1| as from (5). Therefore,

we end up equivalently minimizing the spectral norm of WTW − I:

(SRIP) λ · σ(WTW − I). (6)

It is termed as the Spectral Restricted Isometry Property (SRIP) regularization.

The above reveals an interesting hidden link: regularizations with spectral norms were previously
investigated in [36, 37], through analyzing small perturbation robustness and Lipschitz constant. The
spectral norm re-arises from enforcing orthogonality when RIP condition is adopted. But compared
to the spectral norm (SN) regularization [36] which minimizes σ(W ), SRIP is instead enforced on
WTW − I . Also compared to [37] requiring the spectral norm of W to be exactly 1 (developed for
GANs), SRIP requires all singular values of W to be close to 1, which is essentially stricter because
the resulting W needs also be well conditioned.

We again refer to auto differentiation to compute the gradient of (6) for simplicity. However, even
computing the objective value of (6) can invoke the computationally expensive EVD. To avoid that,
we approximate the computation of spectral norm using the power iteration method. Starting with a
randomly initialized v ∈ Rn, we iteratively perform the following procedure a small number of times
(2 times by default) :

u← (WTW − I)v, v ← (WTW − I)u, σ(WTW − I)← ||v||
||u||

. (7)

With such a rough approximation as proposed, SRIP reduces computational cost from O(n3) to
O(mn2), and is practically much faster for implementation.

4 Experiments on Benchmarks

First of all, we will base our experiments on several popular state-of-the-art models: ResNet[6, 40]
(including several different variants), Wide ResNet[21] and ResNext[20]. For fairness, all pre-
processing, data augmentation and training/validation/testing splitting are strictly identical to the
original training protocols in [21, 6, 40, 20]. All hyper-parameters and architectural details remain
unchanged too, unless otherwise specified.

We structure the experiment section in the following way. In the first part of experiments, we design
a set of intensive experiments on CIFAR 10 and CIFAR-100, which consist of 60,000 images of
size 32×32 with a 5-1 training-testing split, divided into 10 and 100 classes respectively. We will
train each of the three models with each of the proposed regularizers, and compare their performance
with the original versions, in terms of both final accuracy and convergence. In the second part, we
further conduct experiments on ImageNet and SVHN datasets. In both parts, we also compare our
best performer SRIP with existing regularization methods with similar purposes.

Scheme Change for Regularization Coefficients All the regularizers have an associated regular-
ization coefficient denoted by λ, whose choice play an important role in the regularized training
process. Correspondingly, we denote the regularization coefficient for the `2 weight decay used by
original models as λ2. From experiments, we observe that fully replacing `2 weight decay with
orthogonal regularizers will accelerate and stabilize training at the beginning of training, but will
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negatively affect the final accuracies achievable. We conjecture that while the orthogonal parameter
structure is most beneficial at the initial stage, it might be overly strict when training comes to the
final “fine tune” stage, when we should allow for more flexibility for parameters. In view of that,
we did extensive ablation experiments and identify a switching scheme between two regularizations,
at the beginning and late stages of training. Concretely, we gradually reduce λ (initially 0.1-0.2) to
10−3, 10−4 and 10−6, after 20, 50 and 70 epochs, respectively, and finally set it to zero after 120
epochs. For λ2, we start with 10−8; then for SO/DSO regularizers, we increase λ2 to 10−4/5× 10−4,
after 20 epochs. For MC/SRIP regularizers, we find them insensitive to the choice of λ2, potentially
due to their stronger effects in enforcing WTW close to I; we thus stick to the initial λ2 throughout
training for them. Such an empirical “scheme change” design is found to work nicely with all models,
benefiting both accuracy and efficiency. The above λ/λ2 choices apply to all our experiments.

As pointed out by one anonymous reviewer, applying orthogonal regularization will change the
optimization landscape, and its power seems to be a complex and dynamic story throughout training.
In general, we find it to show a strong positive impact at the early stage of training (not just
initialization), which concurs with previous observations. But such impact is observed to become
increasingly negligible, and sometime (slightly) negative, when the training approaches the end. That
trend seems to be the same for all our regularizers.

Figure 1: Validation curves during training for ResNet-110. Top: CIFAR-10; Bottom: CIFAR-100;

4.1 Experiments on CIFAR-10 and CIFAR-100

We employ three model configurations on the CIFAR-10 and CIFAR-100 datasets:

ResNet 110 Model [6] The 110-layer ResNet Model [6] is a very strong and popular ResNet version.
It uses Bottleneck Residual Units, with a formula setting given by p = 9n+ 2, where n denotes the
total number of convolutional blocks used and p the total depth. We use the Adam optimizer to train
the model for 200 epochs, with learning rate starting with 1e-2, and then subsequently decreasing to
10−3, 10−5 and 10−6, after 80, 120 and 160 epochs, respectively.
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