
Safe Active Learning for Time-Series Modeling
with Gaussian Processes

Christoph Zimmer(1), Mona Meister(1) and Duy Nguyen-Tuong(1)

1 Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Renningen, Germany

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada

7 Appendix

This Appendix contains the proof of the safety theorem, the proofs of the lemmas and theorems on the variance
decay as well as some details on the numerical evaluation section.

7.1 Proof for the Safety Theorem

In the following, we prove Theorem 1, providing a safety guarantee for algorithm 1.

Proof of Theorem 1. According to the constraint in Eq. (5), each trajectory τ i, i = n0 + 1, . . . , n0 + N is
unsafe with probability at most α (if the GP quantifies the uncertainty of predictions for g correctly). Thus,
a trajectory τ i is critical (it is unsafe but considered as safe), if ξ(τ i)> 1−α and g(xij)< 0 for at least one
1≤j≤m. Using the union bound, we have

P
(
∪n0+N
i=n0+1

{
g(xij)<0 for at least one 1 ≤ j ≤ m|ξ(τ i)>1−α

})
≤

n0+N∑
i=n0+1

P
({
g(xij)<0 for at least one 1 ≤ j ≤ m|ξ(τ i)>1−α

})

≤
n0+N∑
i=n0+1

α = N α = N δ/N = δ .

Note that ξ(τ i) is a random variable because ρ is a random variable, and thereforeµg and Σg as well, depending
on the previously recorded values for ρj , 1 ≤ j ≤ i − 1. Additionally, g(xij) is a random variable as well
(even though g is deterministic) because the choice of trajectories (and therefore points xij) depends on the
optimization problem (Eq. 7-8)), the solution of which depends on g, which itself depends on ρ.

7.2 Proofs on Reduction of Uncertainty

Next, we will prove the lemmas and theorems on the variance decay from section 4.2. The proofs for Lemma 1,
3, and 4 are motivated by Lemma 5.3 and 5.4 of [23] but extended to the situation of trajectories.

First, we prove Lemma 1 to relate the information gain I to the covariance Σ.

Proof of Lemma 1. The mutual information can be expressed in terms of entropy as

I ({ρi}
n
i=1; {ρ̃i}

n
i=1) = H ({ρi}

n
i=1)−H ({ρi}

n
i=1|{ρ̃i}

n
i=1)

As {ρi}ni=1|{ρ̃i}ni=1 is Gaussian with variance σ2Inm, it holds that H({ρi}ni=1|{ρ̃i}ni=1) =
1/2 log |2π eσ2Inm| = nm/2 log(2πeσ2). Furthermore, using entropy rules, we obtain

H ({ρi}
n
i=1) = H

(
{ρi}

n−1
i=1

)
+H

(
ρn|{ρi}

n−1
i=1

)
and

H(ρn|{ρi}
n−1
i=1 ) = 1/2 log

(
|2π e(σ2Im + Σn−1(τn))|

)
= 1/2 log

(
|2π e σ2(Im + σ−2Σn−1(τn))|

)
= 1/2 log

(
(2π e σ2)m

)
+ 1/2 log

(
|(Im + σ−2Σn−1(τn))|

)
.
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Alltogether, this leads to

I ({ρi}
n
i=1; {ρ̃i}

n
i=1)

= H ({ρi}
n
i=1)−H ({ρi}

n
i=1|{ρ̃i}

n
i=1)

=

n∑
j=1

H(ρi|{ρi}
j−1
i=1 ) − nm/2 log(2πeσ2)

=

n∑
j=1

(
1/2 log

(
(2π e σ2)m

))
+

n∑
j=1

(
1/2 log

(
|(Im + σ−2Σj−1(τj))|

))
− nm/2 log(2πeσ2)

= 1/2

n∑
i=1

log |Im + σ−2Σi−1(τ i)| .

Lemma 1 relates the information I to the covariance Σ, but not yet to the determinant of the covariance |Σ|. To
link the determinant of the covariance |Σ| to the mutual information in Lemma 4, we first state the auxilliary
Lemma 3.

Lemma 3. For i = 1, . . . , n,

|Σi−1(τi)| ≤ C1 log(1 + |σ−2Σi−1(τi)|)

is satisfied, where C1 =
σ2m
f

log(1+σ−2mσ2m
f

)
.

Proof. Let e1, . . . , em be the eigenvalues of Σi−1(τi). Then it holds that |Σi−1(τi)| =
∏m
i=1 ei and further-

more that trace(Σi−1(τi)) =
∑m
i=1 ei. Keeping in mind that the geometric mean is less than or equal to the

arithmetic mean, we have

m
√
|Σi−1(τi)| ≤

trace(Σi−1(τi))

m
.

As the trace of Σ contains only predictive variances (and no correlation terms), we can upper bound them by

trace(Σi−1(τi))

m
=

∑m
j=1 σi−1(xij)

m
≤ σ2

f ,

where xij , j = 1, . . . ,m, i = 1, . . . , n, are the m points of the i-th trajectory. This results in the upper bound

|Σi−1(τi)| ≤ σ2·m
f .

Now, it holds that a := σ−2m|Σi−1(τi)| ≤ σ−2mσ2m
f =: b. Furthermore, we have

log(1 + a) = log
(a
b

(1 + b) + (1− a

b
) · 1

)
≥ a

b
log(1 + b) + (1− a

b
) log(1)

=
a

b
log(1 + b) ,

(9)

where the second step follows with the concavity of the log function. With this in hand, we can now conclude
that

|Σi−1(τi)| = σ2m σ−2m |Σi−1(τi)|

≤ σ2m σ−2mσ2m
f

log(1 + σ−2mσ2m
f )

log
(
1 + σ−2m|Σi−1(τi)|

)
= σ2m σ−2mσ2m

f

log(1 + σ−2mσ2m
f )

log
(
1 + |σ−2Σi−1(τi)|

)
= C1 log

(
1 + |σ−2Σi−1(τi)|

)
,

(10)

where C1 :=
σ2m
f

log(1+σ−2mσ2m
f

)
.

Lemma 4. The sum of the determinants of variances is upper bounded by the mutual information, i.e.
n∑
i=1

|Σi−1(τi)| ≤ C I ((ρ)ni=1; {ρ̃}ni=1) .
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Proof. For C := 2C1, it holds
n∑
i=1

|Σi−1(τi)| ≤
n∑
i=1

C1 log
(
1 + |σ−2Σi−1(τi)|

)
=

n∑
i=1

C1 log
(
|I|+ |σ−2Σi−1(τi)|

)
≤

n∑
i=1

C1 log
(
|I + σ−2Σi−1(τi)|

)
= C I ((ρ)ni=1; {ρ̃}ni=1) .

Here, the first step holds due to Lemma 3, the third as |I|+ |A| ≤ |I +A| for a positive semidefinite matrixA
as |I| + |A| =

∏m
i=1 1 +

∏m
i=1 ai ≤

∏m
i=1(1 + ai) = |I +A| with ai being eigenvalues of A and ai ≥ 0

asA positive semidefinite. The last step holds according to Lemma 1. Note that (A+ I)vi = Avi + Ivi =
ai ·vi+vi = (ai+1)vi for vi being an eigenvector for eigenvalue ai shows that ai+1 is indeed an eigenvalue
ofA+ I .

As we have now established a link between the determinant of the covariance – our criterion – and the mutual
information I , we can upper bound the average of the determinant of the covariances and prove Lemma 2.

Proof of Lemma 2. According to Lemma 4 it holds
n∑
i=1

|Σi−1(τi)| ≤ C I ({ρ}ni=1; {ρ̃}ni=1) .

Dividing by n and upper bounding I by γn yields the desired results.

This statement holds for trajectories from a run of our algorithm without safety. To ensure a good model, we
are more interested in the behavior for arbirtrary trajectories, not only those that were chosen by our algorithm.
Using a result from Srinivas [23], Theorem 2 extends the statement to an asymptotic behavior of the covariances
of arbitrary trajectories.

Proof of Theorem 2. As our exploration scheme in Eq. (7) always chooses the trajectory with the highest
determinant (D criterion), the average determinant of an actively learned scheme is always greater than or equal
to the average determinant of an arbitrary scheme. Therefore:

1

n

n∑
i=1

|Σi−1(τ̃i)| ≤
1

n

n∑
i=1

|Σi−1(τi)|

which is O
(

log(n)d+1

n

)
according to Lemma 2 and Theorem 5 of [23].

By Theorem 2, the average of the determinants of the covariance matrices tends to zero. However, it is phrased
for a domain X which is invariant over the iteration of our algorithm. This means it does not yet take safety
constraints into account. To this end, Theorem 3 extends Theorem 2 such that it still holds for safe exploration.

Proof of Theorem 3. As it holds that Si ⊆ X for all i, it follows that

max
τ̃ i∈Sm

i

|Σi−1(τ̃ i)| ≤ max
τ̃ i∈Xm

|Σi−1(τ̃ i)|

for 1 ≤ i ≤ n. The remainder of the proof is analogous to the proof of Theorem 2.

7.3 Numerical Evaluation Details

For Experiment 2 in Section 5.1 the ground truth regression function f depends on the current state uk =(
u

(1)
k , u

(2)
k

)
and the previous state uk−1 =

(
u

(1)
k−1, u

(2)
k−1

)
. Using xk=(uk, uk−1), the ground truth function

is given by

f(xk) = f̃(uk) +
f̃(uk)− f̃

((
u

(1)
k−1, u

(2)
k

))
u

(1)
k − u

(1)
k−1

+
f̃(uk)− f̃

((
u

(1)
k , u

(2)
k−1

))
u

(2)
k − u

(2)
k−1

(11)
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with a base function f̃ : [−5, 45]2 ⊂ R2 → R, where

f̃(u) = (u(1) − 2)2 − (u(1) − 2)(u(2) − 2) + (u(2) − 2)2 .

The observations are drawn from the model y = f(x) + ε with noise ε ∼ N (0, 1).

The ground truth safety is constructed similarly with a base function g̃ : [−5, 45]2 ⊂ R2 → R given by

g̃(u) = (u(1) − 5)2 − (u(1) − 5)(u(2) − 5) + (u(2) − 5)2

and a history dependent ground truth g

g(xk) = g̃(uk)−

∣∣∣∣∣∣
g̃(uk)− g̃

(
(u

(1)
k−1, u

(2)
k )
)

u
(1)
k − u

(1)
k−1

∣∣∣∣∣∣−
∣∣∣∣∣∣
g̃(uk)− g̃

(
(u

(1)
k , u

(2)
k−1)

)
u

(2)
k − u

(2)
k−1

∣∣∣∣∣∣ .
The safety observations are drawn from the model z = −0.005 ∗ g(x) + 1 + εg with normally distributed noise
εg with zero mean and standard deviation 0.01.

7.4 Benchmarking without safety consideration

We have benchmarked our newly proposed SAL-NX algorithm against a random selection approach and shown
the superiority of our algorithm with respect to decreasing RMSE and speed of learning the safe area (Figures
2 and 4). Additionally, one might also think of a comparison to a more sophisticated approach than random
selection. However, we are not aware of any algorithm that tackels all three challenges: active learning, safe
learning and learning of dynamics models. There is an approach that is designed for dynamics model learning
based on work of [6] and [7]. We reimplemented their approach and code as follows in order to allow for the
comparison on model learning without taking safety considerations into account as their algorithm does not
consider safety aspects.

The approach of [6] and [7] is based on building a Fisher information matrix. Intuitively speaking, the Fisher
information matrix measures the sensitivity of the model response with respect to parameters – in our case the
endpoints of the trajectories. By choosing a point with high sensitivity, one can place measurements to locations
where they provide much information on the parameter. The Fisher Information matrix is given by

IFIM(η) = (IFIM(η))m,mj=1,k=1

with entries

(IFIM(η))j,k =
∂µ(τ (η)T )

∂η(j)

∂µ(τ (η))

∂η(k)
+

n−1∑
i=1

∂µ(τ (ηi))
T

∂η(j)

∂µ(τ (ηi))

∂η(k)

where µ(τ (ηi)) is the mean vector of the i-th trajectory with endpoint ηi. Similarly as in equation (7), we
choose the next trajectory by optimizing the information gain - now measured by the Fisher Information matrix

η∗ = argmaxη∈Π I (IFIM(η)) . (12)

Figure 5 (left panel) shows a comparison similar to Figure 2 (left panel) between our proposed SAL-NX
algorithm without safety consideration and the approach of [6] and [7] based on the Fisher information matrix.
This first comparison does not look promising for the Fisher information matrix. The main difference of SAL-NX
without safety consideration and the Fisher Information matrix is that SAL-NX reduces the predictive uncertainty
while the Fisher information focuses on the slope of the GP mean prediction.

Figure 5 (right panel) shows how the safe area is learned. Note, that even though there is no safety restriction (as
given by Eq. (8)) for the algorithm in exploring the input space, safety measurements z are still recorded and,
therefore, a safety model can be learned. Our SAL-NX approach seems to show competitive performance in
learning the safety model as well.

None of both approaches without safety considerations leads to safe learning as in both approaches the percentage
of safety violations is high: more than 40% in average over 5 repetitions.
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Figure 5: Right panel: As figure 2 but without safety consideration. Blue color representing the approach
based on the Fisher information matrix, red color still representing our SAL-NX approach (now without safety
consideration).

8 Appendix - Files

Our SAL-NX algorithm safely learning a model – video. File: SAL-NX-in-action.avi.
Upper panel: RMSE; lower panel: red - boundary between safe and unsafe area, green - learned as safe area,
black - already executed trajectory, purple - new trajectory piece currently planned.

9 Code

The code will be released on GitHub.
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