
A Previous Work on Solving DMDP with a Full Model

Value iteration was proposed by [Bel57] to compute an exact optimal policy of a given DMDP
in time O((1− γ)−1|S|2|A|Llog((1− γ)−1)), where L is the total number of bits needed to rep-
resent the input; and it can find an approximate ε-approximate solution in time O(|S|2|A|(1 −
γ)−1 log(1/ε(1 − γ))); see e.g. [Tse90, LDK95]. The policy iteration was introduced by [How60]
shortly after, where the policy is monotonically improved according to its associated value function.
Its complexity has also been analyzed extensively; see e.g. [MS99, Ye11, Sch13]. Ye [Ye11] showed
that policy iteration and the simplex method are strongly polynomial for DMDP and terminates in
O(|S|2|A|(1−γ)−1 log(|S|(1−γ)−1)) number of iterations. Later [HMZ13] and [Sch13] improved
the iteration bound to O(|S||A|(1 − γ)−1 log((1 − γ)1)) for Howard’s policy iteration method. A
third approach is to formulate the nonlinear Bellman equation into a linear program [d’E63, DG60],
and solve it using standard linear program solvers, such as the simplex method by Dantzig [Dan16]
and the combinatorial interior-point algorithm by [Ye05]. [LS14, LS15] showed that one can solve
linear programs in Õ(

√
rank(A)) number of linear system solves, which, applied to DMDP, yields

to a running time of Õ(|S|2.5|A|L) for computing the exact policy and Õ(|S|2.5|A| log(1/ε)) for
computing an ε-optimal policy. [SWWY18] further improved the complexity of value iteration by
using randomization and variance reduction. See Table 2 for comparable run-time results or com-
puting the optimal policy when the MDP model is fully given.

Algorithm Complexity References
Value Iteration (exact) |S|2|A|L log(1/(1−γ))

1−γ [Tse90, LDK95]
Value Iteration |S|2|A| log(1/(1−γ)ε)

1−γ [Tse90, LDK95]
Policy Iteration (Block

Simplex)
|S|4|A|2

1−γ log( 1
1−γ ) [Ye11],[Sch13]

Recent Interior Point Methods Õ(|S|2.5|A|L) Õ(|S|2.5|A| log(1/ε)) [LS14]
Combinatorial Interior Point

Algorithm |S|4|A|4 log |S|
1−γ [Ye05]

High Precision Randomized
Value Iteration Õ

[(
nnz(P ) + |S||A|

(1−γ)3

)
log
(

1
εδ

) ]
[SWWY18]

Table 2: Running Times to Solve DMDPs Given the Full MDP Model: In this table, |S| is the number of
states, |A| is the number of actions per state, γ ∈ (0, 1) is the discount factor, and L is a complexity measure
of the linear program formulation that is at most the total bit size to present the DMDP input. Rewards are
bounded between 0 and 1.

B Sample and Time Efficient Value Computation

In this section, we describe an algorithm that obtains an ε-optimal values in time Õ(ε−2(1 −
γ)−3|S||A|). Note that the time and number of samples of this algorithm is optimal (up to loga-
rithmic factors) due to the lower bound in [AMK13] which also established this upper bound on the
sample complexity (but not time complexity) of the problem.

We achieve this by combining the algorithms in [AMK13] and [SWWY18]. First, we use the ideas
and analysis of [AMK13] to construct a sparse MDP where the optimal value function of this MDP
approximates the optimal value function of the original MDP and then we run the high precision
algorithm in [SWWY18] on this sparsified MDP. We show that [SWWY18] runs in nearly linear
time on sparsified MDP. Since the number of samples taken to construct the sparsified MDP was the
the optimal number of samples, to solve the problem, the ultimate running time we thereby achieve
is nearly optimal as any algorithm needs spend time at least the number of samples to obtain these
samples.

We include this for completeness but note that the approximate value function we show how to com-
pute here does not suffice to compute policy of the MDP of comparable quality. The greedy policy
of an ε-optimal value function is an ε/(1 − γ)-optimal policy in the worst case. It has been shown
in [AMK13] that the greedy policy of their value function is ε-optimal if ε ≤ (1− γ)1/2|S|−1/2.
However, when ε is so small, the seemingly sublinear runtime Õ((1 − γ)−3S||A|/ε2) essentially
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means a linear running time and sample complexity as O((1 − γ)−3|S|2|A|). The running time
can be obtained by merely applying the result in [SWWY18] (although with a slightly different
computation model).

B.1 The Sparsified DMDP

Suppose we are given a DMDPM = (S,A, r,P , γ) with a sampling oracle. To approximate the
optimal value of this MDP, we perform a spasification procedure as in [AMK13]. Sparsification of
DMDP is conducted as follows. Let δ > 0, ε > 0 be arbitrary. First we pick a number

m = Θ

[
1

(1− γ)3ε2
log

(
|S||A|
δ

)]
. (B.1)

For each s ∈ S and each a ∈ A, we generate a sequence of independent samples from S using the
probability vector P s,a

s(1)s,a, s
(2)
s,a, . . . , s

(m)
s,a .

Next we construct a new and sparse probability vector P̂ s,a ∈ ∆|S| as

∀s′ ∈ S : P̂ s,a(s′) =
1

m
·
m∑
i=1

1(s(i)s,a = s′).

Combining these |S||A| new probability vectors, we obtain a new probability transition matrix P̂ ∈
RS×A×S with number of non-zeros

nnz(P̂ ) = O

[
|S||A|

(1− γ)3ε2
log

(
|S||A|
δ

)]
.

Denote M̂ = (S,A, r, P̂ , γ) as the sparsified DMDP. In the rest of this section, we use ·̂ to represent
the quantities corresponding to DMDP M̂, e.g., v̂∗ for the optimal value function, π̂∗ for a optimal
policy, and Q̂

∗
for the optimalQ-function. There is a strong approximation guarantee of the optimal

Q-function of the sparsified MDP, presented as follows.

Theorem B.1 ([AMK13]). LetM be the original DMDP and M̂ be the corresponding sparsified
version. Let Q∗ be the optimal Q-function vector of the original DMDP and Q̂

∗
be the optimal

Q-function of M̂. Then with probability at least 1− δ (over the randomness of the samples),

‖Q̂
∗
−Q∗‖∞ ≤ ε.

Recall that v∗ and v̂∗ are the optimal value functions ofM and M̂. From Theorem B.1, we imme-
diately have

∀s ∈ S : |v∗(s)− v̂∗(s)| = |max
a∈A

Q∗(s, a)−max
a∈A

Q̂
∗
(s, a)| ≤ max

a∈A
|Q∗(s, a)− Q̂

∗
(s, a)| ≤ ε,

with probability at least 1− δ.

B.2 High Precision Algorithm in the Sparsified MDP

Next we shall use the high precision algorithm of the [SWWY18] which has the following guarantee.
Theorem B.2 ([SWWY18]). There is an algorithm which given an input DMDP M =
(S,A, r,P , γ) in time6

Õ

[(
nnz(P ) +

|S||A|
(1− γ)3

)
· log ε−1 · log δ−1

]
and outputs a vector ṽ∗ such that with probability at least 1− δ,

‖ṽ∗ − v∗‖∞ ≤ ε.
where v∗ is the optimal value ofM.

6Õ(f) denotes O(f · logO(1) f).
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Combining the above two theorems, we immediately obtain an algorithm for finding ε-optimal value
functions. It works by first generating enough samples for each state-action pair and then call the
high-precision MDP solver by [SWWY18]. It does not sample transitions adaptively. We show that
it achieves an optimal running time guarantee (up to poly log factors) of obtaining the value function
under the sampling oracle model.

Theorem B.3. Given an input DMDP M = (S,A, r,P , γ) with a sampling oracle and optimal
value function v∗, there exists an algorithm, that runs in time

Õ

(
|S||A|

(1− γ)3
· 1

ε2
· log2

(
1

δ

))
and outputs a vector v̂∗ such that ‖v̂∗ − v∗‖∞ ≤ O(ε) with probability at least 1−O(δ).

Proof. We first obtain a sparsified MDP M̂ = (S,A, r, P̂ , γ) using the procedure described in
Section B.1. This procedure runs in time O(|S||A|m), recalling that m is the number of samples
per (s, a), defined in (B.1). Let û∗ be the optimal value function of M̂. By Theorem B.1, with
probability at least 1 − δ, ‖û∗ − v∗‖ ≤ ε, which we condition on for the rest of the proof. Calling
the algorithm in Theorem B.2, we obtain a vector ũ∗ in time

Õ

[(
nnz(P̂ ) +

|S||A|
(1− γ)3

)
· log ε−1 · log δ−1

]
= Õ

(
|S||A|

(1− γ)3
· 1

ε2
· log2 1

δ

)
and that with probability at least 1−δ, ‖ũ∗−û∗‖ ≤ ε, which we condition on. By triangle inequality,
we have

‖ũ∗ − v∗‖∞ ≤ ‖ũ∗ − û∗‖∞ + ‖û∗ − v∗‖∞ ≤ 2ε.

This concludes the proof.

C Variance Bounds

In this section, we study some properties of a DMDP. Most of the content in this section is simi-
lar to [AMK13]. We provide slight modifications and improvement to make the results fit to our
application. The main result of this section is to show the following lemma.

Lemma C.1 (Upper Bound on Variance). For any π, we have∥∥(I − γP π)−1
√
σvπ

∥∥2
∞ ≤

1 + γ

γ2(1− γ)3
,

where σvπ = P π(vπ)2 − (P πvπ)2 is the “one-step” variance of playing policy π.

Before we prove this lemma, we introduce another notation. We define Σπ ∈ R|S||A| for all (s, a) ∈
S ×A by

Σπ(s, a) := E
[(
r(s, a) +

∑
t≥1

γtr(st, at)−Qπ(s, a)

)2∣∣∣∣s0 = s, a0 = a, at = π(st)

]
where at = π(st). Thus Σπ is the variance of the reward of starting with (s, a) and play π for infinite
steps. The crucial observation of obtaining the near-optimal sample complexity is the following
“Bellman Equation” for variance. It is a consequence of “the law of total variance”.

Lemma C.2 (Bellman Equation for variance). Σπ satisfies the Bellman equation

Σπ = γ2σvπ + γ2 · P πΣπ.

Proof. By direct expansion,

Σπ(s, a) = E
[(
r(s, a) +

∑
t≥1

γtr(st, at)
)2∣∣∣∣s0 = s, a0 = a, at = π(st)

]
− (Qπ(s, a))2. (C.1)
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The first term in RHS can be written as

E
[(
r(s, a) +

∑
t≥1

γtr(st, at)

)2∣∣∣∣s0 = s, a0 = a, at = π(st)

]

=
∑
s′∈S

P s,a(s′)E
[(
r(s, a) + γr(s′, π(s′)) + γ

∑
t≥1

γtr(st, at)

)2∣∣∣∣s0 = s′, a0 = π(s′), at = π(st)

]
= r(s, a)2 + 2γr(s, a) ·

∑
s′∈S

P s,a(s′)Qπ(s′, π(s′))

+ γ2
∑
s′∈S

P s,a(s′)E
[(
r(s′, π(s′)) +

∑
t≥1

γtr(st, at)

)2∣∣∣∣s0 = s′, a0 = π(s′), at = π(st)

]
= r(s, a)2 + 2γr(s, a) ·

∑
s′∈S

P s,a(s′)Qπ(s′, π(s′)) + γ2(P πΣπ)(s, a) + γ2
∑
s′∈S

P s,a(s′)(Qπ(s′, π(s′)))2

= Qπ(s, a)2 + γ2(P πΣπ)(s, a) + γ2
∑
s′∈S

P s,a(s′)(Qπ(s′, π(s′)))2 − γ2
(∑
s′∈S

P s,a(s′)Qπ(s′, π(s′))

)2

= Qπ(s, a)2 + γ2(P πΣπ)(s, a) + γ2σvπ (s, a).

Combining the above two equations, we conclude the proof.

As a remark, we note that
Σπ = γ2(I − γ2P π)−1σvπ .

Furthermore, by definition, we have

max
(s,a)∈S

Σπ(s, a) ≤ (1− γ)−2,

The next lemma is crucial in proving the error bounds.
Lemma C.3. Let P ∈ Rn×n be a non-negative matrix in which every row has `1 norm at most 1,
i.e. `∞ operator norm at most 1. Then for all γ ∈ (0, 1) and v ∈ Rn≥0 we have

‖(I − γP )−1
√
v‖∞ ≤

√
1

1− γ
‖(I − γP )−1v‖∞ ≤

√
1 + γ

1− γ
‖(I − γ2P )−1v‖∞ .

Proof. Since, every row of P has `1 norm at most 1, by Cauchy-Schwarz for i ∈ [n] we have

[P
√
v]i =

∑
j∈[n]

P ij

√
vj ≤

√∑
j∈[n]

P ij ·
∑
j∈[n]

P ijvj ≤
√
Pv .

Since v is non-negative and applyingP preserves non-negativity, applying this inequality repeatedly
yields that P k√v ≤

√
P kv entrywise for all k > 0. Consequently, Cauchy-Schwarz again yields

(I − γP )−1
√
v =

∞∑
i=0

[γP ]
i√
v ≤

∞∑
i=0

γi
√
P iv ≤

√√√√ ∞∑
i=0

γi ·
∞∑
i=0

γiP iv

≤
√

1

1− γ
‖(I − γP )−1v‖∞ .

Next, as (I − γP )(I + γP ) = (I − γP 2) we see that (I − γP )−1 = (I + γP )(I − γ2P )−1.
Furthermore, as ‖Px‖∞ ≤ ‖x‖∞ for all x we have ‖(I + γP )x‖∞ ≤ (1 + γ)‖x‖∞ for all x and
therefore ‖(I − γP )−1v‖∞ ≤ (1 + γ)‖(I − γ2P )−1v‖∞ as desired.

We are now ready to prove Lemma C.1.

Proof of Lemma C.1. The lemma follows directly from the application of Lemma C.3. This proof
is slightly simpler, tighter, and more general than the one in [AMK13].
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D Lower Bounds on Policy

Lemma D.1. SupposeM = (S,A, P, γ, r) is a DMDP with an sampling oracle. Suppose π is a
given policy. Then there is an algorithm, halts in Õ((1− γ)−3ε−2|S|) time, outputs a vector v such
that, with high probability, ‖vπ − v‖∞ ≤ ε.

Proof. The lemma follows from a direct application of Theorem B.2.

Remark D.2. Suppose |A| = Ω̃(1). Suppose there is an algorithm that obtains an ε-optimal pol-
icy with Z samples, then the above lemma implies an algorithm for obtaining an ε-optimal value
function with Z + Õ((1− γ)−3ε−2|S|) samples. By the Ω((1− γ)−3ε−2|S||A|) sample bound on
obtaining approximate value functions given in [AMK13], the above lemma implies a

Z = Ω((1− γ)−3ε−2|S||A|)− Õ((1− γ)−3ε−2|S|) = Ω((1− γ)−3ε−2|S||A|)

sample lower bound for obtaining an ε-optimal policy.

E Missing Proofs

Here are several standard properties of the Bellman value operator (see, e.g., [Ber13]).

Fact 1. Let v1,v2 ∈ RS be two vectors. Let T be a value operator of a DMDP with discount factor
γ. Let π ∈ AS be an arbitrary policy. Then the follows hold.

• Monotonicity: If v1 ≤ v2 then T (v1) ≤ T (v2);

• Contraction: ‖T (v1)−T (v2)‖∞ ≤ γ‖v1 − v2‖∞ and ‖Tπ(v1)−Tπ(v2)‖∞ ≤ γ‖v1 −
v2‖∞.

E.1 Missing Proofs from Section 4

To begin, we introduce two standard concentration results. Let p ∈ ∆S be a probability vector,
and v ∈ RS be a vector. Let pm ∈ ∆S be empirical estimations of p using m i.i.d. samples from
the distribution p. For instance, let these samples be s1, s2, . . . , sm ∈ S , then ∀s ∈ S : pm(s) =∑m
j=1 1(sj = s)/m.

Theorem E.1 (Hoeffding Inequality). Let δ ∈ (0, 1) be a parameter, vectors p,pm and v defined
above. Then with probability at least 1− δ,∣∣p>v − p>mv∣∣ ≤ ‖v‖∞ ·√2m−1 log(2δ−1).

Theorem E.2 (Bernstein Inequality). Let δ ∈ (0, 1) be a parameter, vectors p,pm and v defined as
in Theorem E.1. Then with probability at least 1− δ∣∣p>v − p>mv∣∣ ≤√2m−1Var

s′∼p
(v(s′)) · log(2δ−1) + (2/3)m−1‖v‖∞ · log(2δ−1),

where Var
s′∼p

(v(s′)) = p>v2 − (p>v)2.

Proof of Lemma 4.1. By Theorem E.2 and a union bound over all (s, a) pairs, with probability at
least 1− δ/4, for every (s, a), we have∣∣w̃(s, a)− P>s,av(0)

∣∣ ≤√2σv(0) ·m−11 · L+ 2 · (3m1)−1 · ‖v(0)‖∞ · L, (E.1)

which is the first inequality.

Next, by Theorem E.1 and a union bound over all (s, a) pairs, with probability at least 1− δ/4, for
every (s, a), we have ∣∣w̃(s, a)− P>s,av(0)

∣∣ ≤ ‖v(0)‖∞ ·√2m−11 L,
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which we condition on. Thus∣∣w̃(s, a)2 − (P>s,av
(0))2

∣∣ = (w̃(s, a) + P>s,av
(0)) · |w̃(s, a)− P>s,av(0)|

≤
[
2P>s,av

(0) + ‖v(0)‖∞ ·
√

2m−11 L

]
· |w̃(s, a)− P>s,av(0)|

≤ 2(P>s,av
(0)) · ‖v(0)‖∞ ·

√
2m−11 L+ ‖v(0)‖2∞ · 2m−11 L.

Since P>s,av
(0) ≤ ‖v(0)‖∞, we obtain∣∣w̃(s, a)2 − (P>s,av

(0))2
∣∣ ≤ 3‖v(0)‖2∞ ·

√
2m−11 L,

provided 2m−11 L ≤ 1. Next by Lemma E.1 and a union bound over all (s, a) pairs, with probability
at least 1− δ/4, for every (s, a), we have∣∣∣∣∣∣ 1

m1

m1∑
j=1

v2(s(j)s,a)− P>s,av2
∣∣∣∣∣∣ ≤ ‖v(0)‖2∞ ·√2L/m1.

By a union bound, we obtain, with probability at least 1− δ/2,∣∣σ̂(s, a)− σv(0)(s, a)
∣∣ ≤ ∣∣w̃(s, a)2 − (P>s,av

(0))2
∣∣+
∣∣m−11

m1∑
j=1

v2(s(j)s,a)− P>s,av2
∣∣

≤ 4‖v(0)‖2∞ ·
√

2m−11 L. (E.2)

By a union bound, with probability at least 1−δ, both (E.1) and (E.2) hold, concluding the proof.

Proof of Lemma 4.2. Since for each (s, a), σv(s, a) is a variance, then we have triangle inequality,
√
σv ≤

√
σv∗ +

√
σv−v∗ .

Observing that
σv−v∗(s, a) ≤ P>s,a(v − v∗)2 ≤ ε2 · 1.

We conclude the proof by taking a square root of all three sides of the above inequality.

Proof of Lemma 4.3. Recall that for each (s, a) ∈ S ×A,

g(i)(s, a) =
1

m2

m2∑
j=1

[
v(i)(s(j)s,a)− v(0)(s(j)s,a)

]
− (1− γ)

u

8
,

wherem2 = 128(1−γ)−2 · log(2|S||A|R/δ) and s(1)s,a, s
(2)
s,a, . . . , s

(m2)
s,a is a sequence of independent

samples from P s,a. Thus by Theorem E.1 and a union bound over S × A, with probability at least
1− δ/R, we have

∀(s, a) ∈ S ×A :

∣∣∣∣ m2∑
j=1

[
v(i)(s(j)s,a)− v(0)(s(j)s,a)

]
− P>s,a

[
v(i) − v(0)

]∣∣∣∣
≤ ‖v(i) − v(0)‖∞

√
2m−12 log(2|S||A|δ′−1) ≤ (1− γ)u/8.

Finally by shifting the estimate to have one-sided error, we obtain the one-side error (1− γ)u/4 in
the statement of this lemma.

Proof of Lemma 4.4. For i = 0,Q(0) = r + γw. By Lemma 4.1, with probability at least 1− δ,

|w̃ − Pv(0)| ≤
√

2α1σv(0) +
2

3
· α1 · ‖v(0)‖∞1,

and ∣∣σ̂ − σv(0)

∣∣ ≤ 4‖v(0)‖2∞ ·
√

2α11, (E.3)
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which we condition on. We have

|w̃ − Pv(0)| ≤
√

2α1σ̂ + (4α
3/4
1 ‖v(0)‖∞ +

2

3
· α1 · ‖v(0)‖∞)1.

Thus

w = w̃ −
√

2α1σ̂ − 4α
3/4
1 ‖v(0)‖∞1− 2

3
· α1 · ‖v(0)‖∞1 ≤ Pv(0), (E.4)

and

w ≥ Pv(0) − 2
√

2α1σ̂ − (8α
3/4
1 ‖v(0)‖∞ +

4

3
· α1 · ‖v(0)‖∞)1.

By (E.3) and Lemma 4.2, we have
√
σ̂ ≤ √σv(0) + 2‖v(0)‖∞(2α)1/41 ≤

√
σv∗ + u1 + 2‖v(0)‖∞(2α)1/41.

we have

w ≥ Pv(0) − 2
√

2α1σv∗ − 2
√

2α1u1− 16α
3/4
1 ‖v(0)‖∞1− 4

3
· α1 · ‖v(0)‖∞1 (E.5)

For the rest of the proof, we condition on the event that (E.4) and (E.5) hold, which happens with
probability at least 1 − δ. Denote v(−1) = 0. Thus we have v(−1) ≤ v(0) ≤ Tπ(0)(v(0)). Next we
prove the lemma by induction on i. Assume for some i ≥ 1, with probability at least 1 − (i − 1)δ′

the following holds,

∀0 ≤ k ≤ i− 1 : v(k−1) ≤ v(k) ≤ Tπ(k)(v(k)),

which we condition on. Next we show that the lemma statement holds for k = i. By definition of
v(i) (Line 27 and 28),

v(i−1) ≤ v(i) and v
(
Q(i−1)) ≤ v(i).

Furthermore, since v(0) ≤ v(1) ≤ . . . ≤ v(i−1) ≤ Tπi−1v(i−1) ≤ T v(i−1) ≤ T ∞v(i−1) = v∗, we
have

v(i) − v(0) ≤ v∗ − v(0) ≤ u1.

By Lemma 4.3, we have, with probability at least 1− δ′

P
[
v(i) − v(0)

]
− (1− γ)u

8
· 1 ≤ g(i) ≤ P

[
v(i) − v(0)

]
, (E.6)

which we condition on for the rest of the proof. Thus we have

Q(i) = r + γ(w + g(i)) ≤ r + γ(Pv(0) + Pv(i) − Pv(0)) = r + γPv(i).

To show v(i) ≤ Tπ(i)v(i), we notice that if for some s, π(i)(s) 6= π(i−1)(s), then

v(i)(s) ≤ [Tπ(i)v(i−1)](s) ≤ [Tπ(i)v(i)](s),

where the first inequality follows from v(i)(s) ≤ r(s, π(i)(s)) + γP>s,π(i)(s)v
(i−1) = Tπ(i)v(i−1).

On the other hand, if π(i)(s) = π(i−1)(s), then

v(i)(s) = v(i−1)(s) ≤ (Tπ(i−1)v(i−1))(s) ≤ (Tπ(i−1)v(i))(s) = (Tπ(i)v(i))(s).

This completes the induction step. Lastly, combining (E.5) and (E.6), we have

Q∗ −Q(i) = Q∗ − r − γ(w + g(i)) = γPv(Q∗)− γ(w + g(i))

= γPv(Q∗)− γP (v(i) − v(0))− γPv(0) + ξ(i)

= γPv(Q∗)− γPv(i) + ξ(i),

where

ξ(i) ≤ (1− γ)u/8 · 1 + 2
√

2α1σv∗ + 2
√

2α1u · 1 + 16α
3/4
1 ‖v(0)‖∞ · 1 + (4/3) ·α1 · ‖v(0)‖∞ · 1,

where α1 = log(8|S||A|δ−1)/m1 ≤ 1. Mover, since v(Q(i−1)) ≤ v(i), we obtain

Q∗ −Q(i) ≤ γPv(Q∗)− γPv(Q(i−1)) + ξ(i) ≤ γP π∗Q∗ − γP π∗Q(i−1) + ξ(i),

where π∗ is an arbitrary optimal policy and we use the fact that maxaQ
∗(s, a) = Q∗(s, π∗(s)).

This completes the proof of the lemma.
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Proof of Proposition 4.5. Recall that we are able to sample a state from each P s,a with time O(1).
Let β = (1 − γ)−1, R = dc1β ln[βu−1]e,m1 = c2β

3u−2 · log(8|S||A|δ−1) and m2 = c3β
2 ·

log[2R|S||A|δ−1] for some constants c1, c2 and c3 required in Algorithm 1. In the following proof,
we set c1, c2, c3 to be sufficiently large but otherwise arbitrary absolute constants (e.g., c1 ≥ 4, c2 ≥
8192, c3 ≥ 128). By Lemma 4.4, with probability at least 1 − 2δ for each 1 ≤ i ≤ R, we have
v(i−1) ≤ v(i) ≤ Tπ(i)v(i), andQ(i) ≤ r + γPv(i),

Q∗ −Q(i) ≤ γP π∗
[
Q∗ −Q(i−1)]+ ξ,

where
ξ ≤ (1− γ)u/C · 1 + C

√
α1σv∗ + Cα

3/4
1 ‖v(0)‖∞ · 1

for α1 = log(8|S||A|δ−1)/m1 and sufficiently large constant C. Solving the recursion, we obtain

Q∗ −Q(R−1) ≤ γR−1P π∗
[
Q∗ −Q0

]
+

R−1∑
i=0

γi(P π∗)iξ

≤ γR−1P π∗
[
Q∗ −Q0

]
+ (I − γP π∗)−1ξ.

We first apply a naı̈ve bound ‖P π∗
[
Q∗ −Q0

]
‖∞ ≤ (1− γ)−1. Hence

γR−1P π∗
[
Q∗ −Q0

]
≤ u

4
· 1,

where R = d(1− γ)−1 ln[4(1− γ)−1u−1]e+ 1. The next step is the key to the improvement in our
analysis. We further apply the bound in Lemma C.1, given by

(I − γP π∗)−1
√
σv∗ ≤ min(2γ−1(1− γ)−1.5, (1− γ)−2) · 1 ≤ 3(1− γ)−1.5 · 1,

where the last inequality follows since min(2γ−1, (1− γ)−1/2) ≤ 3. With ‖(I − γP π∗)−11‖∞ ≤
(1− γ)−1 and ‖v(0)‖∞ ≤ (1− γ)−1, we have,

(I − γP π∗)−1ξ ≤

[
u

8
+ C ′

√
2α1

γ2(1− γ)3
+ C ′

α
3/4
1

(1− γ)2

]
· 1

≤
[
u

8
+

u

16
+

(
(1− γ)3u2

C ′′ · (1− γ)8/3

)3/4]
· 1

≤ u

4
· 1,

for some sufficiently large C ′ and C ′′, which depend on c1, c2 and c3. Since v(Q(R−1)) ≤ v(R),
we have

v∗ − v(R) ≤ v∗ − v(Q(R−1)) ≤ γR−1P π∗
[
Q∗ −Q0

]
+ (I − γP π∗)−1ξ ≤ u

2
· 1.

This completes the proof of the correctness. It remains to bound the time complexity. The initial-
ization stage costs O(m1) time per (s, a). Each iteration costs O(m2) time per (s, a). We thus have
the total time complexity as

O(m1 +Rm2)|S|||A|| = O

[
|S||A|

(1− γ)3
· log

|S||A|
δ · (1− γ) · u

·
(

1

u2
+ log

1

(1− γ) · u

)]
.

Since log[(1− γ)−1u−1] = O(log[(1− γ)−1]u−2), we conclude the proof.

E.2 Missing Analysis of Halving Errors

We refer in this section to Algorithm 1 as a subroutine HALFERR, which given an input MDP
M with a sampling oracle, an input value function v(i) and an input policy π(i), outputs an value
function v(i+1) and a policy π(i+1) such that, with high probability (over the new samples of the
sampling oracle),

‖Q(i+1) −Q∗‖∞ ≤ ‖Q(i) −Q∗‖∞/2 and ‖vπ
(i+1)

− v∗‖∞ ≤ ‖vπ
(i)

− v∗‖∞/2.
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After log[ε−1(1−γ)−1] calls of the subroutine HALFERR, the final output policy and value functions
are ε-close to the optimal ones with high probability.

We summarize our meta algorithm in Algorithm 2. Note that in the algorithm, each call of HALFERR
will draw new samples from the sampling oracle. These new samples guarantee the independence
of successive improvements and also save space of the algorithm. For instance, the algorithm HAL-
FERR only needs to use O(|S||A|) words of memory instead of storing all the samples. The guar-
antee of the algorithm is summarized in Proposition E.3.
Proposition E.3. Let M = (S,A, r,P , γ) with a sampling oracle. Suppose HALFERR is an
algorithm that takes an input v(i) and an input policy π(i) and a number u ∈ [0, (1−γ)−1] satisfying
v∗ − u1 ≤ v(i) ≤ vπ(i)

, halts in time τ and outputs a v(i+1) and a policy π(i+1) satisfying,

v∗ − u

2
· 1 ≤ v(i+1) ≤ vπ

(i+1)

≤ v∗.

with probability at least 1 − (1 − γ) · ε · δ (over the randomness of the new samples given by the
sampling oracle), then the meta algorithm described in Algorithm 2, given inputM and the sampling
oracle, halts in τ · log(ε−1 · (1− γ)−1) and outputs an policy π(R) such that

v∗ − ε · 1 ≤ v(R) ≤ vπ
(R)

≤ v∗

with probability at least 1− δ (over the randomness of all samples drawn from the sampling oracle).
Moreover, if HALFERR uses space s, then the meta algorithm uses space s + O(|S||A|). If each
call of HALFERR takes m samples from the oracle, then the overall samples taken by Algorithm 2
is m · log(ε−1 · (1− γ)−1).

The proof of this proposition is a straightforward application of conditional probability.

Proof of Proposition E.3. The proof follows from a straightforward induction. For simplicity, de-
note β = (1 − γ)−1. In the meta-algorithm, the initialization is v(0) = 0 and π(0) is an arbitrary
policy. Thus v∗ − β · 1 ≤ v(0) ≤ vπ

(0)

. By running the meta-algorithm, we obtain a sequence
of value functions and policies: {v(i)}Ri=0 and {π(i)}Ri=0. Since each call of the HALFERR uses
new samples from the oracle, the sequence of value functions and policies satisfies strong Markov
property (given (v(i), π(i)), (v(i+1), π(i+1)) is independent with {(v(j), π(j))}i−1j=0). Thus

Pr
[
v∗ − 2−Rβ · 1 ≤ v(R) ≤ vπ

(R)]
≥

R∏
i=1

Pr
[
v∗ − 2−iβ · 1 ≤ v(i) ≤ vπ

(i) ∣∣v∗ − 2−i+1β · 1 ≤ v(i−1) ≤ vπ
(i−1)]

≥ 1− δ.
Since 2−R(1− γ)−1 ≤ ε, we conclude the proof.

Proof of Theorem 4.6. Our algorithm is simply plugging in Algorithm 1 as the HALFERR subroutine
in Algorithm 2. The correctness is guaranteed by Proposition E.3 and Proposition 4.5. The running
time guarantee follows from a straightforward calculation.

F Extension to Finite Horizon

In this section we show how to apply similar techniques to achieve improved sample complexities
for solving finite Horizon MDPs given a generative model and we prove that the sample complexity
we achieve is optimal up to logarithmic factors.

The finite horizon problem is to compute an optimal non-stationary policy over a fixed time horizon
H , i.e. a policy of the form π(s, h) for s ∈ S and h ∈ {0, . . . H}), where the reward is the
expected cumulative (un-discounted) reward for following this policy. In classic value iteration, this
is typically done using a backward recursion from time H,H − 1, . . . 0. We show how to use the
ideas in this paper to solve for an ε-approximate policy. As we have shown in the discounted case,
it is suffice to show an algorithm that decrease the error of the value at each stage by half. Our
algorihtm is presented in Algorithm 3.

To analyze the algorithm, we first provide an analogous lemma of Lemma 4.1,
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Lemma F.1 (Empirical Estimation Error). Let w̃h and σ̂h be computed in Line 10 of Algorithm
3. Recall that w̃h and σ̂h are empirical estimates of Pvh and σvh = Pv2h − (Pvh)2 using m1

samples per (s, a) pair. Then with probability at least 1 − δ, for L def
= log(8|S||A|δ−1) and every

h = 1, 2, . . . ,H , we have∣∣w̃h − P>v(0)
h

∣∣ ≤√2m−1
1 σ

v
(0)
h

· L+ 2(3m1)
−1‖v(0)

h ‖∞L (F.1)

and

∀(s, a) ∈ S ×A :
∣∣σ̂h(s, a)− σv

(0)
h

(s, a)
∣∣ ≤ 4‖v(0)

h ‖
2
∞ ·
√

2m−1
1 L. (F.2)

Proof. The proof of this lemma is identical to that of Lemma 4.1.

An analogous lemma to Lemma 4.3 is also presented here.

Lemma F.2. Let g(i)h be the estimate of P
[
v
(i)
h − v

(0)
h

]
defined in Line 27 of Algorithm 3. Then

conditioning on the event that ‖v(i)h − v
(0)
h ‖∞ ≤ 2ε, with probability at least 1− δ/H ,

P
[
v
(i)
h − v

(0)
h

]
− ε

4H
· 1 ≤ g(i)h ≤ P

[
v
(i)
h − v

(0)
h

]
provided appropriately chosen constants in Algorithm 3.

Proof. The proof of this lemma is identical to that of Lemma 4.3 except that (1− γ)−1 is replaced
with H .

Similarly, we can show the following improvement lemma.
Lemma F.3. Let Qh be the estimated Q-function of vh+1 in Line 30 of Algorithm 3. Let Q∗h =
r + P hv

∗
h+1 be the optimal Q-function of the DMDP. Let π(·, h) and vh be estimated in iteration

h, as defined in Line 24 and 25. Let π∗ be an optimal policy for the DMDP. For a policy π, let
P π
hQ ∈ RS×A be defined as (P π

hQ)(s, a) =
∑
s′∈S P s,a(s′)Q(s′, π(s′, h)). Suppose for all

h ∈ [H − 1], v(0)h ≤ Tπ(0)(·,h)v
(0)
h+1. Let vH+1

def
= 0 andQH+1

def
= 0. Then, with probability at least

1− 2δ, for all 1 ≤ h ≤ H , v(0)h ≤ vh ≤ Tπ(·,h)vh+1 ≤ v∗h,Qh ≤ r + P hvh+1 and

Q∗h −Qh ≤ P
π∗
h

[
Q∗h+1 −Qh+1

]
+ ξh,

where the error vector ξh satisfies

0 ≤ ξh ≤ 8H−1u·1+2
√

2α1σv∗h+1
+2
√

2α1u·1+16α
3/4
1 ‖v

(0)
h+1‖∞ ·1+(4/3)·α1 ·‖v(0)h+1‖∞ ·1,

and α1 = log(8|S||A|Hδ−1)/m1.

Proof of Lemma F.3. By Lemma 4.1, for any h = 1, 2, . . . ,H , with probability at least 1− δ/H ,

|w̃h − Pvh+1| ≤
√

2α1σv
(0)
h+1

+
2

3
· α1 · ‖v(0)h+1‖∞ · 1,

and ∣∣σ̂h+1 − σv
(0)
h+1

∣∣ ≤ 4‖v(0)h+1‖
2
∞ ·
√

2α1 · 1, (F.3)

which we condition on. We have

|w̃h − Pv(0)h+1| ≤
√

2α1σ̂h+1 + (4α
3/4
1 ‖v

(0)
h+1‖∞ +

2

3
· α1 · ‖v(0)h+1‖∞)1.

Thus

wh = w̃h −
√

2α1σ̂h+1 − 4α
3/4
1 ‖v

(0)
h+1‖∞1− 2

3
· α1 · ‖v(0)h+1‖∞1 ≤ Pv(0)h+1, (F.4)

and

wh ≥ Pv(0)h+1 − 2
√

2α1σ̂h+1 − (8α
3/4
1 ‖v

(0)
h+1‖∞ +

4

3
· α1 · ‖v(0)h+1‖∞)1.
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By (E.3) and Lemma 4.2, we have√
σ̂h+1 ≤

√
σ

v
(0)
h+1

+ 2‖v(0)h+1‖∞(2α)1/41 ≤√σv∗h+1
+ ε1 + 2‖v(0)h+1‖∞(2α)1/41.

we have

wh ≥ Pv(0)h+1 − 2
√

2α1σv∗h+1
− 2
√

2α1ε1− 16α
3/4
1 ‖v

(0)
h+1‖∞1− 4

3
· α1 · ‖v(0)h+1‖∞1 (F.5)

For the rest of the proof, we condition on the event that (F.4) and (F.5) hold for all h = 1, 2, . . . ,H ,
which happens with probability at least 1− δ. Denote v∗H+1 = vH+1 = v

(0)
H+1 = 0. Thus we have

v
(0)
H+1 ≤ vH+1 ≤ v∗H+1. Next we prove the lemma by induction on h. Assume for some h, with

probability at least 1− (h− 1)δ/H the following holds, for all h′ = h+ 1, h+ 2, . . . ,H,

v
(0)
h′ ≤ vh′ ≤ v

∗
h′ ,

which we condition on. Next we show that the lemma statement holds for h as well. By definition
of vh (Line 27 and 28),

v
(0)
h ≤ vh and v(Qh) ≤ vh.

Furthermore, since v(0)h+1 ≤ v∗h+1 ≤ v
(0)
h+1 + u1 we have

v∗h+1 − vh+1 ≤ v∗h+1 − v
(0)
h+1 ≤ u1.

By Lemma 4.3, we have, with probability at least 1− δ′

P
[
vh+1 − v(0)h+1

]
− u

8H
· 1 ≤ gh ≤ P

[
vh+1 − v(0)h+1

]
, (F.6)

which we condition on for the rest of the proof. Thus we have

Qh = r + (wh + gh) ≤ r + Pv
(0)
h+1 + Pvh+1 − Pv(0)h+1 = r + Pvh+1 ≤ Q∗h.

To show vh ≤ Tπ(·,h)vh+1, we notice that if for some s, π(s, h) 6= π(0)(s, h), then,

vh(s) ≤ r(s, π(s, h)) + P>s,π(s,h)vh+1 = Tπ(·,h)vh+1.

On the other hand, if π(s, h) = π(0)(s, h), then

∀s ∈ S : vh(s) = v
(0)
h (s) ≤ (Tπ(0)(·,h)v

(0)
h+1)(s) ≤ (Tπ(0)(·,h)vh+1)(s) = (Tπ(·,h)vh+1)(s).

This completes the induction step. Lastly, combining (F.5) and (F.6), we have

Q∗h −Qh = Q∗h − r − (wh + gh) = Pv(Q∗h+1)− (wh + gh)

= Pv(Q∗h+1)− P (vh+1 − v(0)h+1)− Pvh+1 + ξh

= Pv(Q∗h+1)− Pvh+1 + ξh,

where

ξh ≤ H−1u/8 ·1 + 2
√

2α1σv∗h+1
+ 2
√

2α1u ·1 + 16α
3/4
1 ‖v

(0)
h+1‖∞ ·1 + (4/3) ·α1 · ‖v(0)h+1‖∞ ·1,

where α1 = log(8|S||A|δ−1)/m1. Mover, since v(Qh+1) ≤ vh+1, we obtain

Q∗h −Qh ≤ Pv(Q∗h+1)− Pv(Qh+1) + ξh ≤ P
π∗

h Q
∗
h+1 − P

π∗

h Qh+1 + ξh,

where π∗ is an arbitrary optimal policy and we use the fact that maxaQ
∗
h(s, a) = Q∗h(s, π∗(s, h)).

This completes the proof of the lemma.

Furthermore, we show an analogous lemma of Lemma C.1.
Lemma F.4 (Upper Bound on Variance). For any π, we have∥∥∥∥ H−1∑

h′=h

( h′∏
i=h+1

P π
i

)√
σvπ

h′+1

∥∥∥∥2
∞
≤ H3/2.
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Proof. First, by Cauchy-Swartz inequality, we have

H−1∑
h′=h

( h′∏
i=h+1

P π
i

)√
σvπ

h′+1
≤

√√√√H

H−1∑
h′=h

( h′∏
i=h+1

P π
i

)
σvπ

h′+1
.

Next, by a similar argument of the proof of Lemma C.2, we can show that[ H−1∑
h′=h

( h′∏
i=h+1

P π
i

)
σvπ

h′+1

]
(s) = Var

[ H∑
t=h

r(st, π(st, t))

∣∣∣∣sh = s

]
≤ H2.

This completes the proof.

We are now ready to present the guarantee of the algorithm 3.

Proposition F.5. On an input value vectors v(0)1 ,v
(0)
2 , . . . ,v

(0)
H , policy π(0), and parameters u ∈

(0, β], δ ∈ (0, 1) such that v(0)h ≤ Tπ(0)(·,h)v
(0)
h+1 for all h ∈ [H − 1], and v(0)h ≤ v∗h ≤ v

(0)
h + u1,

Algorithm 3 halts in time O[u−2 ·H4|S||A| · log(|S||Aδ−1Hu−1)] and outputs v1,v2, . . . ,vH and
π : S × [H]→ A such that

∀h ∈ [H] : vh ≤ Tπ(·,h)(vh+1) and 0 ≤ v∗h − vh ≤ (u/2) · 1

with probability at least 1−δ, provided appropriately chosen constants, c1, c2 and c3, in Algorithm 3.
Moreover, the algorithm uses O[u−2 ·H3|S||A| · log(|S||Aδ−1Hu−1)] samples from the sampling
oracle.

Proof of Proposition F.5. Recall that we are able to sample a state from each P s,a with time O(1).
Let R = dc1H ln[Hu−1]e,m1 = c2H

3u−2 · log(8|S||A|δ−1) and m2 = c3H
2 · log[2R|S||A|δ−1]

for some constants c1, c2 and c3 required in Algorithm 1. In the following proof, we set c1 = 4, c2 =
8192, c3 = 128. By Lemma 4.4, with probability at least 1 − 2δ for each 1 ≤ h ≤ H , we have
v
(0)
h ≤ vh ≤ Tπ(·,h)vh, andQh ≤ r + Pvh+1,

Q∗h −Qh ≤ P
π∗

h

[
Q∗h+1 −Qh+1

]
+ ξh,

where

ξh ≤ H−1u/8 ·1 + 2
√

2α1σv∗h+1
+ 2
√

2α1u ·1 + 16α
3/4
1 ‖v

(0)
h+1‖∞ ·1 + (4/3) ·α1 · ‖v(0)h+1‖∞ ·1,

and α1 = log(8|S||A|δ−1)/m1. Notice that v(0)H = v∗H = v(r), thus the vH − v∗H = 0. Solving
the recursion, we obtain

Q∗h −Qh ≤
H−1∑
h′=h

( h′∏
i=h+1

P π∗

i

)
ξh′ .

The next step is the key to the improvement in our analysis. We further apply the bound in
Lemma C.1, given by

H−1∑
h′=h

( h′∏
i=h+1

P π∗

i

)√
σv∗

h′+1
≤ H3/2 · 1.

With ‖
∑H−1
h′=h

∏h′

i=h+1P
π∗

i 1‖∞ ≤ H − h+ 1 and ‖v(0)h ‖∞ ≤ H , we have,

H−1∑
h′=h

( h′∏
i=h+1

P π∗

i

)
ξh′ ≤

[
u

8
+ 4
√

2α1H3 + 2H
√

2α1u+ 16H2α
3/4
1 +

4α1H
2

3

]
1

≤
[
u

8
+

u

16
+

√
H−1u

32
+ 16

(
H−3u2

32 · 256 · (H)−8/3

)3/4

+
4H−1u2

24 · 256

]
· 1

≤ u

4
· 1,
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provided

α1 =
log(8|S||A|δ−1)

m1
= c−12 H3u−2 ≤ H−3u2

32 · 256
.

Since v(Qh) ≤ vh, we have

v∗h − vh ≤ v∗ − v(Qh) ≤
H−1∑
h′=h

( h′∏
i=h+1

P π∗

i

)
ξh′ ≤

u

2
· 1.

This completes the proof of the correctness. It remains to bound the time complexity. The initializa-
tion stage costs O(m1) time per (s, a) per stage h. Each iteration costs O(m2) time per (s, a). We
thus have the total time complexity as

O(Hm1 +Hm2)|S||A| = O

[
H4 · |S||A| · log

H|S||A|
δ · u

· 1

u2

]
.

The total number of samples used is

O(m1 +Hm2)|S||A| = O

[
H3 · |S||A| · log

H|S||A|
δ · u

· 1

u2

]
.

This completes the proof.

We can then use our meta-algorithm and obtain the following theorem.
Theorem F.6. Let M = (S,A,P , r, H) be a H-MDP with a sampling oracle. Suppose we can
sample a state from each probability vector P s,a within time O(1). Then there exists an algorithm
that runs in time

O

[
1

ε2
·H4|S||A| · log

H|S||A|
δ · ε

· log
H

ε

]
and obtains a policy π such that, with probability at least 1− δ,

∀h ∈ [H] : v∗h − ε1 ≤ vπh ≤ v∗h,
where v∗h is the optimal value of M at stage h. Moreover, the number of samples used by the
algorithm is

O

[
1

ε2
·H3|S||A| · log

H|S||A|
δ · ε

· log
H

ε

]
.

F.1 Sample Lower Bound On H-MDP

In this section we show that the sample complexity obtained by the algorithm in the last section is
essentially tight. Our proof idea is simple, we will reduce theH-MDP problem to a discounted MDP
problem. If there is an algorithm that solves an H-MDP to obtain an ε-optimal value, it also gives
an value function to the discounted MDP. Therefore, the lower bound of solving H-MDP inherits
from that of the discounted MDP. The formal guarantee is presented in the following theorem.
Theorem F.7. Let S and A be finite sets of states and actions. Let H > 0 be a positive inte-
ger and ε ∈ (0, 1/2) be an error parameter. Let K be an algorithm that, on input an H-MDP
M def

= (S,A, P, r) with a sampling oracle, outputs a value function v1 for the first stage, such
that ‖v1 − v∗1‖∞ ≤ ε with probability at least 0.9. Then K calls the sampling oracle at least
Ω(H−3ε−2|S||A|/ log ε−1) times on some input P and r ∈ [0, 1]S .

Proof. Let s0 ∈ S be a state. Denote S ′ = S\{s0} be a subset of S. Let γ ∈ (0, 1) be such that
(1 − γ)−1 log ε−1 ≤ H . Suppose we have an DMDP M′ = (S ′,A, P ′, γ, r′) with a sampling
oracle. Let v∗

′
be the optimal value function ofM′. Note that v∗

′ ∈ RS′ . We will show, in the next
paragraph, an H-MDPM = (S,A, P,H, r) with first stage value v∗1, such that ‖v∗1|S′ − v∗

′‖ ≤ ε.
Therefore, an ε-approximation of v∗1 gives a 2ε-approximation to v∗. We show that K can be used
to obtain an ε-approximate value v1 for v∗1 ofM and thus K inherits the lower bound for obtaining
(2ε)-approximated value for γ-DMDPs.

For M, in each state s ∈ S ′, for any action there is a (1 − γ) probability transiting to s0 and γ
probability to do the original transitions in M′; for s0, no matter what action taken, it transits to
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Algorithm 3 FiniteHorizonRandomQVI

1: Input: M = (S,A, r,P ) with a sampling oracle, v(0)1 ,v
(0)
2 , . . . ,v

(0)
H , π(0) : S × [H] →

A, u, δ ∈ (0, 1);
2: \\u is the initial error, π(0) is the input policy, and δ is the error probability
3: Output: v1,v2, . . . ,vH , π
4:
5: INITIALIZATION:
6: Let m1 ← c1H

3u−2log(8|S||A|δ−1) for constant c1;
7: Let m2 ← c2H

2 log[2H|S||A|δ−1] for constant c2;
8: Let α1 ← m−11 log(8|S||A|δ−1);
9: For each (s, a) ∈ S ×A, sample independent samples s(1)s,a, s

(2)
s,a, . . . , s

(m1)
s,a from P s,a;

10: Initialize wh = w̃h = σ̂h = Q
(0)
h ← 0S×A for all h ∈ [H], and i← 0;

11: Denote vH+1 ← 0 andQH+1 ← 0
12: for each (s, a) ∈ S ×A, h ∈ [H] do
13: \\Compute empirical estimates of P>s,av

(0)
h and σ

v
(0)
h

(s, a)

14: Let w̃h(s, a)← 1
m1

∑m1

j=1 v
(0)
h (s

(j)
s,a)

15: Let σ̂h(s, a)← 1
m1

∑m1

j=1(v
(0)
h )2(s

(j)
s,a)− w̃2

h(s, a)
16:
17: \\Shift the empirical estimate to have one-sided error
18: wh(s, a)← w̃h(s, a)−

√
2α1σ̂h(s, a)− 4α

3/4
1 ‖v

(0)
h ‖∞ − (2/3)α1‖v(0)h ‖∞

19: Let vH+1 ← 0 andQH+1 ← 0.
20:
21: REPEAT: \\successively improve
22: for h = H,H − 1 to 1 do
23: \\Compute P>s,a

[
vh − v(0)h

]
with one-sided error

24: Let ṽh ← vh ← v(Qh+1), π̃(·, h)← π(·, h)← π(Qh+1), vh ← ṽh;
25: For each s ∈ S, if ṽh(s) ≤ v(0)h (s), then vh(s)← v

(0)
h (s) and π(s, h)← π(0)(s, h);

26: For each (s, a) ∈ S ×A, sample independent samples s̃(1)s,a, s̃
(2)
s,a, . . . , s̃

(m2)
s,a from P s,a;

27: Let gh(s, a)← m−12

∑m2

j=1

[
vh(s̃

(j)
s,a)− v(0)h (s̃

(j)
s,a)
]
−H−1u/8;

28:
29: \\ImproveQh:
30: Qh ← r +wh + gh;
31: return v1,v2, . . . ,vH , π.

itself with probability 1. Formally, for each state s, s′ ∈ S ′, a ∈ A, P (s′|s, a) = γ · P ′(·|s, a)
and P (s0|s, a) = (1 − γ); P (s′|s0, a) = 0 and P (s0|s0, a) = 1. For r, we set r(s0, ·) = 0 and
r(s, ·) = r′(s, ·) for s ∈ S ′. It remains to show that ‖v∗1|S′ − v∗‖∞ ≤ ε. First we note that
v(r) = v∗H ≤ v∗. Then, by monotonicity of the T operator, we have, for all h ∈ [H − 1] and
s ∈ S ′,

v∗h|S′(s) = max
a

[r′(s, a) + γP
′>
s,av

∗
h+1] ≤ v∗

′
.

In particular, v∗1|S′ ≤ v∗
′
. Since the optimal policy π∗

′
of M′ can be used as a policy for the

H-MDP as a non-optimal one, we have

v∗ − ε · 1 ≤
[
1 + γP π∗′ + γ2P 2

π∗′ + ·+ γH · PH
π∗′

]
rπ
∗′

≤ v∗1|S′ .

This completes the proof.

The above lower bound with our algorithm also implies a sample lower bound for an ε-policy.

Corollary F.8. Let S and A be finite sets of states and actions. Let H > 0 be a positive inte-
ger and ε ∈ (0, 1/2) be an error parameter. Let K be an algorithm that, on input an H-MDP
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M := (S,A, P, r) with a sampling oracle, outputs a policy π : S × [H] → A, such that
∀h : ‖vπh − v∗h‖∞ ≤ ε with probability at least 0.9. Then K calls the sampling oracle at least
Ω(H−3ε−2|S||A|/ log ε−1) times on the worst case input P and r ∈ [0, 1]S .
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