
Sparsified SGD with Memory

Sebastian U. Stich Jean-Baptiste Cordonnier Martin Jaggi

Machine Learning and Optimization Laboratory (MLO)
EPFL, Switzerland

Abstract

Huge scale machine learning problems are nowadays tackled by distributed op-
timization algorithms, i.e. algorithms that leverage the compute power of many
devices for training. The communication overhead is a key bottleneck that hinders
perfect scalability. Various recent works proposed to use quantization or sparsi-
fication techniques to reduce the amount of data that needs to be communicated,
for instance by only sending the most significant entries of the stochastic gradient
(top-k sparsification). Whilst such schemes showed very promising performance
in practice, they have eluded theoretical analysis so far.
In this work we analyze Stochastic Gradient Descent (SGD) with k-sparsification or
compression (for instance top-k or random-k) and show that this scheme converges
at the same rate as vanilla SGD when equipped with error compensation (keeping
track of accumulated errors in memory). That is, communication can be reduced
by a factor of the dimension of the problem (sometimes even more) whilst still
converging at the same rate. We present numerical experiments to illustrate the
theoretical findings and the good scalability for distributed applications.

1 Introduction

Stochastic Gradient Descent (SGD) [29] and variants thereof (e.g. [10, 16]) are among the most
popular optimization algorithms in machine- and deep-learning [5]. SGD consists of iterations of the
form

xt+1 := xt − ηtgt , (1)

for iterates xt,xt+1 ∈ Rd, stepsize (or learning rate) ηt > 0, and stochastic gradient gt with the
property E[gt] = ∇f(xt), for a loss function f : Rd → R. SGD addresses the computational
bottleneck of full gradient descent, as the stochastic gradients can in general be computed much
more efficiently than a full gradient ∇f(xt). However, note that in general both gt and ∇f(xt)
are dense vectors1 of size d, i.e. SGD does not address the communication bottleneck of gradient
descent, which occurs as a roadblock both in distributed as well as parallel training. In the setting of
distributed training, communicating the stochastic gradients to the other workers is a major limiting
factor for many large scale (deep) learning applications, see e.g. [3, 21, 33, 44]. The same bottleneck
can also appear for parallel training, e.g. in the increasingly common setting of a single multi-core
machine or device, where locking and bandwidth of memory write operations for the common shared
parameter xt often forms the main bottleneck, see e.g. [14, 18, 25].

A remedy to address these issues seems to enforce applying smaller and more efficient updates
comp(gt) instead of gt, where comp: Rd → Rd generates a compression of the gradient, such as by
lossy quantization or sparsification. We discuss different schemes below. However, too aggressive

1 Note that the stochastic gradients gt are dense vectors for the setting of training neural networks. The gt
themselves can be sparse for generalized linear models under the additional assumption that the data is sparse.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

compression can hurt the performance, unless it is implemented in a clever way: 1Bit-SGD [33, 37]
combines gradient quantization with an error compensation technique, which is a memory or feedback
mechanism. We in this work leverage this key mechanism but apply it within the more general setting
of SGD. We will now sketch how the algorithm uses feedback to correct for errors accumulated in
previous iterations. Roughly speaking, the method keeps track of a memory vector m which contains
the sum of the information that has been suppressed thus far, i.e. mt+1 := mt + gt − comp(gt),
and injects this information back in the next iteration, by transmitting comp(mt+1 + gt+1) instead
of only comp(gt+1). Note that updates of this kind are not unbiased (even if comp(gt+1) would be)
and there is also no control over the delay after which the single coordinates are applied. These are
some (technical) reasons why there exists no theoretical analysis of this scheme up to now.

In this paper we give a concise convergence rate analysis for SGD with memory and k-compression op-
erators2, such as (but not limited to) top-k sparsification. Our analysis also supports ultra-sparsification
operators for which k < 1, i.e. where less than one coordinate of the stochastic gradient is applied on
average in (1). We not only provide the first convergence result of this method, but the result also
shows that the method converges at the same rate as vanilla SGD.

1.1 Related Work

There are several ways to reduce the communication in SGD. For instance by simply increasing the
amount of computation before communication, i.e. by using large mini-batches (see e.g. [12, 43]), or
by designing communication-efficient schemes [45]. These approaches are a bit orthogonal to the
methods we consider in this paper, which focus on quantization or sparsification of the gradient.

Several papers consider approaches that limit the number of bits to represent floating point num-
bers [13, 24, 31]. Recent work proposes adaptive tuning of the compression ratio [7]. Unbiased
quantization operators not only limit the number of bits, but quantize the stochastic gradients in such
a way that they are still unbiased estimators of the gradient [3, 41]. The ZipML framework also
applies this technique to the data [44]. Sparsification methods reduce the number of non-zero entries
in the stochastic gradient [3, 40].

A very aggressive sparsification method is to keep only very few coordinates of the stochastic gradient
by considering only the coordinates with the largest magnitudes [1, 9]. In contrast to the unbiased
schemes it is clear that such methods can only work by using some kind of error accumulation or
feedback procedure, similar to the one the we have already discussed [33, 37], as otherwise certain
coordinates could simply never be updated. However, in certain applications no feedback mechanism
is needed [38]. Also more elaborate sparsification schemes have been introduced [21].

Asynchronous updates provide an alternative solution to disguise the communication overhead
to a certain amount [19]. However, those methods usually rely on a sparsity assumption on the
updates [25, 31], which is not realistic e.g. in deep learning. We like to advocate that combining
gradient sparsification with those asynchronous schemes seems to be a promising approach, as
it combines the best of both worlds. Other scenarios that could profit from sparsification are
heterogeneous systems or specialized hardware, e.g. accelerators [11, 44].

Convergence proofs for SGD [29] typically rely on averaging the iterates [23, 27, 30], though
convergence of the last iterate can also be proven [34]. For our convergence proof we rely on
averaging techniques that give more weight to more recent iterates [17, 28, 34], as well as the
perturbed iterate framework from Mania et al. [22] and techniques from [18, 36].

Simultaneous to our work, [4, 39] at NeurIPS 2018 propose related schemes. Whilst Tang et
al. [39] only consider unbiased stochastic compression schemes, Alistarh et al. [4] study biased
top-k sparsification. Their scheme also uses a memory vector to compensate for the errors, but their
analysis suffers from a slowdown proportional to k, which we can avoid here. Another simultaneous
analysis of Wu et al. [42] at ICML 2018 is restricted to unbiased gradient compression. This scheme
also critically relies on an error compensation technique, but in contrast to our work the analysis
is restricted to quadratic functions and the scheme introduces two additional hyperparameters that
control the feedback mechanism.

2See Definition 2.1.

2

1.2 Contributions

We consider finite-sum convex optimization problems f : Rd → R of the form

f(x) =
1

n

n∑
i=1

fi(x) , x? := arg min
x∈Rd

f(x) , f? := f(x?) , (2)

where each fi is L-smooth3 and f is µ-strongly convex4. We consider a sequential sparsified SGD
algorithm with error accumulation technique and prove convergence for k-compression operators,
0 < k ≤ d (for instance the sparsification operators top-k or random-k). For appropriately chosen
stepsizes and an averaged iterate x̄T after T steps we show convergence

E f(x̄T)− f? = O
(
G2

µT

)
+O

(
d2

k2G
2κ

µT 2

)
+O

(
d3

k3G
2

µT 3

)
, (3)

for κ = L
µ and G2 ≥ E ‖∇fi(xt)‖2. Not only is this, to the best of our knowledge, the first

convergence result for sparsified SGD with memory, but the result also shows that the leading term
O
(
G2

µT

)
in the convergence rate is the same term as in the convergence rate as for vanilla SGD.

We introduce the method formally in Section 2 and show a sketch of the convergence proof in
Section 3. In Section 4 we include a few numerical experiments for illustrative purposes. The
experiments highlight that top-k sparsification yields a very effective compression method and
does not hurt convergence. We also report results for a parallel multi-core implementation of SGD
with memory that show that the algorithm scales as well as asynchronous SGD and drastically
decreases the communication cost without sacrificing the rate of convergence. We like to stress that
the effectiveness of SGD variants with sparsification techniques has already been demonstrated in
practice [1, 9, 21, 33, 37].

Although we do not yet provide convergence guarantees for parallel and asynchronous variants
of the scheme, this is the main application of this method. For instance, we like to highlight that
asynchronous SGD schemes [2, 25] could profit from the gradient sparsification. To demonstrate this
use-case, we include in Section 4 a set of experiments for a multi-core implementation.

2 SGD with Memory

In this section we present the sparsified SGD algorithm with memory. First we introduce sparsification
and quantization operators which allow us to drastically reduce the communication cost in comparison
with vanilla SGD.

2.1 Compression and Sparsification Operators

We consider compression operators that satisfy the following contraction property:

Definition 2.1 (k-contraction). For a parameter 0 < k ≤ d, a k-contraction operator is a (possibly
randomized) operator comp: Rd → Rd that satisfies the contraction property

E ‖x− comp(x)‖2 ≤
(

1− k

d

)
‖x‖2 , ∀x ∈ Rd. (4)

The contraction property is sufficient to obtain all mathematical results that are derived in this paper.
However, note that (4) does not imply that comp(x) is a necessarily sparse vector. Also dense vectors
can satisfy (4). One of the main goals of this work is to derive communication efficient schemes, thus
we are particularly interested in operators that also ensure that comp(x) can be encoded much more
efficiently than the original x.

The following two operators are examples of k-contraction operators with the additional property of
being k-sparse vectors:

3fi(y) ≤ fi(x) + 〈∇fi(x),y − x〉+ L
2
‖y − x‖2, ∀x,y ∈ Rd, i ∈ [n].

4f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µ
2
‖y − x‖2, ∀x,y ∈ Rd.

3

Definition 2.2. For a parameter 1 ≤ k ≤ d, the operators topk : Rd → Rd and randk : Rd×Ωk →
Rd, where Ωk =

(
[d]
k

)
denotes the set of all k element subsets of [d], are defined for x ∈ Rd as

(topk(x))i :=

{
(x)π(i), if i ≤ k ,
0 otherwise ,

(randk(x, ω))i :=

{
(x)i, if i ∈ ω ,
0 otherwise ,

(5)

where π is a permutation of [d] such that (|x|)π(i) ≥ (|x|)π(i+1) for i = 1, . . . , d− 1. We abbreviate
randk(x) whenever the second argument is chosen uniformly at random, ω ∼u.a.r. Ωk.

It is easy to see that both operators satisfy Definition 2.1 of being a k-contraction. For completeness
the proof is included in Appendix A.1.

We note that our setting is more general than simply measuring sparsity in terms of the cardinality, i.e.
the non-zero elements of vectors in Rd. Instead, Definition 2.1 can also be considered for quantization
or e.g. floating point representation of each entry of the vector. In this setting we would for instance
measure sparsity in terms of the number of bits that are needed to encode the vector. By this, we can
also use stochastic rounding operators (similar as the ones used in [3], but with different scaling) as
compression operators according to (4). Also gradient dropping [1] trivially satisfies (4), though with
different parameter k in each iteration.

Remark 2.3 (Ultra-sparsification). We like to highlight that many other operators do satisfy Defini-
tion 2.1, not only the two examples given in Definition 2.2. As a notable variant is to pick a random
coordinate of a vector with probability k

d , for 0 < k ≤ 1, property (4) holds even if k < 1. I.e. it
suffices to transmit on average less than one coordinate per iteration (this would then correspond to
a mini-batch update).

2.2 Variance Blow-up for Unbiased Updates

Before introducing SGD with memory we first discuss a motivating example. Consider the following
variant of SGD, where (d− k) random coordinates of the stochastic gradient are dropped:

xt+1 := xt − ηtgt , gt := d
k · randk(∇fi(xt)) , (6)

where i ∼u.a.r [n]. It is important to note that the update is unbiased, i.e. Egt = ∇f(x). For
carefully chosen stepsizes ηt this algorithm converges at rate O

(
σ2

t

)
on strongly convex and smooth

functions f , where σ2 is an upper bound on the variance, see for instance [46]. We have

σ2 = E
∥∥ d
k randk(∇fi(x))−∇f(x)

∥∥2 ≤ E
∥∥ d
k randk(∇fi(x))

∥∥2 ≤ d
k Ei ‖∇fi(x)‖2 ≤ d

kG
2

where we used the variance decomposition E ‖X − EX‖2 = E ‖X‖2 − ‖EX‖2 and the standard
assumption Ei ‖∇fi(x)‖2 ≤ G2. Hence, when k is small this algorithm requires d times more
iterations to achieve the same error guarantee as vanilla SGD with k = d.

It is well known that by using mini-batches the variance of the gradient estimator can be reduced. If we
consider in (6) the estimator gt := d

k · randk
(
1
τ

∑
i∈Iτ ∇fi(xt)

)
for τ = dkde, and Iτ ∼u.a.r.

(
[n]
k

)
instead, we have

σ2 = E ‖gt −∇f(xt)‖2 ≤ E
∥∥ d
k · randk

(
1
τ

∑
i∈Iτ ∇fi(xt)

)∥∥2 ≤ d
kτ Ei ‖∇fi(xt)‖

2 ≤ G2 . (7)

This shows that, when using mini-batches of appropriate size, the sparsification of the gradient does
not hurt convergence. However, by increasing the mini-batch size, we increase the computation by a
factor of dk .

These two observations seem to indicate that the factor dk is inevitably lost, either by increased number
of iterations or increased computation. However, this is no longer true when the information in (6)
is not dropped, but kept in memory. To illustrate this, assume k = 1 and that index i has not been
selected by the rand1 operator in iterations t = t0, · · · , ts−1, but is selected in iteration ts. Then
the memory mts ∈ Rd contains this past information (mts)i =

∑ts−1

t=t0
(∇fit(xt))i. Intuitively, we

would expect that the variance of this estimator is now reduced by a factor of s compared to the naïve
estimator in (6), similar to the mini-batch update in (7). Indeed, SGD with memory converges at the
same rate as vanilla SGD, as we will demonstrate below.

4

Algorithm 1 MEM-SGD
1: Initialize variables x0 and m0 = 0
2: for t in 0 . . . T − 1 do
3: Sample it uniformly in [n]
4: gt ← compk(mt + ηt∇fit(xt))
5: xt+1 ← xt − gt
6: mt+1 ←mt + ηt∇fit(xt)− gt
7: end for

Algorithm 2 PARALLEL-MEM-SGD
1: Initialize shared variable x

and mw
0 = 0, ∀w ∈ [W]

2: parallel for w in 1 . . .W do
3: for t in 0 . . . T − 1 do
4: Sample iwt uniformly in [n]
5: gwt ← compk(mw

t + ηt∇fiwt (x))
6: x← x− gwt . shared memory
7: mw

t+1 ←mw
t + ηt∇fiwt (x)− gwt

8: end for
9: end parallel for

Figure 1: Left: The MEM-SGD algorithm. Right: Implementation for multi-core experiments.

2.3 SGD with Memory: Algorithm and Convergence Results

We consider the following algorithm for parameter 0 < k ≤ d, using a compression operator
compk : Rd → Rd which is a k-contraction (Definition 2.1)

xt+1 := xt − gt , gt := compk(mt + ηt∇fit(xt)) , mt+1 := mt + ηt∇fit(xt)− gt , (8)
where it ∼u.a.r. [n], m0 := 0 and {ηt}t≥0 denotes a sequence of stepsizes. The pseudocode is given
in Algorithm 1. Note that the gradients get multiplied with the stepsize ηt at the timestep t when they
put into memory, and not when they are (partially) retrieved from the memory.

We state the precise convergence result for Algorithm 1 in Theorem 2.4 below. In Remark 2.6 we
give a simplified statement in big-O notation for a specific choice of the stepsizes ηt.

Theorem 2.4. Let fi be L-smooth, f be µ-strongly convex, 0 < k ≤ d, Ei ‖∇fi(xt)‖2 ≤ G2 for
t = 0, . . . , T − 1, where {xt}t≥0 are generated according to (8) for stepsizes ηt = 8

µ(a+t) and shift

parameter a > 1. Then for α > 4 such that (α+1) dk+ρ

ρ+1 ≤ a, with ρ := 4α
(α−4)(α+1)2 , it holds

E f(x̄T)− f? ≤ 4T (T + 2a)

µST
G2 +

µa3

8ST
‖x0 − x?‖2 +

64T
(
1 + 2Lµ

)
µST

(
4α

α− 4

)
d2

k2
G2 , (9)

where x̄T = 1
ST

∑T−1
t=0 wtxt, for wt = (a+ t)2, and ST =

∑T−1
t=0 wt ≥ 1

3T
3.

Remark 2.5 (Choice of the shift a). Theorem 2.4 says that for any shift a > 1 there is a parameter
α(a) > 4 such that (9) holds. However, for the choice a = O(1) one has to set α such that
α
α−4 = Ω(dk) and the last term in (9) will be of order O(d3

k3T 2), thus requiring T = Ω(d
1.5

k1.5) steps

to yield convergence. For α ≥ 5 we have α
α−4 = O(1) and the last term is only of order O(d2

k2T 2)

instead. However, this requires typically a large shift. Observe (α+1) dk+ρ

ρ+1 ≤ 1+(α+1) dk ≤ (α+2) dk ,
i.e. setting a = (α + 2) dk is enough. We like to stress that in general it is not advisable to set
a� (α+ 2) dk as the first two terms in (9) depend on a. In practice, it often suffices to set a = d

k , as
we will discuss in Section 4.
Remark 2.6. As discussed in Remark 2.5 above, setting α = 5 and a = (α+ 2) dk is feasible. With
this choice, equation (9) simplifies to

E f(x̄T)− f? ≤ O
(
G2

µT

)
+O

(
d2

k2G
2κ

µT 2

)
+O

(
d3

k3G
2

µT 3

)
, (10)

for κ = L
µ . To estimate the second term in (9) we used the property Eµ ‖x0 − x?‖ ≤ 2G for

µ-strongly convex f , as derived in [28, Lemma 2]. We observe that for large T the first term, O(G
2

µT),
is dominating the rate. This is the same term as in the convergence rate of vanilla SGD [17].

3 Proof Outline

We now give an outline of the proof. The proofs of the lemmas are given in Appendix A.2.

5

Perturbed iterate analysis. Inspired by the perturbed iterate framework in [22] and [18] we first
define a virtual sequence {x̃t}t≥0 in the following way:

x̃0 = x0 , x̃t+1 = x̃t − ηt∇fit(xt) , (11)

where the sequences {xt}t≥0, {ηt}t≥0 and {it}t≥0 are the same as in (8). Notice that

x̃t − xt =
(
x0 −

∑t−1
j=0 ηj∇fij (xj)

)
−
(
x0 −

∑t−1
j=0 gj

)
= mt . (12)

Lemma 3.1. Let {xt}t≥0 and {x̃t}t≥0 be defines as in (8) and (11) and let fi be L-smooth and f
be µ-strongly convex with Ei ‖∇fi(xt)‖2 ≤ G2. Then

E ‖x̃t+1 − x?‖2 ≤
(

1− ηtµ

2

)
E ‖x̃t − x?‖2 + η2tG

2 − ηtet + ηt(µ+ 2L)E ‖mt‖2 , (13)

where et := E f(xt)− f?.

Bounding the memory. From equation (13) it becomes clear that we should derive an upper bound
on E ‖mt‖2. For this we will use the contraction property (4) of the compression operators.

Lemma 3.2. Let {xt}t≥0 as defined in (8) for 0 < k ≤ d, Ei ‖∇fi(xt)‖2 ≤ G2 and stepsizes
ηt = 8

µ(a+t) with a, α > 4, as in Theorem 2.4. Then

E ‖mt‖2 ≤ η2t
4α

α− 4

d2

k2
G2 . (14)

Optimal averaging. Similar as discussed in [17, 28, 34] we have to define a suitable averaging
scheme for the iterates {xt}t≥0 to get the optimal convergence rate. In contrast to [17] that use
linearly increasing weights, we use quadratically increasing weights, as for instance [34, 36].
Lemma 3.3. Let {at}t≥0, at ≥ 0, {et}t≥0, et ≥ 0, be sequences satisfying

at+1 ≤
(

1− µηt
2

)
at + η2tA+ η3tB − ηtet , (15)

for ηt = 8
µ(a+t) and constants A,B ≥ 0, µ > 0, a > 1. Then

1

ST

T−1∑
t=0

wtet ≤
µa3

8ST
a0 +

4T (T + 2a)

µST
A+

64T

µ2ST
B , (16)

for wt = (a+ t)2 and ST :=
∑T−1
t=0 wt = T

6

(
2T 2 + 6aT − 3T + 6a2 − 6a+ 1

)
≥ 1

3T
3.

Proof of Theorem 2.4. The proof of the theorem immediately follows from the three lemmas that
we have presented in this section and convexity of f , i.e. we have E f(x̄T)− f? ≤ 1

ST

∑T−1
t=0 wtet

in (16), for constants A = G2 and B = (µ+ 2L) 4α
α−4

d2

k2G
2. �

4 Experiments

We present numerical experiments to illustrate the excellent convergence properties and communica-
tion efficiency of MEM-SGD. As the usefulness of SGD with sparsification techniques has already
been shown in practical applications [1, 9, 21, 33, 37] we focus here on a few particular aspects. First,
we verify the impact of the initial learning rate that did come up in the statement of Theorem 2.4.
We then compare our method with QSGD [3] which decreases the communication cost in SGD by
using random quantization operators, but without memory. Finally, we show the performance of the
parallel SGD depicted in Algorithm 2 in a multi-core setting with shared memory and compare the
speed-up to asynchronous SGD.

4.1 Experimental Setup

Models. The experiments focus on the performance of MEM-SGD applied to logistic regression.
The associated objective function is 1

n

∑n
i=1 log(1 + exp(−bia>i x)) + λ

2 ‖x‖2, where ai ∈ Rd and
bi ∈ {−1,+1} are the data samples, and we employ a standard L2-regularizer. The regularization
parameter is set to λ = 1/n for both datasets following [32].

6

n d density
epsilon 400’000 2’000 100%
RCV1-test 677’399 47’236 0.15%

Table 1: Datasets statistics.

parameter value

epsilon γ 2
a d/k

RCV1-test γ 2
a 10d/k

Table 2: Learning rate ηt = γ/(λ(t+ a)).

Datasets. We consider a dense dataset, epsilon [35], as well as a sparse dataset, RCV1 [20] where
we train on the larger test set. Statistics on the datasets are listed in Table 1.

Implementation. We use Python3 and the numpy library [15]. Our code is open-source and
publicly available at github.com/epfml/sparsifiedSGD. We emphasize that our high level
implementation is not optimized for speed per iteration but for readability and simplicity. We only
report convergence per iteration and relative speedups, but not wall-clock time because unequal efforts
have been made to speed up the different implementations. Plots additionally show the baseline
computed with the standard optimizer LogisticSGD of scikit-learn [26]. Experiments were run on
an Ubuntu 18.04 machine with a 24 cores processor Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz.

4.2 Verifying the Theory

We study the convergence of the method using the stepsizes ηt = γ/(λ(t+a)) and hyperparameters γ
and a set as in Table 2. We compute the final estimate x̄ as a weighted average of all iterates xt
with weights wt = (t+ a)2 as indicated by Theorem 2.4. The results are depicted in Figure 2. We
use k ∈ {1, 2, 3} for epsilon and k ∈ {10, 20, 30} for RCV1 to increase the difference with large
number of features. The topk variant consistently outperforms randk and sometimes outperforms
vanilla SGD, which is surprising and might come from feature characteristics of the datasets. We
also evaluate the impact of the delay a in the learning rate: setting it to 1 instead of order O(d/k)
dramatically hurts the memory and requires time to recover from the high initial learning rate (labeled
“without delay” in Figure 2).

We experimentally verified the convergence properties of MEM-SGD for different sparsification
operators and stepsizes but we want to further evaluate its fundamental benefits in terms of sparsity
enforcement and reduction of the communication bottleneck. The gain in communication cost of SGD
with memory is very high for dense datasets—using the top1 strategy on epsilon dataset improves the
amount of communication by 103 compared to SGD. For the sparse dataset, SGD can readily use the
given sparsity of the gradients. Nevertheless, the improvement for top10 on RCV1 is of approximately
an order of magnitude.

0 1 2 3

epoch

100

3× 10−1

4× 10−1

6× 10−1

tra
in

in
g

lo
ss

epsilon dataset

SGD
rand k=1
rand k=2
rand k=3
top k=1
without delay
baseline

0 1 2 3

epoch

10−1

2× 10−1

3× 10−1

4× 10−1

tra
in

in
g

lo
ss

RCV1 dataset

SGD
rand k=10
rand k=20
rand k=30
top k=10
without delay
baseline

Figure 2: Convergence of MEM-SGD using different sparsification operators compared to full SGD
with theoretical learning rates (parameters in Table 2).

7

https://github.com/epfml/sparsifiedSGD
github.com/epfml/sparsifiedSGD

0 2 4 6 8 10

epoch

0.28

0.29

0.30

0.31

0.32

0.33

0.34

tra
in

in
g

lo
ss

epsilon dataset

SGD
top k=1
rand k=1
QSGD 8bits
QSGD 4bits
QSGD 2bits
baseline

0 2 4 6 8 10

epoch

0.085

0.090

0.095

0.100

0.105

0.110
RCV1 dataset

SGD
top k=1
rand k=1
QSGD 8bits
QSGD 4bits
QSGD 2bits
baseline

10−1 100 101 102 103 104

total size of communicated gradients (MB)

0.28

0.29

0.30

0.31

0.32

0.33

0.34

tra
in

in
g

lo
ss

10−1 100 101 102

total size of communicated gradients (MB)

0.085

0.090

0.095

0.100

0.105

0.110

Figure 3: MEM-SGD and QSGD convergence comparison. Top row: convergence in number of
iterations. Bottom row: cumulated size of the communicated gradients during training. We compute
the loss 10 times per epoch and remove the point at 0MB for clarity.

4.3 Comparison with QSGD

Now we compare MEM-SGD with the QSGD compression scheme [3] which reduces communication
cost by random quantization. The accuracy (and the compression ratio) in QSGD is controlled by a
parameter s, corresponding to the number of quantization levels. Ideally, we would like to set the
quantization precision in QSGD such that the number of bits transmitted by QSGD and MEM-SGD
are identical and compare their convergence properties. However, even for the lowest precision,
QSGD needs to send the sign and index of O(

√
d) coordinates. It is therefore not possible to reach

the compression level of sparsification operators such as top-k or random-k, that only transmit a
constant number of bits per iteration (up to logarithmic factors).5 Hence, we did not enforce this
condition and resorted to pick reasonable levels of quantization in QSGD (s = 2b with b ∈ {2, 4, 8}).
Note that b-bits stands for the number of bits used to encode s = 2b levels but the number of bits
transmitted in QSGD can be reduced using Elias coding. As a fair comparison in practice, we chose a
standard learning rate γ0/(1 + γ0λt)

−1 [6], tuned the hyperparameter γ0 on a subset of each dataset
(see Appendix B). Figure 3 shows that MEM-SGD with top1 on epsilon and RCV1 converges as
fast as QSGD in term of iterations for 8 and 4-bits. As shown in the bottom of Figure 3, we are
transmitting two orders of magnitude fewer bits with the top1 sparsifier concluding that sparsification
offers a much more aggressive and performant strategy than quantization.

4.4 Multicore experiment

We implement a parallelized version of MEM-SGD, as depicted in Algorithm 2. The enforced
sparsity allows us to do the update in shared memory using a lock-free mechanism as in [25]. For
this experiment we evaluate the final iterate xT instead of the weighted average x̄T above, and use
the learning rate ηt ≡ (1 + t)−1.

Figure 4 shows the speed-up obtained when increasing the number of cores. We see that both sparsified
SGD and vanilla SGD have a linear speed-up, the slopes are dependent of the implementation details.
But we observe that PARALLEL-MEM-SGD with a reasonable sparsification parameter k does not
suffer of having multiple independent memories. The experiment is run on a single machine with a

5Encoding the indices of the top-k or random-k elements can be done with additional O(k log d) bits. Note
that log d ≤ 32 ≤

√
d for both our examples.

8

1 2 3 5 8 10 12 15 18 20 22 24

cores

1
2
3

5

8

10

12

15

18

20

22

24

re
la

tiv
e

sp
ee

d
up

to
co

nv
er

ge
nc

e

epsilon dataset

SGD
rand k=10
top k=10
ideal

1 2 3 5 8 10 12 15 18 20 24

cores

1
2
3

5

8

10

12

15

18

20

24
RCV1 dataset

SGD
rand k=50
top k=50
ideal

Figure 4: Multicore wall-clock time speed up comparison between MEM-SGD and lock-free SGD.
The colored area depicts the best and worst results of 3 independent runs for each dataset.

24 core processor, hence no inter-node communication is used. The main advantage of our method—
overcoming the communication bottleneck— would be even more visible in a multi-node setup. In
this asynchronous setup, SGD with memory computes gradients on stale iterates that differ only by a
few coordinates. It encounters fewer inconsistent read/write operations than lock free asynchronous
SGD and exhibits better scaling properties on the RCV1 dataset. The topk operator performs better
than randk in the sequential setup, but this is not the case in the parallel setup.

5 Conclusion

We provide the first concise convergence analysis of sparsified SGD [1, 9, 33, 37]. This extremely
communication-efficient variant of SGD enforces sparsity of the applied updates by only updating a
constant number of coordinates in every iteration. This way, the method overcomes the communica-
tion bottleneck of SGD, while still enjoying the same convergence rate in terms of stochastic gradient
computations.

Our experiments verify the drastic reduction in communication cost by demonstrating that MEM-
SGD requires one to two orders of magnitude less bits to be communicated than QSGD [3] while
converging to the same accuracy. The experiments show an advantage for the top-k sparsification over
random sparsification in the serial setting, but not in the multi-core shared memory implementation.
There, both schemes are on par, and show better scaling than a simple shared memory implementation
that just writes the unquantized updates in a lock-free asynchronous fashion (like Hogwild! [25]).

The theoretical insights to MEM-SGD that were developed here should facilitate the analysis of the
same scheme in the parallel (as developped in [8]) and the distributed setting. It has already been
shown in practice that gradient sparsification can be efficiently applied to bandwidth memory limited
systems such as multi-GPU training for neural networks [1, 9, 21, 33, 37]. By delivering sparsity no
matter if the original gradients were sparse or not, our scheme is not only communication efficient,
but becomes more eligible for asynchronous implementations as well. While those were so far limited
by strict sparsity assumptions (as e.g. in [25]), our approach might make such methods much more
widely applicable.

Acknowledgments

We would like to thank Dan Alistarh for insightful discussions in the early stages of this project and
Frederik Künstner for his useful comments on the various drafts of this manuscript. We acknowledge
funding from SNSF grant 200021_175796, Microsoft Research JRC project ‘Coltrain’, as well as a
Google Focused Research Award.

9

References
[1] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
440–445. Association for Computational Linguistics, 2017.

[2] Dan Alistarh, Christopher De Sa, and Nikola Konstantinov. The convergence of stochastic gradient descent
in asynchronous shared memory. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC ’18, pages 169–178, New York, NY, USA, 2018. ACM.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, NIPS - Advances in Neural Information Processing
Systems 30, pages 1709–1720. Curran Associates, Inc., 2017.

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli.
The convergence of sparsified gradient methods. In NeurIPS 2018, to appear and CoRR abs/1809.10505,
2018.

[5] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Yves Lechevallier and
Gilbert Saporta, editors, Proceedings of COMPSTAT’2010, pages 177–186, Heidelberg, 2010. Physica-
Verlag HD.

[6] Leon Bottou. Stochastic Gradient Descent Tricks, volume 7700, page 430–445. Springer, January 2012.

[7] Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakrishnan.
Adacomp : Adaptive residual gradient compression for data-parallel distributed training. In Sheila A.
McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018. AAAI Press, 2018.

[8] Jean-Baptiste Cordonnier. Convex optimization using sparsified stochastic gradient descent with memory.
Master’s thesis, EPFL, Lausanne, Switzerland, 2018.

[9] Nikoli Dryden, Sam Ade Jacobs, Tim Moon, and Brian Van Essen. Communication quantization for
data-parallel training of deep neural networks. In Proceedings of the Workshop on Machine Learning in
High Performance Computing Environments, MLHPC ’16, pages 1–8, Piscataway, NJ, USA, 2016. IEEE
Press.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121–2159, August 2011.

[11] Celestine Dünner, Thomas Parnell, and Martin Jaggi. Efficient use of limited-memory accelerators for
linear learning on heterogeneous systems. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, NIPS - Advances in Neural Information Processing Systems 30,
pages 4258–4267. Curran Associates, Inc., 2017.

[12] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ImageNet in 1 hour.
CoRR, abs/1706.02677, 2017.

[13] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pages 1737–1746. JMLR.org, 2015.

[14] Cho-Jui Hsieh, Hsiang-Fu Yu, and Inderjit Dhillon. Passcode: Parallel asynchronous stochastic dual
co-ordinate descent. In International Conference on Machine Learning, pages 2370–2379, 2015.

[15] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python, 2001–.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[17] Simon Lacoste-Julien, Mark W. Schmidt, and Francis R. Bach. A simpler approach to obtaining an O(1/t)
convergence rate for the projected stochastic subgradient method. CoRR, abs/1212.2002, 2012.

[18] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. ASAGA: Asynchronous parallel SAGA.
In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages 46–54, Fort
Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

10

[19] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel optimization
analysis for stochastic incremental methods. CoRR, abs/1801.03749, January 2018.

[20] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

[21] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. In ICLR 2018 - International Conference on Learning
Representations, 2018.

[22] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran, and Michael I.
Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM Journal on Optimization,
27(4):2202–2229, 2017.

[23] Eric Moulines and Francis R. Bach. Non-asymptotic analysis of stochastic approximation algorithms for
machine learning. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
NIPS - Advances in Neural Information Processing Systems 24, pages 451–459. Curran Associates, Inc.,
2011.

[24] Taesik Na, Jong Hwan Ko, Jaeha Kung, and Saibal Mukhopadhyay. On-chip training of recurrent neural
networks with limited numerical precision. 2017 International Joint Conference on Neural Networks
(IJCNN), pages 3716–3723, 2009.

[25] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. HOGWILD!: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS - Proceedings of the 24th International Conference on
Neural Information Processing Systems, NIPS’11, pages 693–701, USA, 2011. Curran Associates Inc.

[26] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

[27] Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

[28] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for strongly
convex stochastic optimization. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, ICML’12, pages 1571–1578, USA, 2012. Omnipress.

[29] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathematical
Statistics, 22(3):400–407, September 1951.

[30] David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical report,
Cornell University Operations Research and Industrial Engineering, 1988.

[31] Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified analysis
of HOGWILD!-style algorithms. In NIPS - Proceedings of the 28th International Conference on Neural
Information Processing Systems, NIPS’15, pages 2674–2682, Cambridge, MA, USA, 2015. MIT Press.

[32] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. Math. Program., 162(1-2):83–112, March 2017.

[33] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Haizhou Li, Helen M. Meng, Bin Ma,
Engsiong Chng, and Lei Xie, editors, INTERSPEECH, pages 1058–1062. ISCA, 2014.

[34] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pages 71–79, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[35] Soren Sonnenburg, Vojtvech Franc, E. Yom-Tov, and M. Sebag. Pascal large scale learning challenge.
10:1937–1953, 01 2008.

[36] Sebastian U. Stich. Local SGD converges fast and communicates little. CoRR, abs/1805.09767, May 2018.

[37] Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing. In INTER-
SPEECH, pages 1488–1492. ISCA, 2015.

11

[38] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 3299–3308, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

[39] Hanlin Tang, Shaoduo Gan, Ce Zhang, and Ji Liu. Communication compression for decentralized training.
In NeurIPS 2018, to appear and CoRR abs/1803.06443, 2018.

[40] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient
distributed optimization. In NeurIPS 2018, to appear and CoRR abs/1710.09854, 2018.

[41] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, NIPS - Advances in Neural Information
Processing Systems 30, pages 1509–1519. Curran Associates, Inc., 2017.

[42] Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized SGD and its
applications to large-scale distributed optimization. In ICML 2018 - Proceedings of the 35th International
Conference on Machine Learning, pages 5321–5329, July 2018.

[43] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for ImageNet training. CoRR,
abs/1708.03888, 2017.

[44] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training linear models
with end-to-end low precision, and a little bit of deep learning. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 4035–4043, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

[45] Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient algorithms for statistical
optimization. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, NIPS - Advances in
Neural Information Processing Systems 25, pages 1502–1510. Curran Associates, Inc., 2012.

[46] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss
minimization. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1–9, Lille, France,
07–09 Jul 2015. PMLR.

12

Appendix

A Proofs

A.1 Useful facts

Lemma A.1. For x ∈ Rd, 1 ≤ k ≤ d, and operator compk ∈ {topk, randk} it holds

E ‖compk(x)− x‖2 ≤
(

1− k

d

)
‖x‖2 . (17)

Proof. From the definition of the operators, for all x in Rd we have

‖x− topk(x)‖2 ≤ ‖x− randk(x)‖2 (18)

and we apply the expectation

Eω ‖x− randk(x)‖2 =
1

|Ωk|
∑
ω∈Ωk

d∑
i=1

x2
i I{i 6∈ ω} =

d∑
i=1

x2
i

∑
ω∈Ωk

I{i 6∈ ω}
|Ωk|

=

(
1− k

d

)
‖x‖2 (19)

which concludes the proof.

Lemma A.2. Let ηt = 1
c+t

, for c ≥ 1. Then η2
t

(
1− 2

c

)
≤ η2

t+1.

Proof. Observe

η2
t

(
1− 2

c

)
=

c− 2

c(c+ t)2
≤ c− 2

(c+ t+ 1)2(c− 2)
= η2

t+1 . (20)

where the inequality follows from

(c+ t+ 1)2(c− 2) = c(c+ t)2 + (c− 2)(1 + 2(t+ c))− 2(c+ t)2︸ ︷︷ ︸
=−2t2−2ct−4t−3c−2≤0

(21)

A.2 Proof of the Main Theorem

Proof of Lemma 3.1. Using the update equation (11) we have

‖x̃t+1 − x?‖2 = ‖x̃t − x?‖2 + η2
t ‖∇fit(xt)‖

2 − 2ηt 〈xt − x?,∇fit(xt)〉+ 2ηt 〈xt − x̃t,∇fit(xt)〉 .
(22)

And by applying expectation

Eit ‖x̃t+1 − x?‖2 ≤ ‖x̃t − x?‖2 + η2
tG

2 − 2ηt 〈xt − x?,∇f(xt)〉+ 2ηt 〈xt − x̃t,∇f(xt)〉 . (23)

To upper bound the third term, we use the same estimates as in [18, Appendix C.3]: By strong convexity,
f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µ

2
‖y − x‖2 for x,y ∈ Rd, hence

−〈xt − x?,∇f(xt)〉 ≤ − (f(xt)− f?)−
µ

2
‖xt − x?‖2 (24)

and with ‖a + b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 we further have

−‖xt − x?‖2 ≤ ‖xt − x̃t‖2 −
1

2
‖x̃t − x?‖2 . (25)

Putting these two estimates together, we can bound (23) as follows:

Eit ‖x̃t+1 − x?‖2 ≤
(

1− ηtµ

2

)
‖x̃t − x?‖2 + η2

tG
2 − 2ηtet + ηtµ ‖xt − x̃t‖2 + 2ηt 〈xt − x̃t,∇f(xt)〉 ,

(26)

13

where et = E f(xt)−f?. We now estimate the last term. As each fi isL-smooth also f isL-smooth, i.e. satisfies
f(x)− f(y)− 〈∇f(y),x− y〉 ≥ 1

2L
‖∇f(y)−∇f(x)‖2. Together with 2 〈a, b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 we

have

〈xt − x̃t,∇f(xt)〉 ≤
1

2

(
2L ‖xt − x̃t‖2 +

1

2L
‖∇f(xt)‖2

)
(27)

= L ‖xt − x̃t‖2 +
1

4L
‖∇f(xt)−∇f(x?)‖2 (28)

≤ L ‖xt − x̃t‖2 +
1

2
(f(xt)− f?) . (29)

Combining with (26) we have

Eit ‖x̃t+1 − x?‖2 ≤
(

1− ηtµ

2

)
‖x̃t − x?‖2 + η2

tG
2 − ηtet + ηt(µ+ 2L) ‖xt − x̃t‖2 , (30)

and the claim follows with (12).

Proof of Lemma 3.2. First, observe that by Lemma A.1 and ‖a + b‖2 ≤ (1 + γ) ‖a‖2 + (1 + γ−1) ‖b‖2 for
γ > 0 we have

E ‖mt+1‖2 ≤
(

1− k

d

)
‖mt + ηt∇fit(xt)‖

2 (31)

≤
(

1− k

d

)((
1 +

k

2d

)
E ‖mt‖2 +

(
1 +

2d

k

)
η2
t E ‖∇fit(xt)‖

2

)
(32)

≤
(

1− k

2d

)
E ‖mt‖2 +

2d

k
η2
tG

2 . (33)

By treating the first t + 1 iterations specially, we can establish a slightly tighter bound for those. With the
inequality ‖a + b‖2 ≤ t

t−1
‖a‖2 + t ‖b‖2 for t ≥ 1 (a consequence of Jensen’s inequality), we estimate

E ‖mt+1‖2 ≤
t+ 1

t
‖mt − gt‖2 + (t+ 1) ‖ηt∇fit(xt)‖

2
(4)
≤ t+ 1

t
‖mt‖2 + (t+ 1)η2

tG
2 , (34)

and by unrolling

E ‖mt+1‖2 ≤ (t+ 1)

t∑
i=0

η2
tG

2 . (35)

Now the claim follows from Lemma A.3 just below with A = 8G2

µ
.

Lemma A.3. Let A ≥ 0, d ≥ k ≥ 1, {ht}t≥0, ht ≥ 0 be a sequence satisfying

h0 = 0 , ht+1 ≤ min

{(
1− k

2d

)
ht +

2d

k
η2
tA, (t+ 1)

t∑
i=0

η2
iA

}
, (36)

for a sequence ηt = 1
a+t

with a ≥ (α+1) d
k

+ρ+1

ρ+1
> 1, for α > 4, ρ := 4α

(α−4)(α+1)2
. Then

ht ≤
4α

α− 4
η2
t
d2

k2
A , (37)

for t ≥ 0.

Proof. The claim holds for t = 0.

Large t. Let t0 = max{dα d
k
− ae, 0}, i.e. ηt0 ≤ k

αd
. (Note that for any a ≥ α k

d
it holds t0 = 0.) Suppose

the claim holds for t ≤ t0. Observe,

η2
t

(
1− 2k

αd

)
≤ η2

t+1 , (38)

for t ≥ t0. This follows from Lemma A.2 with c = αd
k

. By induction,

ht+1 ≤
(

1− k

2d

)
4α

α− 4
η2
t
d2

k2
A+

2d

k
η2
tA (39)

= η2
t

(
1− 2k

αd

)
︸ ︷︷ ︸

≤η2t+1

4α

α− 4

d2

k2
A , (40)

where we used t ≥ t0 (and the observation just above) for the last inequality.

14

Small t. Assume t0 ≥ 1, otherwise the claim follows from the part above. We have

ht ≤ t
t−1∑
i=0

η2
iA ≤

t

a− 1
A , (41)

where we used
t−1∑
i=0

η2
t ≤

∞∑
i=0

1

(a+ i)2
≤
∫ ∞
a−1

1

x2
dx =

1

a− 1
, (42)

for a > 1. For t ≤ t0 we have

η2
t
d2

k2
≥ η2

t0

d2

k2
=

1

(a+ t0)2

d2

k2
≥ 1(

αd
k

+ 1
)2 d2

k2
≥ 1((α+1)d

k

)2 d2

k2
=

1

(α+ 1)2
, (43)

using d
k
≥ 1. Observe t0 ≤ α dk − a+ 1 ≤ (α+ 1) d

k
− a. For t ≤ (α+ 1) d

k
− a we have

ht ≤
t

a− 1
A ≤

(α+ 1) d
k
− a

a− 1
A ≤ ρA , (44)

by the condition on a. Hence, by combining these observations,

ht ≤
t

a− 1
A ≤ ρA =

4α

α− 4

1

(α+ 1)2
A ≤ 4α

α− 4
η2
t0

d2

k2
A ≤ 4α

α− 4
η2
t
d2

k2
A , (45)

and the proof follows.

Proof of Lemma 3.3. Observe(
1− µηt

2

) wt
ηt

=

(
a+ t− 4

a+ t

)
µ(a+ t)3

8
=
µ(a+ t− 4)(a+ t)2

8
≤ µ(a+ t− 1)3

8
=
wt−1

ηt−1
, (46)

where the inequality is due to

(a+ t− 4)(a+ t)2 = (a+ t− 1)3 + 1− 3a− a2 − 3t− 2at− t2︸ ︷︷ ︸
≤0

≤ (a+ t− 1)3 , (47)

for a ≥ 1, t ≥ 0.

We now multiply equation (15) with wt
ηt

, which yields

at+1
wt
ηt
≤
(

1− µηt
2

) wt
ηt︸ ︷︷ ︸

≤
wt−1
ηt−1

at + wtηtA+ wtη
2
tB − wtet . (48)

and by recursively substituting at
wt−1

ηt−1
we get

aT
wT−1

ηT−1
≤
(

1− µη0

2

) w0

η0
a0 +

T−1∑
t=0

wtηtA+

T−1∑
t=0

wtη
2
tB −

T−1∑
t=0

wtet , (49)

i.e.
T−1∑
t=0

wtet ≤
w0

η0
a0 +

T−1∑
t=0

wtηtA+

T−1∑
t=0

wtη
2
tB . (50)

We will now derive upper bounds for the terms on the right hand side. We have
w0

η0
=
µa3

8
, (51)

T−1∑
t=0

wtηt =

T−1∑
t=0

8(a+ t)

µ
=

4T 2 + 8aT − 4T

µ
≤ 4T (T + 2a)

µ
, (52)

and
T−1∑
t=0

wtη
2
t =

T−1∑
t=0

64

µ2
=

64T

µ2
. (53)

Let ST :=
∑T−1
t=0 wt = T

6

(
2T 2 + 6aT − 3T + 6a2 − 6a+ 1

)
. Observe

ST ≥
1

3
T 3 + aT 2 − 1

2
T 2 + a2T − aT︸ ︷︷ ︸

=T2(a− 1
2)+T (a2−a)≥0

≥ 1

3
T 3 . (54)

for a ≥ 1, T ≥ 0.

15

B Experiments

Parameter tuning. To produce a fair comparison between MEM-SGD and QSGD [3], we fix the learning
rate to γ0/(1 + γ0λt)

−1 and run a grid search on the γ0 hyperparameter (individually for each method). The
results are displayed in Figure 5.

0 2 4

epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
lo

ss
full-sgd

0.1
1.0
10.0
100.0

0 2 4

epoch

qsgd-2bit

0 2 4

epoch

qsgd-4bit

0 2 4

epoch

qsgd-8bit

0 2 4

epoch

rand1

0 2 4

epoch

top1

0.0 2.5 5.0 7.5 10.0

epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
ss

full-sgd

0.01
0.1
1.0
10.0
100.0

0.0 2.5 5.0 7.5 10.0

epoch

qsgd-2bit

0.0 2.5 5.0 7.5 10.0

epoch

qsgd-4bit

0.0 2.5 5.0 7.5 10.0

epoch

qsgd-8bit

0.0 2.5 5.0 7.5 10.0

epoch

rand1

0.0 2.5 5.0 7.5 10.0

epoch

top1

Figure 5: Hyperparameter search for learning rate γ0/(1 + γ0λt)
−1. γ0 corresponding to each lowest

curve are used in section 4.3. Top row: RCV1-test dataset. Bottom row: epsilon dataset

QSGD communicated bits. The number of bits needed by QSGD with s quantization levels to com-
municate the gradient at each iteration is min

{
(dlog2(s)e + 1) · d, 3s(s +

√
d) + 32

}
where d is the size

of the gradient. The first expression corresponds to the naïve encoding (i.e. index/value pairs), the second
expression corresponds to the estimates of the more evolved Elias encoding (see e.g. [3, Theorem 3.2]). For
the sparse dataset RCV1-test, we additionally assume that QSGD is aware of the sparsity of the gradients
(d ≈ 71 � 47′236) and send only the quantized non zero coordinates with their indexes. In a nutshell, we
chose the best communication pattern for QSGD to conduct a fair comparison with MEM-SGD.

16

	Introduction
	Related Work
	Contributions

	SGD with Memory
	Compression and Sparsification Operators
	Variance Blow-up for Unbiased Updates
	SGD with Memory: Algorithm and Convergence Results

	Proof Outline
	Experiments
	Experimental Setup
	Verifying the Theory
	Comparison with QSGD
	Multicore experiment

	Conclusion
	Proofs
	Useful facts
	Proof of the Main Theorem

	Experiments

