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Abstract

The problem of estimating an unknown signal, x0 ∈ Rn, from a vector y ∈ Rm
consisting of m magnitude-only measurements of the form yi = |aix0|, where
ai’s are the rows of a known measurement matrix A, is a classical problem known
as phase retrieval. This problem arises when measuring the phase is costly or
altogether infeasible. In many applications in machine learning, signal processing,
statistics, etc., the underlying signal has certain structure (sparse, low-rank, finite
alphabet, etc.), opening of up the possibility of recovering x0 from a number of
measurements smaller than the ambient dimension, i.e., m < n. Ideally, one
would like to recover the signal from a number of phaseless measurements that
is on the order of the "degrees of freedom" of the structured x0. To this end,
inspired by the PhaseMax algorithm, we formulate a convex optimization problem,
where the objective function relies on an initial estimate of the true signal and
also includes an additive regularization term to encourage structure. The new
formulation is referred to as regularized PhaseMax. We analyze the performance
of regularized PhaseMax to find the minimum number of phaseless measurements
required for perfect signal recovery. The results are asymptotic and are in terms of
the geometrical properties (such as the Gaussian width) of certain convex cones.
When the measurement matrix has i.i.d. Gaussian entries, we show that our
proposed method is indeed order-wise optimal, allowing perfect recovery from a
number of phaseless measurements that is only a constant factor away from the
optimal number of measurements required when phase information is available.
We explicitly compute this constant factor, in terms of the quality of the initial
estimate, by deriving the exact phase transition. The theory well matches empirical
results from numerical simulations.

1 Introduction

Recovering an unknown signal or model given a limited number of linear measurements is an
important problem that appears in many applications. Researchers have developed various methods
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with rigorous theoretical guarantees for perfect signal reconstruction, e.g. [5, 16, 38, 43]. However,
there are many practical scenarios in which the signal should be reconstructed from nonlinear
measurements. In particular, in many physical devices, measuring the phase is expensive or even
infeasible. For instance, detection devices such as CCD cameras and photosensitive films cannot
measure the phase of a light wave and instead measure the photon flux [22].

The fundamental problem of recovering a signal from magnitude-only measurements is known as
phase retrieval. It has a rich history and occurs in many areas in engineering and applied sciences
such as medical imaging [15], X-ray crystallography [27], astronomical imaging [17], and optics [45].
Due to the loss of phase information, signal reconstruction from magnitude-only measurements can
be quite challenging. Therefore, despite a variety of proposed methods and analysis frameworks,
phase retrieval still faces fundamental theoretical and algorithmic challenges.

Recently, convex methods have gained significant attention to solve the phase retrieval problem. The
first convex-relaxation-based methods were based on semidefinite programs [7, 10] and resorted
to the idea of lifting [2, 8, 23, 36] the signal from a vector to a matrix to linearize the quadratic
constraints. While the convex nature of this formulation allows theoretical guarantees, the resulting
algorithms are computationally inefficient since the number of unknowns is effectively squared. This
makes these approaches intractable when the system dimension is large.

Introduced in two independent papers [3, 19], PhaseMax is a novel convex relaxation for phase
retrieval which works in the original n-dimensional parameter space. Since it does not require lifting
and does not square the number of unknowns, it is appealing in practice. It does, however, require
an intial estimate of the signal. Preliminary theoretical analysis [3, 13, 19, 21] indicates the method
achieves perfect recovery for an order optimal number of random measurements. The exact phase
transition for PhaseMax has been recently computed in a sequence of papers, first for the case of real
measurements [14] and then for the case of complex ones [35].

Non-convex methods for phase retrieval have a long history [18]. Recent non-convex methods start
with a careful initialization [25, 26, 28] and update the solution iteratively using a gradient-descent-
like scheme. Examples of such methods include Wirtinger flow algorithms [9, 12, 37], truncated
amplitude flow [46], and alternating minimization [29, 49]. Despite having lower computational cost,
precise theoretical analysis of such algorithms seems very technically challenging.

All the aforementioned algorithms essentially demonstrate that a signal of dimension n can be
perfectly recovered through m > Cn amplitude-only measurements, where C > 1 is a constant that
depends on the algorithm as well as the measurement vectors. However, many interesting signals
in practice contain fewer degrees of freedom than the ambient dimension (sparse signals, low-rank
matrices, finite alphabet signals, etc.). Such low-dimensional structures open up the possibility of
perfect signal recovery with a number of measurements significantly smaller than n.

1.1 Summary of contributions

In this paper we propose a new approach for recovering structured signals. Inspired by the PhaseMax
algorithm, we introduce a new convex formulation and investigate necessary and sufficient conditions,
in terms of the number of measurements, for perfect recovery. We refer to this new framework as
regularized PhaseMax. The constrained set in this optimization is obtained by relaxing the non-convex
equality constraints in the original phase retrieval problem to convex inequality constraints. The
objective function consists of two terms. One is a linear functional that relies on an initial estimate of
the true signal which must be externally provided. The second term is an additive regularization term
that is formed based on a priori structural information about the signal.

We utilize the recently developed Convex Gaussian Min-Max Theorem (CGMT) [39] to precisely
compute the necessary and sufficient number of measurements for perfect signal recovery when the
entries of the measurement matrix are i.i.d. Gaussian. To the extent of our knowledge, this is the first
convex optimization formulation for the problem of structured signal recovery given phaseless linear
Gaussian measurements that provably requires an order optimal number of measurements. In this
paper we focus on real signals and real measurements. The complex case is more involved, requires
a different analysis, and will be considered in a separate work. Through our analysis, we make the
following main contributions:
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• We first provide a sufficient recovery condition, in Section 3.1, in terms of the number of
measurements, for perfect signal recovery. We use this to infer that our proposed method is
order-wise optimal.

• We characterize the exact phase transition behavior for the class of absolutely scalable
regularization functions.

• We apply our findings to two special examples: unstructured signal recovery and sparse
recovery. We observe that the theory well matches the result of numerical simulations for
these two examples.

1.2 Prior work

Phase retrieval for structured signals has gained significant attention in recent years. A review of all
of the results is beyond the scope of this paper, and we instead briefly mention some of the most
relevant literature for the Gaussian measurement model. Oymak et. al. [30] analyzed the performance
of the regularized PhaseLift algorithm and observed that the required sample complexity is of a
suboptimal order compared to the optimal number of measurements required when phase information
is available. For the special case of sparse phase retrieval similar results have been reported in [24]
which indicates O(k2 log(n)) measurements are required for recovering of a k-sparse signal, using
regularized PhaseLift. Recently, there has been a stream of work on solving phase retrieval using non-
convex methods [6, 47]. In particular, Soltanolkotabi [37] has shown that amplitude-based Wirtinger
flow can break the O(k2 log(n)) barrier. We also note that the paper [20] analyzed the PhaseMax
algorithm with `1 regularizer and observed that it achieves perfect recovery with O(k log(n/k))
samples, provided a well-correlated initialization point.

2 Preliminaries

2.1 Problem setup

Let x0 ∈ Rn denote the the underlying structured signal. We consider the real phase retrieval
problem with the goal of recovering x0 from m magnitude-only measurements of the form,

yi = |aTi x0|, i = 1, 2, . . . ,m , (1)

where {ai ∈ Rn}mi=1 is the set of (known) measurement vectors. In practice, this set is identified
based on the experimental settings; however, throughout this paper (for our analysis purposes) we
assume that the ai’s are drawn independently from a Gaussian distribution with mean zero and
covariance matrix In. In order to exploit the structure of the signal we assume f(·) is a convex
function that measures the "complexity" of the structured solution. The regularized PhaseMax
algorithm also relies on an initial estimate of the true signal. Here, xinit is used to represent this initial
guess. Our analysis is based on the critical assumption that both xinit and x0 are independent of all
the measurement vectors. The constraint set in generalized PhaseMax is derived by simply relaxing
the equality constraints in (1) into convex inequality constraints. We introduce the following convex
optimization problem to recover the signal:

x̂ = argmin
x∈Rn

Lλ(x) = −xinit
Tx + λf(x)

subject to: |aTi x| ≤ yi , for 1 ≤ i ≤ m.
(2)

The function f is assumed to be sign invariant, i.e., f(x) = f(−x) for all x ∈ Rn (−x has the
same "complexity" as x.) Note that because of the global phase ambiguity of measurements in (1),
we can only estimate x0 up to a sign. Up to this sign ambiguity, we can use the normalized mean
squared error (NMSE), defined as ||x̂−x0||2

||x0||2
, to measure the performance of the solution. In this paper

we investigate the conditions under which the optimization program (2) uniquely identifies the true
signal, i.e., x̂ = x0 (up to the sign). Our results are asymptotic which is valid when m,n→∞.

2.2 Background on convex analysis

Our results give the required number of measurements as a function of certain geometrical properties
of the descent cone of the objective function. Here, we recall these definitions from convex analysis.
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Definition 1. (Descent cone) For a function R : Rn → R the descent(tangent) cone at point x is
defined as,

TR(x) = cone({z ∈ Rn : R(x + z) ≤ R(x)}) , (3)

where cone(S) denotes the closed conical hull of the set S.

Definition 2. Let S be a closed convex set in Rn. For x ∈ Rn the projection of x on S, denoted by
ΠS(x), is defined as follows,

ΠS(x) := argmin
y∈S

||x− y|| , (4)

where || · || is the Euclidean norm. The distance function is defined as: distS(x) = ||x−ΠS(x)||.
Definition 3. (Statistical dimension) [1] The statistical dimension of a closed convex cone C in Rn
is defined as,

d(C) = Eg [||ΠC(g)||2] , (5)

where g ∈ Rn is a standard normal vector.

The statistical dimension canonically extends the dimension of linear spaces to convex cones. This
quantity has been extensively studied in linear inverse problems. It is well-known that as n →
∞, m > d(TLλ(x0)) is the necessary and sufficient condition for perfect signal recovery under
noiseless linear Gaussian measurements [11, 38]. Our analysis indicates that given phaseless linear
measurements, the regularized PhaseMax algorithm requires O(d(TLλ(x0))) measurements for
perfect signal reconstruction. Therefore, it is order-wise optimal in that sense.

3 Main Results

In this section we present the main results of the paper which provide us with the required number of
measurements for perfect signal recovery in the regularized PhaseMax optimization (2). This gives
the value m0 = m0(n,x0,xinit, λ), such that the regularized PhaseMax algorithm uniquely identifies
the underlying signal x0 with high probability whenever m > m0.

In Section 3.1, we find sufficient conditions for recovery of the underlying signal. Theorem 1 provides
an upper bound on the number of measurements that is equal to a constant factor times the statistical
dimension of the descent cone, d(TLλ(x0)). Therefore, even though our analysis is not exact in this
section, it leads us to the important observation that our proposed method is order-wise optimal in
terms of the required sample complexity for perfect signal reconstruction.

In Section 3.2, we provide an exact analysis for the phase transition behavior of regularized PhaseMax
when the regularizer is an absolutely scalable function. We apply this result to the case of unstructured
phaseless recovery as well as sparse phaseless recovery to compute the exact phase transitions. We
then compare the result of theory with the empirical results from numerical simulations.

3.1 Sufficient recovery condition

Let P := 1
||x0||2

x0x
T
0 and P⊥ := I−P denote the projectors onto the span of x0 and its orthogonal

complement, respectively, where || · || denotes the `2-norm of the vectors. We also define d(n) :=
d(TLλ(x0)) as the statistical dimension of the descent cone of the objective function at point x0. Our
analysis rigorously characterizes the phase transition behavior of the regularized PhaseMax in the
large system limit, i.e., when n → ∞, while m and d(n) grow at a proportional ratio δ = m

d(n) . δ
is often called the oversampling ratio. Here, the superscript (n) is used to denote the elements of a
sequence. To streamline the notations, we often drop this when understood from the context.
Theorem 1 provides sufficient conditions for the successful recovery of x0. The recovery threshold
depends on λ and the initialization vector, xinit. We define ρinit := xinit

Tx0 to quantify the caliber
of the initial estimate. Due to the sign invariance property of the solution, we can assume without
loss of generality that ρinit ≥ 0. Before stating the theorem, we shall introduce the function
R(·) : (2,+∞)→ R+.
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Figure 1: R(x) for different values of x. R is a monotonically decreasing function.

Definition 4. For x > 2, R(x) is the unique nonzero solution of the following equation:

t2 =
x

π
((1 + t2)atan(t)− t) . (6)

Figure 1 depicts the evaluation of the function R(x) for different input values x. As observed, R(x)
is a decreasing function with respect to x, and it approaches zero as x grows to infinity. It can be
shown that for large values of the input x, R(x) decays with the rate 1

x .
Theorem 1 (Sufficient recovery condition). For a fixed oversampling ratio δ > 2, the regularized
PhaseMax optimization (2) perfectly recovers the target signal (in the sense that lim

n→∞
P{||x̂− x0||2 >

ε||x0||2} = 0, for any fixed ε > 0) if,

R(δ) < sup
v∈∂Lλ(x0)

||Pv||
||P⊥v||

, (7)

where ∂Lλ(x0) denotes the sub-differential set of the objective function Lλ(·) at point x0.

It is worth noting that ∂Lλ(x0) is a convex and compact set, and it can be expressed in terms of the
sub-differential of the regularization function ∂f(x0) as following,

∂Lλ(x0) = {λu− xinit : u ∈ ∂f(x0)} . (8)

Observe that sinceR(·) is a monotonically decreasing function, the inequality (7) gives a lower bound
for the oversampling ratio δ. Indeed, we can restate the result in terms of this lower bound as the
following corollary:
Corollary 1. If there exist a fixed constant τ > 0 such that,

sup
v∈∂Lλ(x0)

||Pv||
||P⊥v||

> τ, (9)

then the regularized PhaseMax optimization (2) has perfect recovery for δ > C, where C is a
constant that only depends on τ .

Proof. It is an immediate consequence of Theorem 1 by choosing C = R−1(τ) and noting that R(·)
is monotonically decreasing.

This result indicates that if xinit and λ are chosen in such a way that the inequality (9) is satisfied
for some positive constant τ , then one needs m > Cd(n) measurement samples for perfect recovery,
where C is a constant and d(n)(= d) is the statistical dimension of the descent cone of the objective
function at point x0. As motivating examples, we use Theorem 1 to find upper bounds on the phase
transition when x0 has no structure or it is a sparse signal.

Example 1: Assume the target signal x0 has no a priori structure. The objective function in this case
would be L(x) = −xinit

Tx, and ∂L(x0) = {−xinit}. It can be shown that the statistical dimension is
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(a) (b)

Figure 2: Phase transition regimes for the regularized PhaseMax problem in terms of the oversampling ratio
δ and ρinit = xinit

Tx0, for the cases of x0 with (a) no structure and (b) sparse signal recovery . The blue lines
indicate the theoretical estimate for the phase transition derived from Theorem 2. The red line in (a) correspond
to the upper bound calculated by Theorem 1. In the simulations we used signals of size n = 128. The result is
averaged over 10 independent realization of the measurements.

d(n) = n− 1/2. Due to the absence of the regularization term in this case, without loss of generality
we can assume ‖x0‖ = ‖xinit‖ = 1. Theorem 1 provides the following sufficient condition for perfect
recovery:

||Pxinit||
||P⊥xinit||

=
ρinit√

1− ρ2
init

> R(δ) . (10)

This indicates O(n) measurements is sufficient for perfect recovery as long as ρinit ≥ ρ0, where
ρ0 > 0 is a constant that does not approach zero as n → ∞. The exact phase transition for
the unstructured case (PhaseMax) has been derived in [14] which is compatible with this result.
Figure 2(a) shows the result of numerical simulation for different values of δ and ρinit, when n = 128.
As depicted in the figure, the sufficient recovery condition from Theorem 1 is approximately a factor
of 2 away from the actual phase transition.

Example 2: Let x0 be a k-sparse signal. In this case we use || · ||1 as the regularization function.
We show in Section 5.5 that if λ > c√

k
, then d(n) ≤ Ck log(n/k), for some constants c, C > 0.

This matches the well-known order for the statistical dimension derived in the compressive sensing
literature [38].

Moreover, in order to satisfy the condition in Corollary 1 we need to have ρinit
||x0||1

> (1 + ε)λ, for
some ε > 0. Therefore, x0 can be perfectly recovered having O(k log(n/k)) samples when the
hyper-parameter λ is tuned properly, i.e., c√

k
< λ < ρinit

||x0||1
. Figure 3(a) compares this upper bounds

with the precise analysis that we will show in Section 3.2. As depicted in this figure, the sufficient
recovery condition is a valid upper bound on the phase transition, but it is not sharp.

3.2 Precise phase transition

So far, we have provided a sufficient condition for perfect signal recovery in the regularized PhaseMax.
In this section we give the exact phase transition, i.e., the minimum number of measurements m0

required for perfect recovery of the unknown vector x0. For our analysis, we assume that the function
f(x) is absolutely homogeneous (scalable), i.e., f(τ · x) = |τ | · f(x), for any scalar τ . This covers a
large range of regularization functions such as norms and semi-norms. Let ∂Lλ⊥(x0) ⊂ Rn denote
the projection of the sub-differential set into the orthogonal complement of x0, i.e.,

∂Lλ
⊥(x0) = {P⊥u : u ∈ ∂Lλ(x0)} , (11)

which is a convex and compact set. To state the result in a general framework, we require a further
assumption on functions L(n)

λ (·).
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(a) (b)

Figure 3: (a) Comparing the upper bounds on the phase transition, derived by Theorem 1 (dashed lines) and
the precise phase transition by Theorem 2 (solid lines), for three values of the sparsity factor s = k/n. (b) The
phase transition behavior as a function of the regularization parameter λ, derived from the result of Theorem 2.

Assumption 1 (Asymptotic functionals) We say Assumption 1 holds if the following uniform conver-
gences exist, as n→∞,

β − E
[ 1√

n
hT Π∂Lλ⊥(x0)(

β√
n
h)
] Unif.−−→ Fλ(β), and,

E
[
dist∂Lλ⊥(x0)(

β√
n
h)
] Unif.−−→ Gλ(β) , (12)

where h ∈ Rn has i.i.d. standard normal entries and Fλ, Gλ : R+ → R denote the functions that
the sequences uniformly converge to.

One can show that, under some mild conditions on the regularization function f(·), Assumption 1
holds and also Fλ(β) = Gλ(β)G′λ(β), where G′λ(·) denotes the derivative of the function Gλ(·).
This assumption especially holds for the class of separable regularizers, where f(v) =

∑
i f̃(vi)

(e.g. `1 norm for the case of sparse phase-retrieval). Later in this section, we will see validity of
this assumption for two examples discussed earlier in Section 3. Our precise phase transition results
indicate the required number of measurements as the solution of a set of two nonlinear equations
with two unknowns. We define a new parameter α := m

n , where αopt = m0

n indicates the exact
phase transition of the regularized PhaseMax optimization. The following theorem gives an implicit
formula to derive αopt.
Theorem 2 (Precise phase transition). Let x̂ be the solution to the regularized PhaseMax optimization
(2) with the objective function Lλ(x) = −xinit

Tx + λf(x), where the convex function f(·) is
absolutely homogeneous and Assumption 1 holds. The regularized PhaseMax optimization would
perfectly recover the target signal x0 if and only if:

1. α > αopt, where αopt is the solution of the following system of non-linear equations with
two unknowns, α and β,{

−Gλ(β) Lλ(x0) = tan( π
αβFλ(β)) (G2

λ(β)− βFλ(β)) ,

tan( π
αβFλ(β)) (Gλ(β) + π

αβFλ(β) Lλ(x0)) = π
αβFλ(β) Gλ(β) ,

(13)

2. and, Lλ(x0) < Lλ(0) = 0 .

where the functions Fλ(·) and Gλ(·) are defined in (12).

A few remarks are in place for this theorem:
[Solving equations (13)] The system of nonlinear equations (13) only involves two scalars β and
α, and the functions Fλ(β) and Gλ(β) are determined by the objective function Lλ(x). For our
numerical simulations in the examples of Section 3.2.1 and Section 3.2.2, we used a fixed-point
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iteration method that can quickly find the solution given a proper initialization.
[Tuning λ] Theorem 2 requires the objective function to satisfy Lλ(x0) = λf(x0) − ρinit <
0. Therefore, it is necessary to choose λ in such a way that λ < ρinit/f(x0). Some additional
assumptions on the unknown vector x0 enables us to calculate the proper range for λ. For instance,
if we consider a random ensemble for x0 where the non-zero entries of x0 are Gaussian (or other)
random variables, E[f(x0)] gives a reasonable estimation on f(x0) that can help us choosing λ
appropriately. We will see an example of such case in section 3.2.2. Figure 3(b) shows an example of
how the phase transition of the regularized PhaseMax, or equivalently the required sample complexity,
behaves as a function of the hyper-parameter λ.

In the next sections, we use the result of Theorem 2 to compute the exact phase transition for the case
of unstructured signal as well as the sparse signal recovery. Since the regularizer f(x) is absolutely
scalable, for both examples, we assume that ‖x0‖ = 1.

3.2.1 Unstructured signal recovery

When there is no a priori information about the structure of the target signal, we use the following
optimization (PhaseMax) for signal recovery:

x̂ = argmin
x∈Rn

L(x) = −xinit
Tx

subject to: |aTi x| ≤ yi , for 1 ≤ i ≤ m .
(14)

Due to the absence of the regularization term, without loss of generality we can assume ||xinit|| = 1.
Moreover, L(x0) = −ρinit which indicates that the second condition in Theorem 2 . To apply the
result of our theorem, we first compute explicit formulas for the functions Fλ(β), and Gλ(β), as
follows,

Fλ(β) = β , Gλ(β) =
√
β2 + 1− ρ2

init . (15)

We can now form the system of nonlinear equations (13) as follows,{ √
β2 + 1− ρ2

init
ρinit

1−ρ2
init

= tan(πα ) ,

tan(πα ) (
√
β2 + 1− ρ2

init −
πρinit
α ) = π

α

√
β2 + 1− ρ2

init .
(16)

Finally, solving equations (16) yields the following necessary and sufficient condition for perfect
recovery,

π

α tan(π/α)
> 1− ρ2

init , (17)

which also verifies the result of [14].

Figure 2(a) shows the result of numerical simulations of running the PhaseMax algorithm for different
values of ρinit and δ. The intensity level of the color of each square in Figure 2, represents the
error of PhaseMax in recovering x0. As seen in the figure, although our theoretical results has been
established for the asymptotic setting (when the problem dimensions approach infinity), the blue
line, which is derived from (17), reasonably predicts the phase transition for n = 128. The sufficient
conditions that is derived from Theorem 1 is also depicted by the red line in the same figure.

3.2.2 Sparse recovery

We consider the case where the target signal x0 is sparse with k non-zero entries. The convex function
f(x) = 1√

n
||x||1, which is known to be a proper regularizer that enforces sparsity [41], is used in the

regularized PhaseMax optimization to recover x0,

x̂ = argmin
x∈Rn

Lλ(x) = −xinit
Tx +

λ√
n
||x||1

subject to: |aTi x| ≤ yi , for 1 ≤ i ≤ m .

(18)

To streamline notations, we assume the non-zero entries of x0 are the first k entries and decompose

vector v ∈ Rn as v =

[
v∆

v∆c

]
, where v∆ ∈ Rk denotes the first k entries of v, and v∆c ∈ Rn−k

is the remaining n − k entries. As m,n → ∞, we would like to apply the result of Theorem 2
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to compute the exact phase transition. Due to the rotational invariance property of the Gaussian
distribution, it can be shown that multiplying the last (n − k) entries of xinit, by a unitary matrix
U ∈ R(n−k)×(n−k) does not change the phase transition behavior in (2). Hence, we can assume the
entries of x∆c

init have Gaussian distribution, i.e.,

xinit =

[
x∆

init
x∆c

init

]
, and x∆c

init =
1√
n− k

||x∆c

init || g , (19)

where g ∈ Rn−k has standard normal entries. This observation enables us to establish the following
lemma:
Lemma 1. Consider the optimization problem (18) to recover the k-sparse signal x0. We assume the
entries of xinit are distributed as in (19) and define ρ̃ := 1√

k
sign(x∆

0 )Tx∆
init, where sign(·) denotes

the component-wise sign function. Then, Assumption 1 holds with:

Fλ(β) = β(s+ 2(1− s) ·Q(
λ√

β2 +
‖x∆c

init ‖2
1−s

) ) ,

G2
λ(β) = s · (β2 + λ2) + ‖x∆

init‖2 − 2λ
√
sρ̃− L2(x0)

+ (1− s)(β2 +
‖x∆c

init‖2

1− s
) · EH [ shrink2(H,

λ√
β2 +

‖x∆c
init ‖2

1−s

) ] (20)

where Q(·) is the tail distribution of the standard normal distribution, H has standard normal
distribution and s := k/n is the sparsity factor. The shrinkage function shrink(·, ·) : R× R+ → R+

is defined as:
shrink(x, τ) = (|x| − τ)1{|x| ≥ τ} . (21)

It is worth noting that the function shrink(·, ·) also appeared in computing the statistical dimension
for `1 regularization (see Section 5.5) which indicates some implicit relation to αopt.

We have numerically computed the solution of the nonlinear system (20). Figure 2(a), and Figure
2(b) shows the error of regularized PhaseMax over a range of ρinit and δ. The comparison between
our upper bound derived from Theorem 1 and precise analysis of Theorem 2 is depicted in Figure 3(a)
for three values of the sparsity factor s = 0.05, 0.1, 0.2. Observe that the upper bound is only a
constant factor away from the precise phase transition, while its derivation involves simpler formulas.
Finally, Figure 3(b), illustrates impact of the regularization parameter λ on the phase transition of
the regularized PhaseMax optimization for four values of ρinit. The values of λ in this figure are
normalized by ρinit

√
n

‖x0‖ , which is the maximum acceptable value of λ in the regularized PhaseMax.

4 Conclusion and Future Directions

In this paper, we introduced a new convex optimization framework, regularized PhaseMax, to
solve the structured phase retrieval problem. We have shown that, given a proper initialization,
the regularized PhaseMax optimization perfectly recovers the underlying signal from a number
of phaseless measurements that is only a constant factor away from the number of measurements
required when the phase information is available. We explicitly computed this constant factor.

An important (yet still open) research problem is to investigate the required sample complexity to
construct a proper initialization vector, xinit. As an example, for the case of sparse phase retrieval, even
though our analysis indicates that O(k log n

k ) is the required sample complexity of the regularized
PhaseMax optimization, the best known initialization technique [6] needs O(k2 log n) samples to
generate a meaningful initialization, which is suboptimal. An important future direction is to study
initialization techniques that break this sample complexity barrier, or to use information theoretic
arguments (as in [28]) to show that the sample complexity for the initialization cannot be improved.

To form the objective function in the regularized PhaseMax, we exploited some a-priori knowledge
about the structure of the underlying signal. In many practical settings such prior information is
not available. There has been some interesting recent publications (e.g. [4, 48]) which introduce
efficient algorithms to learn the structure of the underlying signal. An interesting research direction
is to investigate new optimization framework that does not rely on the prior information about the
structure of the underlying signal.
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5 Appendix

5.1 Convex Gaussian min-max theorem

Our analysis is based on the recently developed Convex Gaussian Min-max Theorem (CGMT) [39,
40]. The CGMT associates with a Primary Optimization (PO) problem an Auxiliary Optimization
(AO) problem from which we can investigate various properties of the primary optimization, such as
phase transitions. In particular, the (PO) and the (AO) problems are defined respectively as follows:

Φ(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(u,w), (22a)

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖gTu− ‖u‖hTw + ψ(u,w), (22b)

where G ∈ Rm×n,g ∈ Rm,h ∈ Rn, Sw ⊂ Rn,Su ⊂ Rm and ψ : Rn × Rm → R. Denote
wΦ := wΦ(G) and wφ := wφ(g,h) any optimal minimizers in (22a) and (22b), respectively. The
following lemma is a result of CGMT [39].
Lemma 2. Consider the two optimizations (22a) and (22b). Let Sw,Su be convex sets where at least
one of them is compact, ψ be continuous and convex-concave on Sw × Su, and, G,g and h all have
entries iid standard normal. Suppose there exist a unique α such that in the limit of n→∞ it holds
in probability that ‖wφ(g,h)‖ → α. Then, the same holds for wΦ(G) and we have ‖wΦ(G)‖ → α.

CGMT essentially replaces the optimization in (22a) with the one in (22b) (which we refer to as the
Auxiliary Optimization) which is simpler to analyze. This is the main step in our proofs.

5.1.1 Convergence analysis of the Auxiliary Optimization

After applying CGMT in the proof of Theorem 2, we aim to analyze the auxiliary optimization. In
this path, we replace several functions with their limits in probability. This can be done through
the same tricks used in section A.4 of [39] and Lemma B.1 in the same paper. Here, we state the
following lemma without proof.
Lemma 3 (Min-convergence – Open Sets). Consider a sequence of proper, convex stochastic
functions Mn : (0,∞)→ R, and, a deterministic function M : (0,∞)→ R, such that:

1. Mn(x)
P−→M(x), for all x > 0,

2. there exists z > 0 such that M(x) > infx>0M(x) for all x ≥ z.

Then, infx>0Mn(x)
P−→ infx>0M(x).

The objective function in our optimization problems satisfy the assumptions of this lemma at the
points that we replace them with their limits.

5.2 Proof of Theorem 1

In order to establish the result we use the following lemma which provides an equivalent optimization
that has the same error performance as PhaseMax, and is the key ingredient in deriving the main
results of the paper.
Lemma 4 (Equivalent Optimization). Consider the regularized PhaseMax problem introduced in
Section 2.1. As n→∞, the error performance converges in probability as follows:(

||x̂− x0||2

||x0||2

)
−
(
||w?||2 + (1− s?)2

) n→∞−→ 0 . (23)

Here s? ∈ R, and w? ∈ Rn are the unique optimizers of the following optimization program,

min
s∈R

min
w∈Rn,w⊥x0

− xinit
T(sx0 + w) + λf(sx0 + w)

subject to: hTw ≥
√
m cd(s, ||w||) ,

(24)
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where h ∈ Rn has i.i.d. standard normal entries and the function cd : R× R+ → R is defined as,

cd(s, r) =
1

π
[((1 + s)2 + r2) atan(

r

1 + s
) + ((1− s)2 + r2) atan(

r

1− s
)− 2r]. (25)

The full technical details of obtaining this result is explained in Section 5.3. In short, to show the
equivalence, we start from (2) and define new variables s := xT

0x and w = P⊥x. Then reformulate it
as an unconstrained optimization using Lagrange multipliers. The result is a consequence of applying
CGMT (Lemma 2, see Appendix 5.1) with some simplifications.

Consider the following optimization:

min
s∈R

min
w∈Rn,w⊥x0

− xinit
T(sx0 + w) + λf(sx0 + w)

subject to: hTw ≥
√
m cd(s, ||w||) .

(26)

The result of Lemma 4 established that as n→∞, the error performance of the regularized PhaseMax
converges to the error performance in (26). The following corollary indicates the necessary and
sufficient condition for perfect recovery:
Corollary 2. As n→∞, x0 is the unique solution of the regularized PhaseMax optimization, if and
only if (s?,w?) = (1,0) be the unique optimizer of the equivalent optimization (26).

Proof. This is an immediate result of Lemma 4, noticing that ||x̂ − x0|| = 0 is the condition for
perfect recovery.

Let us proceed onwards with analyzing (26). For simplicity, we assume ||x0|| = 1. Define a new
function f̂(·) : Rn → R as follows,

f̂(x) = f(x0) + max
v∈∂f(x0)

vT(x− x0) . (27)

∂f(x0) is the sub-differential set of function f at point x0 which is a convex and compact set. f̂(·) is
basicly the first-order approximation of the regularization function f(·) at point x0. This replacement
cannot be done in general, but since we are only investigating the phase transition regime where the
norm of the error, ‖x̂− x0‖, approaches to zero, we may perform this exchange. To investigate the
phase transition behavior in (26), we bound 1− s and ||w|| to a small neighborhood of 0. Therefore,
it is valid to replace f with f̂ in that small neighborhood around x0. Reformulating the optimization
using this replacement would give us the following,

min
s∈R,w⊥x0

max
v∈∂f(x0)

− xinit
T(sx0 + w) + λf(x0) + λvT((s− 1)x0 + w)

subject to: hTw ≥
√
m cd(s, ||w||) .

(28)

We add the constant term, xinit
Tx0 − λf(x0), to the objective function and reformulate the maxi-

mization in terms of ∂L(x0) as follows,

min
s∈R,w⊥x0

max
v∈∂L(x0)

(s− 1)xT
0v + wTv

subject to: hTw ≥
√
m cd(s, ||w||) .

(29)

If |s| > 1 in (29), we have the following inequalities:

||w||2 d(TL(x0)) ≥ (hTw)2 ≥ m cd(s, ||w||) > m

2
||w||2 . (30)

The first inequality is due to the fact that x− x0 = (s− 1)x0 + w is in TL(x0) (the descent cone
of the objective at point x0). The second inequality appeared as a constraint in the optimization
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problem (29). The last inequality is true since cd(s, r) > r2/2, when |s| ≥ 1. Therefore, using
the assumption δ = m

d > 2, it can be shown that the feasible set of (29) is nonempty if and only if
|s| ≤ 1.

Since the regularized PhaseMax optimization is convex, in order to show that s? = 1 and w? = 0 are
the unique optimizers of (29), it is sufficient to check the optimality condition in a small neighborhood
of (s? = 1,w? = 0). We also use the following approximation of the function cd(s, r) which is
valid in a small neighborhood around the point (s, r) = (1, 0):

cd(s, r) =
1

π
[((1− s)2 + r2)atan(

r

1− s
)− r(1− s)] . (31)

Next, for fixed |s| < 1, we will find an upper bound for r := ||w|| such that s and w satisfy the
constraint in (29). We use the following inequalities:

r2 d(TL(x0)) ≥ (hTw)2 ≥ m cd(s, r)⇒ r2 ≥ δ cd(s, r) . (32)

Replacing the approximation (31) for cd(s, r), when s ↑ 1 we have,

r ≤ R(δ)(1− s) , (33)

where R(δ) is the unique nonzero solution of the following nonlinear equation:

t2 =
δ

π
((1 + t2)atan(t)− t) . (34)

We are now at the stage to establish the result of Theorem 1. Assume ṽ ∈ ∂L(x0) achieves the
supremum in (7) (Note that ṽ always exist because the set ∂L(x0) is compact). ṽ then satisfies the
following conditions:

1. xT
0 ṽ < 0 ,

2. ||Pṽ|| > R(δ) ||P⊥ṽ|| .

We have the following inequalities:

min
|s|≤1,w⊥x0

max
v∈∂L(x0)

(s− 1)xT
0v + wTv ≥ min

|s|≤1,w⊥x0

(s− 1)xT
0 ṽ + wTṽ

≥ min
|s|≤1,w⊥x0

(1− s)||Pṽ|| − ||w|| ||P⊥ṽ|| ,
(35)

where for the first inequality, we used the fact that maximization over v gives a larger value compare
to choosing the specific vector ṽ. The second inequality we used Cauchy-Schwarz to bound wTv
from below. When s ↑ 1 we use the approximation (32) which bounds ||w|| from above. Therefore,
we have:

(1− s)||Pṽ|| − ||w|| ||P⊥ṽ|| > (1− s)(||Pṽ|| −R(δ)||P⊥ṽ||) > 0. (36)

And this would give the final result that s? = 1, w? = 0 is the unique solution of (29). The perfect
recovery in the generalized PhaseMax follows from the result of Corollary 2.

5.3 Proof of Lemma 4

Define matrix A ∈ Rm×n with ith row equal to the measurement vector ai, for i = 1, 2, . . . ,m. Let
y := |Ax0| ∈ Rm denote the measurement values. To streamline our analysis, we assume ||x0|| = 1.
One can rewrite the constraint set of the optimization problem (2) as followings,

|Ax| ≤ y ⇔ −Ax + y ≥ 0 , and Ax + y ≥ 0, (37)
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where all the inequalities are component-wise. Exploiting the Lagrange multipliers, we can reformu-
late the generalized PhaseMax optimization as,

min
x∈Rn

max
µ,η∈Rm+

− xinit
Tx + λf(x) + (µ− η)

T
Ax− (µ + η)

T
y , (38)

where µi and ηi are Lagrange multipliers for the inequalities aTi x ≤ yi and aTi x ≥ −yi, respectively.
Assume yi > 0 (which happens almost surely), these two inequalities cannot be active at the same
time. Therefore, at least one of µi and ηi must be equal to 0, for every i = 1, 2, . . . ,m. Hence,
we have µ + η = |µ− η|. Here | · | denotes the component-wise absolute value function. Define
v := µ− η ∈ Rm and rewrite the optimization in terms of v gives the following,

min
x∈Rn

max
v∈Rm

− xinit
Tx + λf(x) + vTAx− |v|T|Ax0| . (39)

Since the term |v|T|Ax0| depends on the matrix A, it is not possible to apply the CGMT to the
bilinear form vTAx. In order to apply CGMT, we use the following key decomposition for x:

x = sx0 + w, (40)

where s = xT
0x ∈ R is a scalar and the vector w = P⊥x ∈ Rn is orthogonal to x0. We can rewrite

the optimization problem (39) in terms of s and w,

min
s∈R, w⊥x0

max
v∈Rm

− sρinit − xinit
Tw + λf(sx0 + w) + vtAw + svTAx0 − |v|T|Ax0|,

(41)

where ρinit = xinit
Tx0. Next, we use the following property of Gaussian matrices.

Lemma 5. Let G ∈ Rm×n be a random matrix with i.i.d. standard normal entries, and u,v ∈ Rn
are such that u ⊥ v. The random vectors Gu and Gv are independent.

Proof. Let G = [gi,j ]m×n and define a = Gu, and b = Gv. Since G has Gaussian entries a,b
are Gaussian vectors in Rm. Therefore, to show their independence it is sufficient to show that
E[abT] = 0m×m.

E[aibj ] =

n∑
k=1

n∑
l=1

ukvl E[gi,k gj,l] =

{∑n
k=1 ukvk = 0, if i = j

0 , if i 6= j
, (42)

where we used the fact that uTv =
∑n
k=1 ukvk = 0.

Using the result of Lemma 5 , the random vectors Ax0 and Aw are independent. So, we are allowed
to change the matrix A in the bilinear form vTAw with its independent copy H ∈ Rm×n which also
has i.i.d. standard normal entries. We also define q = Ax0 ∈ Rm, which is independent of H. Note
that since A has i.i.d. normal entries and ||x0|| = 1, the entries of q also has i.i.d. standard normal
distribution. We can rewrite the optimization as follows:

min
s∈R, w⊥x0

max
v∈Rm

− sρinit − xinit
Tw + λf(sx0 + w) + vtHw + svTq− |v|T|q| . (43)

Now, we would like to apply the CGMT framework in Lemma 2 to equation (43), in order to
replace the bilinear form vTHw with two linear forms ||v||hTw + vTg||w||. But this lemma
requires the set that we optimize w over to be compact. In order to be able to apply CGMT, we
enforce an "artificial" bound on the norm of w. Note that our goal is to prove that eventually, ŵ
converges to a finite number α?. We define Kα = α? + ∆ for some ∆ > 0 and also the compact
set Sw = {w|w ⊥ x0 , ‖w‖ ≤ Kα}. Let ŵtemp to be the optimizer to the version of (43) where we
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optimize w over Sw. It is simple to verify that if ‖ŵtemp‖ P−→ α?, then ‖ŵ‖ P−→ α?. This means that
if in the final equation, we get a unique finite solution for the asymptotic behaviour of ‖ŵ‖ (which is
what we do) , the proof goes though and we can apply CGMT.

Now that this concern is taken care of, the following corollary will be the result of applying CGMT
to the equation (43).
Corollary 3. Let x̂ be the unique optimizer of the generalized PhaseMax algorithm (2). As n→∞
the error performance converges in probability as follows:(

||x̂− x0||2

||x0||2

)
−
(
||w?||2 + (1− s?)2

) n→∞−→ 0 , (44)

where s?, w? are the unique optimizers of the following (auxiliary) optimization:

min
s∈R, w⊥x0

max
v∈Rm

− sρinit − xinit
Tw + λf(sx0 + w)− ||v||hTw + vTg||w||+ svTq− |v|T|q| .

(45)

h ∈ Rn and g ∈ Rm are random vectors with i.i.d. standard normal entries.

We proceed onwards with analyzing (45). Observe that if we fix |v|, then the optimal v satisfies
sign(v) = sign(||w||g + sq) (sign(·) are component-wise functions) which simplifies the optimiza-
tion to the following,

min
s∈R, w⊥x0

max
v∈Rm

− sρinit − xinit
Tw + λf(sx0 + w)− ||v||hTw + |v|T(| sq + ||w||g | − |q|),

(46)

By fixing the norm of v and optimizing over its direction, the optimization problem (46) can be
reduced to the following:

min
s∈R, w⊥x0

− sρinit − xinit
Tw + λf(sx0 + w)

subject to: hTw ≥ ||{| sq + ||w||g | − |q|}+|| ,
(47)

where, for a vector c, we let {c}+ denote the component-wise positive part function, with ith entry
equal to max(0, ci). Next, note that q and g are independent vectors in Rm with i.i.d. standard
normal entries. We introduce the function cd(s, r) as follows:
Definition 5. The function cd : R× R+ → R is defined as,

cd(s, r) = EX1,X2
[{|sX1 + rX2| − |X1|}2+] , (48)

where X1,X2
i.i.d.∼ N (0, 1).

The next result creates a connection between the norm of the vector {|sq + ||w||g| − |q|}+, which
appears in the constraint of (47), and the function cd.

Lemma 6. 1
m ||{| sq + ||w||g | − |q|}+||2

P→ cd(s, ||w||), when m→∞.

Proof. Define the vector u ∈ Rm+ as,

u := {| sq + ||w||g | − |q|}+ . (49)

The entries of u are i.i.d and E[u2
i ] = cd(s, ||w||), for 1 ≤ i ≤ m. Therefore, the weak law of large

number gives the following:

1

m
||u||2 =

1

m

m∑
i=1

u2
i

P→ E[u2
i ] = cd(s, ||w||) . (50)
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To conclude the proof of Lemma 4, we exploit the result of Lemma 6 to replace ||{|sq + ||w||g| −
|q|}+|| in (47), which gives us the following optimization:

min
s∈R

min
w∈Rn,w⊥x0

− xinit
T(sx0 + w) + λf(sx0 + w)

subject to: hTw ≥
√
m cd(s, ||w||) .

(51)

Due to lack of space, we are not going through the technical details of obtaining the convergence
result in (51). The point-wise convergence of the objective functions, for fixed values of s and ||w||,
follows from Lemma 6. To show the uniform convergence, we appeal to the convexity of the objective
function. The corresponding convergence of the optimal cost follows from the uniform convergence.

The following lemma gives an explicit formula for the function cd in terms of its two input arguments.
Lemma 7.

cd(s, t) =
1

π
[((1 + s)2 + t2) atan(

t

1 + s
) + ((1− s)2 + t2) atan(

t

1− s
)− 2t]. (52)

Proof.

cd(s, t) = E[{|sX1 + tX2| − |X1|}2+] (53)

=
1

π

∫ ∞
0

e−x
2
1/2

∫ ∞
1−s
t x1

e−x
2
2/2(tx2 − (1− s)x1)2 dx2 dx1 (54)

+
1

π

∫ ∞
0

e−x
2
1/2

∫ − 1+s
t x1

−∞
e−x

2
2/2(tx2 + (1 + s)x1)2 dx2 dx1 ,

where, due to symmetry, we have computed the expectation only for X1 > 0 and multiplied the result
by two. In order to compute the integral change of variable and use the polar coordinates (r, θ) in the
x1x2-plane. Recall that we have x1 = r cos(θ), and x2 = r sin(θ). Applying the change of variables
would result the following:

cd(s, t) =
1

π

∫ π/2

atan( 1−s
t )

∫ ∞
0

r3e−r
2/2(t sin(θ)− (1− s) cos(θ))2 dr dθ (55)

+
1

π

∫ π/2

atan( 1+s
t )

∫ ∞
0

r3e−r
2/2(t sin(θ)− (1 + s) cos(θ))2 dr dθ

=
2

π

∫ π/2

atan( 1−s
t )

(t sin(θ)− (1− s) cos(θ))2 dθ +
2

π

∫ π/2

atan( 1+s
t )

(t sin(θ)− (1 + s) cos(θ))2 dθ

(56)

=
2

π
[
t2 + (1− s)2

2
atan(

t

1− s
)− t(1− s)

2
] +

2

π
[
t2 + (1 + s)2

2
atan(

t

1 + s
)− t(1 + s)

2
]

(57)

=
1

π
[((1 + s)2 + t2) atan(

t

1 + s
) + ((1− s)2 + t2) atan(

t

1− s
)− 2t] . (58)

We derived (56) using the fact that
∫∞

0
r3e−r

2/2dr = 2. Computing each of the integrals with respect
to θ would result in (57), and the final result in (58) is derived by simplifying the terms in (57).

5.4 Proof of Theorem 2

We start from the equivalent optimization derived as the result of Lemma 4, defined as,

18



min
s∈R

min
w∈Rn,w⊥x0

λf(sx0 + w)− sρinit − xinit
Tw (59)

subject to: hTw ≥
√
m cd(s, ||w||) . (60)

One key idea to analyze the optimization is to replace f(sx0 + w) with its first-order linear approxi-
mation around the point x0. Let f̂ denotes the approximation function,

f̂(x) = f(x0) + max
v∈λ∂f(x0)

vT (x− x0) . (61)

Here, ∂f(x0) denotes the sub-differential of f(·) at point x0 which is well-defined for convex
functions and is a compact and convex set. Replacing f(·) with its approximation, enables us to
precisely analyze the conditions for perfect signal recovery in the equivalent optimization (60) which
determines the precise phase transition in the regularized PhaseMax optimization. This approximation
is tight when the norm of the error approaches zero (which occurs in perfect recovery). We refer the
interested reader to [31] for more details.

Therefore, for the rest of this section, we will analyze the following optimization,

min
s∈R

w∈Rn,w⊥x0

max
v∈λ∂f(x0)

f(x0) + λvT (sx0 + w − x0)− sρinit − xinit
Tw

subject to: hTw ≥
√
m cd(s, ||w||) , (62)

Next, we use the dual variable β to rewrite (62) as

min
s∈R

w∈Rn,w⊥x0

max
v∈λ∂f(x0)

β≥0

f(x0) + λvT (sx0 + w − x0)− sρinit − xinit
Tw − β√

n
hTw +

β√
n

√
m cd(s, ||w||) .

(63)

In the next step, we would like to switch the minimization over w with the maximization over β.
But since the objective function is not convex with respect to w, such an exchange wouldn’t be a
direct result of the Sion’s min-max theorem. However, note that the initial optimization satisfies the
conditions of the Sion’s min-max theorem. In the asymptotic settings, using the same techniques as
in [39] (see section A.2.4 in the appendix of the paper), one can show that changing the order of min
and max does not change the solution of the optimization problem.

Hence, we are now able to first do the minimization over w. To do this, we define r := ‖w‖ and
buy fixing r we are computing the minimization with respect to the direction of w. The following
optimization is the result of minimization over the direction of w:

min
s∈R
r≥0

max
v∈λ∂f(x0)

β≥0

(1− s)(ρinit − vTx0)− r · ‖P⊥(λv − xinit −
β√
n
h)‖+ β

√
α cd(s, r) , (64)

where as defined in Section 3, α = m
n is the oversampling ratio, and P⊥ = I−x0x

T
0 is the projection

to the orthogonal subspace of x0.

Up to this point, the result is valid for every convex function f(·). But in order to continue our
analysis, we need the following lemma which restricts us to a specific class of functions, i.e., the
class of absolutely scalable functions.
Lemma 8. Let f : Rn → R be a convex function such that for all x ∈ R and α ≥ 0, f(α x) =
α f(x). Then, for all v ∈ ∂f(x),

vTx = f(x) ,

where ∂f(x) is the set of sub-differentials of function f at point x.

Proof. Since f is convex, for all v ∈ ∂f(x) and any ε < 1, we have

(1− ε) f(x) = f((1− ε)x) ≥ f(x)− εvTx . (65)

Thus, ε f(x) ≤ εvTx. Choosing ε1 = 1/2 and ε2 = −1/2 yields vTx = f(x) which concludes the
proof.
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If we apply Lemma 8 to the objective function in (64), we can replace vTx0 with f(x0) for all
v ∈ ∂f(x0), which gives the following optimization,

min
s∈R
r≥0

max
β≥0

− (1− s)L(x0)− r · min
v∈λP⊥∂L(x0)

‖v − β√
n
h‖+ β

√
α cd(s, r) . (66)

Recall that (1− s) and r ≥ 0 respectively represent the norm of the error in the direction of x0 and
its orthogonal complement. Therefore, the perfect recovery in our optimization corresponds to the
case where the optimizers are r? = 0 and s? = 1, and we are interested in the phase transition ratio
α? for which this happens.

We use the following approximation of the objective function near the point (r, s) = (0, 1), which
was introduced earlier in (31),

cd(s, r) =
1

π
[((1− s)2 + r2)atan(

r

1− s
)− r(1− s)] . (67)

We idefine the new variable t := r
1−s and rewrite the optimization in terms of t and s. One can show

from (67) that as r ↓ 0 and s ↑ 1, the value of cd(s, r) will only depends on the ratio t.

min
s∈R
t≥0

max
β≥0

Ψ(s, t, β) = −(1− s)L(x0)− t(1− s) · distλ∂L⊥(x0)(
β√
n
h) + β(1− s)

√
α((1 + t2)atan(t)− t) ,

(68)

where ∂L⊥(x0) = P⊥∂L(x0) and distS(x) is the distance function defined in Definition 1. Since
we have a convex-concave objective function over three scalars, we can write the first order optimality
conditions for the solutions to (68),


∂
∂βΨ(s, t, β)

∣∣
(s?=1,t?,β?)

= 0
∂
∂sΨ(s, t, β)

∣∣
(s?=1,t?,β?)

= 0
∂
∂tΨ(s, t, β)

∣∣
(s?=1,t?,β?)

= 0

. (69)

We would like to find the conditions (on α) under which the solution to (69) happens at s? = 1.
Therefore, we aim to solve the system of nonlinear equations (69), for three unknowns t, β and δ.

These equations can be written in the following form,

− t ·
β
n‖h‖

2 − hT
√
n

Π∂L⊥(x0)(
β√
n
h)

distλ∂L⊥(x0)(
β√
n
h)

+
√
α((1 + t2)atan(t)− t) = 0

L(x0) + t · distλ∂L⊥(x0)(
β√
n
h)− β

√
α((1 + t2)atan(t)− t) = 0

− distλ∂L⊥(x0)(
β√
n
h) +

β t atan(t)
√
α√

α((1 + t2)atan(t)− t)
= 0 (70)

Next, we are going to exploit the conditions of assumption 1 (see Section 3.2). Using theorem
5.2.2. in [44], both the functions distλ∂L⊥(x0)(

β√
n
h) and hT

√
n

Π∂L⊥(x0)(
β√
n
h) converge point-wise

to their expected value. Moreover, from assumption 1, we know that both E[distλ∂L⊥(x0)( β√
n
h)] and

E[ h
T
√
n

Π∂L⊥(x0)(
β√
n
h)] converge uniformly to Gλ(β) and β − Fλ(β), respectively. Therefore, using

the same arguments as in [39], we can replace distλ∂L⊥(x0)(
β√
n
h) with Fλ(β) in the optimization

(68), and then apply the result of theorem 7.17 in [34], we can show that F ′λ(β) = Gλ(β) G′λ(β).
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Therefore, we are able to use the functions Fλ, and Gλ to rewrite the system of non-linear equa-
tions (70):

− t · Fλ(β)

Gλ(β)
+
√
α((1 + t2)atan(t)− t) = 0

L(x0) + t ·Gλ(β)− β
√
α((1 + t2)atan(t)− t) = 0

−Gλ(β) +
β t atan(t)

√
α√

α((1 + t2)atan(t)− t)
= 0 (71)

By combining the first and third equations, we will get

t = tan(
π

αβ
Fλ(β)) (72)

Finally, using (72) in (71) reduces the number of equations to 2, and yields the following system of
non-linear equations.{

Gλ(β) l = tan( π
αβFλ(β)) (G2

λ(β)− βFλ(β)) ,

tan( π
αβFλ(β)) (Gλ(β)− πl

αβFλ(β)) = π
αβFλ(β) Gλ(β) ,

(73)

This concludes the proof.

5.5 Computing the statistical dimension for the `1 regularization

In this section we bound the statistical dimension of the descent cone of the objective function of (2),
where f(·) = || · ||1 is used for regularization. We assume that the underlying signal, x0, is k-sparse
and define function Lλ : Rn → R as follows,

Lλ(x) := −xinit
Tx + λ||x||1, (74)

In order to derive an upper bound for the statistical dimension d(TLλ(x0)), we first introduce another
summary parameter for convex sets called the Gaussian width.

Definition 6. (Gaussian width) [44] The Gaussian width of a subset T ⊂ Rn is defined as,

ω(T ) = E sup
x∈T
〈x,g〉, where g ∼ N (0, I) . (75)

We use the following proposition which indicates the relationship between the Gaussian width and
statistical dimension of a convex cone.

Proposition 1. (Proposition 10.2 in [1]) Let C ⊂ Rn be a convex cone. Then

ω2(C ∩ Sn−1) ≤ d(C) ≤ ω2(C ∩ Sn−1) + 1 , (76)

where Sn−1 ⊂ Rn is the unit sphere.

The Proposition 1 shows that in order to bound the statistical dimension of a convex cone, we need to
bound the squared Gaussian width of that cone. Hence, in the remaining we will bound the squared
Gaussian width. We shall briefly review some known properties of Gaussian width of convex cones.

5.5.1 Some properties of Gaussian width

The Gaussian width is one of the intrinsic volumes of a body studied in combinatorial geometry. It is
invariant under translation and unitary transformation and has deep connections to convex geometry.
While discussing all the properties of Gaussian width is beyond the scope of this paper, we refer the
interested reader to [33, 42, 44] and references therein.

Inspired by [38, 11], here we bound the Gaussian width of a cone via the distance to its polar cone.
Before stating the proposition, we recall the definition of the polar cone.
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Definition 7. (Polar cone) Let C ⊂ Rn be a non-empty convex cone. The polar cone of C, denoted
by C?, is defined as follows,

C? = {z ∈ Rn : 〈z,x〉 ≤ 0 for all x ∈ C} . (77)

The following proposition establishes a connection between the Gaussian width of the cone C and its
polar cone C?:

Proposition 2. (Proposition 3.6 in [11]). Let C be any non-empty convex cone in Rn, and let
g ∼ N (0, I) be a random Gaussian vector. Then we have the following bound:

ω(C ∩ Sn−1) ≤ Eg[dist(g, C?)] , (78)

where the dist(·, ·) function here denotes the Euclidean distance between a point and a set.

Applying Jensen’s inequality will result in the following,

ω2(C ∩ Sn−1) ≤ Eg[dist2(g, C?)] . (79)

This is very useful in bounding the Gaussian width of the descent cone of a convex function due to
the following lemma:

Lemma 9. [32] For a convex function f : Rn → R,

(Tf (x))
?

= cone(∂f(x)) , (80)

where ∂f(x) is the sub-differential set of function f at point x.

The polar cone of Tf (x) is also called the normal cone, Nf (x), at point x. Exploiting the above
results, we can bound ω2(TL(x0) ∩ Sn−1) in terms of the squared distance to the normal cone at
point x0, i.e., we have the followings,

d(TLλ(x0)) ≤ ω2(TLλ(x0) ∩ Sn−1) + 1 ≤ Eg[dist2(g, cone(∂Lλ(x0))] + 1 . (81)

For simplicity in the remaining formulations we omit the sub-script λ and denote the objective
function by L. Let ∆ denote the set of coordinates where x0 is non-zero. The sub-differential set of
the function L (defined in (74)) can be formally characterized as follows,

∂L(x0) = {−xinit +
λ√
k
v : v ∈ Rn s.t. v[i] = sign(x0[i]) for i ∈ ∆, |v[i]| ≤ 1 for i ∈ ∆c}.

(82)

Here ∆c := [n]−∆ represents the zero entries of x0. Without the loss of generality, we are going
to assume that the first k entries of x0 are non-zero, while the rest are zero. Then, cone of the
sub-differential can be written as

cone(∂f(x)) = {β · (−xinit +
λ√
k
v) : v[1 : k] = 1, ‖v[k + 1 : n]‖∞ ≤ 1, β ≥ 0}. (83)

The squared distance to the normal cone can be formulated as the following optimization:

dist2(g, NL(x0)) = min
t≥0

(
∑
i∈∆

(g[i] + txinit[i]− tλsign(x0[i]))2 (84)

+ min
j∈∆c,|uj |<t

(g[j] + txinit[j]− λuj)2)

Define z := z(t) = g + txinit. We can rewrite the equation (84) as follows,
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dist2(g, NL(x0)) = min
t≥0

(
∑
i∈∆

(z[i]− tλsign(x0[i]))2 (85)

+
∑
j∈∆c

shrink(z[j], tλ)2) ,

where the function shrink(·, ·) is defined as, shrink(x, T ) =


x+ T , x < −T
x , − T ≤ x ≤ T
x− T , x > T

. This function

is known as `1-shrinkage function and is used in sparse denoising. Taking the expectation with respect
to g will provide us with the quantity we would like to bound. We are bounding the expectation of
the squared distance by bounding each of the two terms of the sum. For the first term, we have:

E[
∑
i∈∆

(z[i]− tλsign(x0[i]))2] = k + t2(λ2k − ||x∆
init||2)− 2tλsign(x0)Tx∆

init (86)

Bounding the expectation of the second term in (85) is more involved. Using the same techniques as
Appendix C in [11], we can show the following:

E[
∑
j∈∆c

shrink2(z[j], tλ)] ≤ 2(n− k)σ3

√
2πtλ

exp(
−t2λ2

2σ2
) , (87)

where σ2 := 1 + t2
||x∆

init||
2

n−k .

Using the result of equations (86) and (87), we can see that when λ > c√
k

, then by choosing

t =

√
2 log n

k

λ , both of the terms in the sum are bounded by Ck log n
k , where c and C are constants

that are independent of the problem’s parameters.

Therefore, when λ > c√
k

(where k is the number of non-zero entries), the statistical dimension of
TLλ(x0) is bounded by Ck log n

k . Using the result of Theorem 1, we can conclude that for the sparse
phase retrieval problem the required sample complexity of the regularized PhaseMax is O(k log n

k ).
This indicates that regularized PhaseMax is order-wise optimal.
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