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A Notation and Preliminaries

For n € N, we define 7 = n — 1. We denote [n] := {1,...,n} the set of integers between 1 and n.
Let (-, -) denote the standard inner product in R™ and ||-|| the corresponding norm. Let 7, and 1,,
denote the n x n identity matrix and the vector of all ones in R™. Let ey, .. ., e, denote the standard
basis for R". Foraset[ C Nand r1,...,7, € R¥, we denote [r;]ic( = [ri,,...,7;,] € R™¥K,
where [ = {i1,...,ix} and iy < --- < ir. We denote its transpose by [ri]iTe[ € RF*"_ For two
vectors p,q € R™, we write p < q [resp. p < ql, if Vi € [n],p; < ¢; [resp. p; < ¢;]. We also
denote p ® q = [piqi]{<;<,, € R" the Hadamard product of p and q. If (c},) is a sequence of

vectors in C C R", we simply write (ci) C C. For a sequence (vy,) C R", we write v, "=

or limy,yo0 U = v, if Vi € [n],limy,—00[Vm]; = v;. For a square matrix A € R™ ", A\pin(A)
[resp. Amax(A)] denotes its minimum [resp. maximum] eigenvalue. For k > 1, u € [0, Jroo[k and
w € R*, we define log u = [log ungigk € R* and exp w = [exp wngigk € R*.

Let A, == {p € [0,1]" : (p,1,) = 1} be the probability simplex in R". We also define A, =
{p € [0, +oo[™: (p,15) < 1}. We will use the notations AF = (A,)* and Ak := (A,)*. For
[C [n], theset Ay ={gq € A, : q; =0,Yi € [n]\ [} is a |[|-face of A,,. We denote TT}* : R" — RI'l
the linear projection operator satisfying IIf'u = [u,]ZTGI If there is no ambiguity from the context,
we may simply write I, instead of II{". It is easy to verify that H[H-[r = I); and that g — Ilq is
a bijection from Ay C A, to Ayy. In the special case where [ = [7], we write IT,, == Hﬁa] and we
define the affine operator I1,, : R — R" by IL,,(u) = [u1,...,un, 1 — (u,13)]T = J,u + e,,
where J,, := [f{%} € R*7,

For u € R" and ¢ € R, we denote H,, . = {y € R" : (y,u) < ¢} and B(u,c) = {v € R" :
lu — v|| < c}. Ha,c is a closed half space and B(wu, ) is the c-ball in R™ centered at u. Let C C R™
be a non-empty set. We denote int C, riC, bd C, and rbd C the interior, relative interior, boundary,
and relative boundary of a set C € R™, respectively [[7]. We denote the indicator function of C by t¢,
where for u € C, tc(u) = 0, otherwise t¢c(u) = +o00. The support function of C is defined by

oc(u) =sup (u,s), u € R"™.
seC

Let f: R" - R U {+oo}. We denote dom f = {u € R" : f(u) < +oo} the effective domain
of f. The function f is proper if dom f # @. The function f is convex if V(u,v) € R™ and
A €)0,1], fAu+ (1 — Nv) < Af(u) + (1 — ) f(v). When the latter inequality is strict for
all w # v, f is strictly convex. When f is convex, it is closed if it is lower semi-continuous;
that is, for all w € R”, liminf,_,,, f(v) > f(w). The function f is said to be 1-homogeneous
if V(u,a) € R"x]0,+o0[, f(au) = af(u), and it is said to be 1-coercive if J‘cl(T“”) — 400 as
||lw|| = oo. Let f be proper. The sub-differential of f is defined by

Of(u) ={s*" eR": f(v) > f(u) + (s",v —u),Vv € R"}.

Any element s € 9 f (u) is called a sub-gradient of f at w. We say that f is directionally differentiable
if for all (u,v) € dom f x R™ the limit lim, o M exists in [—oo, +00]. In this case, we
denote the limit by f/(u;v). When f is convex, it is directionally differentiable [11]]. Let f be proper

and directionally differentiable. The divergence generated by f is the map Dy: R" x dom f —
[0, +00] defined by

Di(v,u) = { f(v) = f(u) = f'(u;v —u), ifvedomf;

400, otherwise.

For [ C [n]and f; := foll],itis easy to verify that f/(Il;p; IL;g—I;p) = f'(p;q—p),¥(p, q) € Ar.
In this case, it holds that D¢ (g, p) = Dy, (IIig,IL;p). If f is differentiable [resp. twice differentiable]
atu € intdom f, we denote V f (u) € R™ [resp. Hf(u) € R"*"] its gradient vector [resp. Hessian
matrix] at u. A vector-valued function g: R™ — R™ is differentiable at w if for all ¢ € [m], g; is
differentiable at u. In this case, the differential of g at u is the linear operator Dg(u) : R® — R™
defined by Dg(u) = [Vg;(u)]{<;<,,- If f has k continuous derivatives on a set Q C R*, we write

feCk).



We define f : R* — RU {+00} by f := foll, +ux . Thatis,

= { fl,a+ep), fora € A,,;

f@)= +o0, fora € R" 1\ A,,. M

If f is directionally differentiable, then f'(p,q — p) = f'(p,4 — p), for p,q € A,. If f is
differentiable at p = IL,,(p), then f! (p,g—p)=(V f (p), g — p). If, additionally, f is differentiable
at p € ri Ay, the chain rule yields Vf(j)') = JIVf(p). Since J,,(p — G) =11,(p— q) =p — q, it
also follows that (p — ¢, V.f(p)) = (p — q, Vf(p)).

The Fenchel dual of a (proper) function f is defined by f*(v) := sup,cqom (%, v) — f(u), and it
is a closed, convex function on R [7]. The following proposition gives some useful properties of the
Fenchel dual which will be used in several proofs.

Proposition 1 ([7]). Let f,h : R™ — RU{+oco}. If f and h are proper and there are affine functions
minorizing them on R", then for all vy € R"

() 9(u) = f(u) +r, Vu = g'(v)=f"(v) -1, Yo
(i2) g(u) = f(u) + (vo,u), Vu = g*(v) = f*(v—vy), Vv
(#i1) f<h = [ =h7

(iv)  sedf(v),veR” = f*(v) =(v,s) - f(s),
(v g(u) = f(tu), t >0,Yu = g*(v) = f*(v/),

A function ®: R*¥ — R U {400} is an entropy if it is closed, convex, and Aj, C dom ®. Its entropic
dual ®* : R¥ — R U {+oo} is defined by ®*(2) := supgen, (¢, 2) — ®(q), z € R¥. For the
remainder of this paper, we consider entropies defined on R¥, where k > 2.

Let ®: R¥ — RU {400} be an entropy and ®a := ® + ¢, . In this case, * = &% . It is clear that
® 4 is 1-coercive, and therefore, dom ®* = dom ®% = RF [7, Prop. E.1.3.8]. The entropic dual

of ® can also be expressed using the Fenchel dual of d:RF1 S RU {400} defined by (I) after
substituting f by ® and n by k. In fact,

®*(z) = sup (Jxq + ek, z) — ®(Jrq + ex),
geAy
= (eg, z) + sup <(j, J,;rz> - <i>((§),
geA

= (ex, 2) + &*(Jy 2), 2)
where (2)) follows from the fact that dom o = ~A k- Note that when @ is an entropy, ® is a closed
convex function on R¥~!. Hence, it holds that ®** = & [T1].
The Shannon entropy by S(q) = >, ¢ 4.4 20 % 108 qiif q € [0, +0o[*; and +o0 otherwise.

We will also make use of the following lemma.
Lemma 2 ([3]). Vm > 1,VA, B € R™*™ A\ ax(AB) = Amax(BA) and Apin(AB) = Amin(BA).

B Technical Lemmas

This appendix presents technical lemmas which will be needed in various proofs of results from the
main body of the paper.

For an open convex set € in R and « > 0, a function ¢: 2 — R is said to be a-strongly convex if
u— ¢(u) — a|lu|? is convex on Q [8]. The next lemma is a characterization of a generalization of
a-strong convexity, where u +— Hu\|2 is replaced by any strictly convex function.

Lemma 3. Let 2 C R"™ be an open convex set. Let ¢, : £ — R be twice differentiable.

If 4 is strictly convex, then Yu € ), Hiy)(u) is invertible, and for any o > 0
YV € Q, Amin(Ho(uw)(Hy(u) ™) > a <= ¢ — aw) is convex, 3)
Furthermore, if o > 1, then the left hand side of (@) implies that ¢ — 1 is strictly convex.

!The Shannon entropy is usually defined with a minus sign. However, it will be more convenient for us to
work without it.



Proof. Suppose that inf,co Amin(Ho(w)(Hy(u))~!) > a. Since g is strictly convex and twice
differentiable on 2, Hi)(w) is symmetric positive definite, and thus invertible. Therefore, there exists
a symmetric positive definite matrix G € R™*"™ such that GG = Hy(u). Lemmaimplies

infyeo Amin(Ho(w) (Ho(u)) ) > a,
— infyueq Amin (G~ Ho(u)G1) > a,
— VYueQ,VveR"\ {0}, JG?I(':)?(:))GA” > a,
—  YuecQVwecR"\ {0}, w (Hp(u))w > ow GGw =w' (aHy(u))w,
= Yu € Q,Ho(u) = aHy(u),
= Yu € Q H(¢ — ar))(u) =0,

where in the third and fifth lines we used the definition of minimum eigenvalue and performed the
change of variable w = G~'w, respectively. To conclude the proof of (3)), note that the positive
semi-definiteness of H(¢ — a)) is equivalent to the convexity of ¢ — ) [[7, Thm B.4.3.1].

Finally, note that the equivalences established above still hold if we replace «, “>”, and “> ” by 1,
“>” and “>", respectively. The strict convexity of ¢ — 1) then follows from the positive definiteness
of H(¢ — ) (ibid.). O

The following result due to [S] will be crucial to prove the convexity of the superprediction set
(Theorem[29).

Lemma 4 ([3]). Letr A(QY) be the set of distributions over some set 0 C R. Let a function Q :
A(R2) x Q — R be such that Q(-,w) is continuous for all w € Q. If for all w € A(Q) it holds that

EprnQ(m,w) < 1, where r € R is some constant, then

Ir e A(Q),Vw € Q, Q(m,w) <.

Note that when € in the lemma above is [n], A([n]) = A,,.

The next crucial lemma is a slight modification of a result due to [3].

Lemma 5. Let f: riA, X [n] = R be a continuous function in the first argument and such that
V(gq,z) €riA, X [n],—oo < f(q,x). Suppose that ¥p € ri Ay, Epp[f(p, z)] <0, then

Ve > 0,3p. € riA,,Va € [n], f(pe,x) <e.

Proof. Pick any 6 > 0 such that §(n — 1) < 1, and ¢y < 0 such that ¥(g,z) € riA, X [n],co <
f(g,z). We define AS == {p € A,, : V& € [n],p, > 6} and g(q, p) := Epq[f(p, z)]. For a fixed
g, p — g(q, p) is continuous, since f is continuous in the first argument. For a fixed p, ¢ — ¢g(q, p)
is linear, and thus concave. Since A? is convex and compact, g satisfies Ky Fan’s minimax Theorem
[1L Thm. 11.4], and therefore, there exists p‘; S A‘Z such that

Vg €AY, Eog[f(p°,2)] = g(q,p°) < sup g(p,p) = sup Eooplf(p,2)] <0 ()
HEAS, HEAS,
For 2o € [n], let ¢ € A° be such that §,, = 1 — &(n — 1) and G, = J for z # x (this is a legitimate
distribution since d(n — 1) < 1 by construction). Substituting ¢ for ¢ in {@) gives

(1 - 5(” - 1>)f(p5,$0) + 6Zx;£zo f(pé,l‘) <0,
— (1=d8(n—1))f(p° x0) < —cod(n—1),
= f(P°,20) < [—cod(n—1)]/[1—8(n—1)].
Choosing 6* = €/[(—co + €)(n — 1)], and p. == p’~ gives the desired result.
O
Lemma 6. Let f,g: I — R", where I C R is an open interval containing 0. Suppose g [resp. ]

is continuous [resp. differentiable] at 0. Then t — (f(t), g(t)) is differentiable at 0 if and only if
t — (f(0),g(t)) is differentiable at 0, and we have

GU@.a0)| = (50

d
90)) + 7 10).900)



Proof. We have

(f(®),9(1)) — {£(0),9(0)) _ {f(1),9(t)) — (f(0),9(¢)) L
t t t ’

_ <f(t) ; f(O)’g(t)> 4 0, 9(0) ; {£(0),9(0))

But since g [resp. f]is continuous [resp. differentiable] at 0, the first term on the right hand side of the
above equation converges to <%f(t)|tzo ,9(0)) as t — 0. Therefore, 1 ({f(0), g(t)) — (£(0), g(0)))
admits a limit when ¢ — 0 if and only if 1 ((f(t), g(t)) — (f(0), g(0))) admits a limit when ¢ — 0.
This shows that ¢ — (f(0), g(¢)) is differentiable at 0 if an only if ¢ — (f(¢), g(¢)) is differentiable
at 0, and in this case the above equation yields

% <f(t),g(t)> — }E)% <f(t)?g(t)> _t <f(0)ag(0)>’
t=0
~ liny (<f<t>;ﬂ0>,g(t)> + 000 - <f<o>,g<o>>) ,
= <jtf<t> . ,g<0>> + 2 07(0),0(0) R

Note that the differentiability of ¢ — (f(0), g(¢)) at 0 does not necessarily imply the differentiability
of g at 0. Take for example n = 3, f(t) =1/3fort €] — 1,1[, and

—te +t ift €] —1,0];
g(t) = { —t11+ tey, ift e][07 1]. |
Thus, the function ¢ — (f(0), g(¢)) = 0 is differentiable at 0 but g is not. The preceding Lemma
will be particularly useful in settings where it is desired to compute the derivative -(f(0), g(t))|:=o
without any explicit assumptions on the differentiability of g(¢) at 0. For example, this will come
up when computing 4 (p, D{(é&!)v)|¢—o, where v € R~ and ¢ > &' is smooth curve on int A,
with the only assumption that L, is twice differentiable at &° € int A,,.

Lemma 7. Let (: A,, — [0, +00]™ be a proper loss. For any p € ri A, it holds that
(1)

{ is continuous at p <=

L, is differentiable at p <= 9[~L,)(p) = {VL,(p)} = {(p)}.

<(—L)> . This equivalence has been shown before by [16].

[ <= (&) S1nce L,(p)=—0o yl( p), forall p € ri A,,, it follows that L, is differentiable at p if and
only if 8[ ) (P) = doz,(—p) = { Vog,(—p)} = {VL,(p)} [1. Cor. D.2.1.4]. It remains to
show that VL,(r) = £(r) when L, is differentiable at r € ri A,,. Let !, = 7 + te, and &', =
II,,(ad,), where (e;) e[y is the standard basis of R”. For z € [n], the functions f,(t) = o, and
9o (t) == (&) satisfy the conditions of Lemma@ Therefore, h,(t) == (f.(0), g2(t)) = (r, 0(&%))
is differentiable at 0 and

~ d - d
VL(r)es = — L(eg)| = — (fo(t),92(t)| |
dt =0 dt t=0

- <e é(f)> + Lh

- xZ dt x f:() )

= 0,(7),
where the last equality holds because h,, attains a minimum at 0 due to the properness of . The result
being true for all € [n] implies that VL(7) = {(7) = {(r). O

The next Lemma is a restatement of earlier results due to [14]. Our proof is more concise due to our
definition of the Bayes risk in terms of the support function of the superprediction set.



Lemma 8 ([14]). Ler ¢: A,, — [0,+00]™ be a proper loss whose Bayes risk is twice differentiable
on |0, +0o["™ and let X,, = I, — 1;p". The following holds

(i) Vp € 1iA,, (p,DI(p)) = O
(ii) ¥p € int A, DI(p) = [ 7 |HL, ().

(ifi) VP € int Ay, HLyo, (B) = —(Xp) * (diag (p)) "

We show (i) and (ii). Let p € riA,, and f(§) = (p,0(q)) = (p,VL,(q)), where the equality
is due to Lemma(7| Since L, is twice differentiable |0, +-00[", f is differentiable on int A,, and
we have Df(q) = (p, Dg(ﬁ» Since ¢ is proper, f reaches a minimum at p € int A,,, and thus
(p, DI(p)) = 07 (this shows (i)). On the other hand, we have VL,(p) = JIVL,(p) = JTI(p). By
differentiating and using the chain the rule, we get HL,(p) = [D#(p)]T.J,,. This means that Vi € [7],
HLy(B))- = VI5(p) — Vi (). and thus S, p[HLy(B))- = Y1, piVE:(B) — (1—pn) Vi (P).
On the other hand, it follows from point (i) of the lemma that >, p;V/;(p) = 0;. Therefore,
[HL,(p)]p = — V4, (p) and, as a result, Vi € [, [HL,(p)].; — [HL,(P)]p = VI;(p). The last two
equations can be combined as D/(p) = [j{;}} HL,(p).

[We show (iii)] It follows from (i4), since Vi € [71], V[f1og)i(P) = iei, for p € int A,,.
O

In the next lemma we state a new result for proper losses which will be crucial to prove a necessary
condition for ®-mixability (Theorem [I4) — one of the main results of the paper.

Lemma 9. Let ¢: A, — [0,400]|™ be a proper loss whose Bayes risk is twice differentiable on
10, +00[". Forv € R" ! and p € int A,,,

<p7 (Dg(ﬁ)v) © (Dg(f))’l})> = _UTHLE(ﬁ) [HLIOg(ﬁ)]_l HLZ(ﬁ)”? (5)
where p = 11,,(p) and L, is the Bayes risk of the log loss.

Furthermore, ift — &' is a smooth curve in int A, and satisfies &° = p and %dt |t:0 = v, then
t > (p,DI(&')v) is differentiable at 0 and we have

4 <p, Dg(dt)v>

yr = —v"HL,(p)v. (6)

t=0

Proof. We know from Lemma (8] that for p € int A,,, we have D{(p) = [_X;T} HL,(p), where
Xp=1I,-1—1,_1p". Thus, we can write
(p.Di(p)v © Di(p)v) = v" (DI(p))" diag (p) DI(p)v,
= - X =
= v"(HL,(p) "X}, —pldiag (p) | 7 |HL(Bv. (D)
Observe that [X ), —p] diag (p) = [I,—1 — p1],_,, —p| diag (p) = [diag (p) — pp', —Ppn). Thus,
o X RSO _ 1—1n_1pT
(X7, ~B] diag (p) | 7] = lding (8) — 55", ~pwal [ 2P|
= diag () —pp' — PP’ +PP' (1~ pu) + pubp’,
= diag () — PP’
= dlag (ﬁ) XP)
= _(HLlog(ﬁ))_la 3
where the last equality is due to Lemmal(8] The desired result follows by combining (7) and (8).



[We show (6)] Let p € int A, we define &' = p + tv, o = I,(a') = p + tJ,v, and
r(t) = a'/|a’|, where t € {s : p+ sv € int A, }. Since t — r(t) is differentiable at 0 and
t — Df(a')v is continuous at 0, it follows from Lemmathat

% <r(0), De(df)v>

- % (r(t),Di(a"w)

— — (7(0), DiB)v),

where the second equality holds since, according to Lemma we have (a!, D/(a!)v) = 0. Since

r(0) = 2/ Ipll #0) = 1Pl (1 = r()[r(0)]T) Juv.and J, = [ 7" . we get

~ (#0), DiB)).

15 % (r(0).0i@ )| =~ { (1.~ r(O)r(O)]7) Juv, DRI

t=0

__ <.],,L'u, Dé(;s)v> : )

== {(Jov, [ 2% ML, (B)v)
= —v HL,(p)v,
where the passage to (9) is due to 7(0) = p/ ||p|| L DZ(p). In the last equality we used the fact that
T 2% ] = oo, —1a [ ] = L. O
Proposition 10. Let ®: R¥ — R U {+occ} be an entropy and £: A — [0, +00]|" a closed admissible
loss. If £ is ®-mixable, then VI C [k] with |l| > 1, £ is ®(-mixable and
Vg € rbd A, Vg € riA, ®'(q;4 — q) = —cc. (10)

Given an entropy ®: R¥ — R U {+oco} and aloss £: A — [0, +00], we define
ma(z, 4, a, g, p) = (1, - (A)) + Do (p, 4) — la(a),

where © € [n], A € A¥, a € A, and q,4 € Ag. Reid et al. [9] showed that £ is ® mixable if and
only if
Mg ‘= inf su inf me(z, A, a,q, u) > 0.
® Ac Ak geAy a*el?él HEAR,zE[n] »( a.1)

Proof of Proposition[I0] [We show that ¢ is ®-mixable] Let [ C [k], with [[| > 1, A € AF and
q € Ay. Since { is -mixable, the following holds

Ja. € An, Vo € [n], lo(ay) < inf (G,0.(A)) + Ds(4, q), (11)
q k
< inf (G, £.(A)) + Da(d, q), (12)
GeA|
= inf (I1,q,1T(,(A)) + Do, (11,4, 11,q),
gen;
= inf (@, £6,(AID])) + Da, (i1, 1,q), 13
L0 C(ATD) + D (. Tha) (13)

where in (TT) we used the fact that ®((Il,q) = ®(q),Yq € A;. Given that A — AII [resp.
q — I1,q] is onto from A* to Al [resp. from Ay to A1, (T3) implies that £ is ®(-mixable.

[We show (T0)] Suppose that there exists ¢ € rbd A and g € ri Ay, such that |®'(§; ¢ — q)| < +oc.
Let f: [0,¢] — R be defined by f(A) = ®(g + A(g — §)), where € > O is such that g + ¢(q — g) €
ri Ay. The function f is closed and convex on dom f = [0, €] and lim} o M = f(0;1) =
®’(G; q — ¢) which is finite by assumption. Using this and the fact that Af’(0;1) = f'(0; \), we
have limy o A1 (f(A) — £(0) — f’(0; A)) = 0. Substituting f by its expression in terms of ® in the
latter equality gives

lim A~ Da(d +A(g — 4),d) = 0. (14)



Let 7 > 0 and * € [k] be such that gy~ = 0. Suppose that £ is an admissible, ®-mixable loss. The
fact that ¢ is admissible implies that there exists (o, 1, @g, a1) € [n] x [n] x A x A such that [9]

ay € argmin{{,,(a) : {, (a) = jngém(d)} and ireliﬁwo(a) =Ly (ao) < lyy(ar). (15)
ac a

In particular, it holds that £, (ag) < £, (a1). Fix A € A¥, such that A. g« = ag and A. y = a4 for
6 € [k]\ {6*}. Let
a, =argmax inf mg(z, A a,q,p),
ach, MHEALzEN]

with ¢ € rbd Ay, as in (I4). Note that a. exists since ¢ is closed.

If @, is such that ¢, (a.) > £, (ay), then taking ;& = § puts all weights on experts predicting a;,
while Dg (g, ¢) = 0. Therefore,

me < inf mo(x, A, a., g, 1) < mg(z1,4,a,q4,q) <0.
HEA,xE[n]

This contradicts the ®-mixability of ¢. Therefore, £, (a.) = £, (a1), which by implies
lyo(ay) > Ly, (ar). For ¢* = G+ A(q — q), with g € ri Ay as in (TT) and X € [0, €],

rﬁ; < inf m¢(x,A,a*,d,u),
HeAk,IE[n]

S m‘i’('rO7A7aa dv q)\)a
(@, lzg (A)) + Da(q*, @) — oy (@),

= (1 - )‘qe*)gio(a‘l) + )‘qe* o (ao) + D‘P( 7(1) - KCEO (CL*),
<(1- )\Q@*)Emo(a*) + Ago+ Lz, (ao) + Da(q a‘j) — Lz, (a.),
= Ao+ (Lag (@) — Loy (ax)) + Da(q + Mg — 4), 9)-

Since gp- > 0(q € riAy) and £, (ag) < €y, (a1) < €y, (a.), (TI) implies that there exists A, > 0
small enough such that A,qg+ (¢, (ao) — lz,(ax)) + Da(q + A\(g — @), q) < 0. But this implies
that mg < 0 which contradicts the ®-mixability of £. Therefore, ®'(g; g — q) is either equal to +oco
or —oo. The former case is not possible. In fact, since ¢ is convex, it must have non-decreasing
slopes; in particular, it holds that ®'(§;q — §) < ®(q — §) — ®(q). Since P is finite on Ay (by
definition of an entropy), we have ®'(§; ¢ — §) < +o0. Therefore, we have just shown that

Vg € tbd Ag,Vq € 1i Ay, ®'(¢;q9 — G) = —cc. (16)
Now suppose that (§,q) € rbd A; x riA for [ C [k], with |I] > 1. Note that in this case, we
have (®()'(I1,g;II,(g — q)) = ®'(¢; ¢ — G). We showed in the first step of this proof that under

the assumptions of the proposition, ¢ must be ®-mixable. Therefore, repeating the steps above
that lead to (I6) for @, g, and g substituted by ®(, II;q € rbd A|, and II,q € ri A|;|, we obtain

®'(q;q — q) = (I1,¢; I1,(¢ — ¢)) = —oo. This shows (T0).
Lemma 11. Forn > 0, S, := n~' S satisfies (I0) for all | C [k] such that |I| > 1, where S is the
Shannon entropy.

Proof. Let | C [k] such that || > 1. Let (¢,q) € thd A; x riA; and ¢* = ¢ + A(q — §), for
A€]0,1[. LetT:={j € [:§; # 0} and K := [\ J. We have

A i 31 A A S ow fer
S(¢:q — q) = lim A {Zee[qe logg) =, ds logqe],

— Tim \—1 A X _ 4 5 A A
= lim A [2063(% log 3 — o logdo) + ), ai)log qe/] .an
Observe that the limit of either summation term inside the bracket in is equal to zero. Thus,
using 1I’Hopital’s rule we get

A —_A) =L — A A — 4 ’ )\, ’
S(diq — @) =lim 3" [0 — o) log ) + (a0 o)+, lawlogap + o]

_ _ - s )
= dej(qO do) log Go + Ze,eﬁ a0 |:1)}ﬂ)110gq€:| ; (18)



where in (I8) we used the fact that ") (g9 — Go) + D pcqqor = 0. Since for all 0" € &,
limyy0 gy = O, the right hand side of (6) is equal to —co. Therefore S satisfies (T0). Since
S, =n~ 'S, itis clear that S, also satisfies (T0).

O

Lemma 12. Let ® : R¥ — R U {+o0} be an entropy satisfying (I0) for all | C [k] such that |I| > 1.
Then for all such |, it holds that

Vg € A,V € A\ Ay, Do(p,q) =400

Proof. Let p € A\ Ayand J :== {0 € [k] : pup # 0} UL In this case, we have q € rbd A5 and
q+27'(u—q) € ri Ay. Thus, since ® satisfies (T0) and ®’(g; -) is 1-homogeneous [7, Prop. D.1.1.2],
it follows that 27'®(q; p — q) = ®'(¢; 27" (u — q)) = —oc. Hence Dy (p, q) = +00. O

Lemma 13. Let ®: R” — RU {400} be an entropy satisfying (I0) for all | C [k] such that |I| > 1.
If © satisfies (10), then 0P(q) = @,Vq € bd Ay. Furthermore, V1 C [k] such that || > 1,

Vd € R* Vg € ri A, Mixe(d, q) = Mixe, (I1,d, I1,q).

Proof. Let p € rbd Ay. Since @ satisfies (I0), it follows that Vg € ri Ay, D(;G—f) = D' (p; q—
p) = —oo. Therefore, 09 (1) = @ [11l Thm. 23.4].

Letd € R™, [ C [k], with |[I] > 1, and q € ri A[. Then
Mixe,(I1,d,11,q) = inf (m,II,d) + Do, (7, 11q),
I

wEA

= inf D
;ngA[ <l"’ad> + q?(ljﬂq)a

< inf (u,d)+ Do(p,q), 19)
HEAL

= Mixg(d, q).

To complete the proof, we need to show that (T9) holds with equality. For this, it suffices to prove
that Vio € Ay \ A, Do (p, g) = ~+oc. This follows from Corollary [12} 0O

Lemma 14. Let ®: R* — R U {+00} be an entropy satisfying (T0) for all | C [k] such that |I| > 1.
Let x € [n],d € R¥, and q € Ay,. The infimum in

Mixe (d, q) (w,d) + D (1, q) (20)

= inf
BEA
is attained at some q. € Ay. Furthermore, if q € ri Ay and q.. is the infimum of (20) then for any
sy € argmax{(s, . — q) : s € 00(q)}, we have
4. € 09" (s, — JNd), (21)
Mixo(d, q) = dj, + ®*(s}) — ©* (s}, — Ji d). (22)

Proof. Let q € ri AAy,. Since ¢ € int dom ® = int Ay, the function ji — —'(§; fr — §) is lower
semicontinuous [T} Cor. 24.5.1]. Given that & — (11 (&), d) + ®(ft) — ®(q) is a closed convex
function, it is also lower semi-continuous. Therefore, the function

o (U (), d) + &(f2) — D(q) — ¥'(g; 2 — q)

is lower semicontinuous, and thus attains its minimum on the compact set Ak at some point g,.
Using the fact that Do (1, q) = D3 (ft, ), we get that

q. = Tx(G.) = argmin(p, d) + Da (s, q). 23)
HEAL

If g € rbd Ay, then either g is a vertex of Ay, or there exists [ C [k] such that ¢ € ri Ay. In the
former case, it follows from that Dy (p, q) = 4oo forall p € Ay \ {q}, and thus the infimum
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of (20) is trivially attained at ¢ = g. Now consider the alternative — q € Ay with |[| > 1. Using
Corollary[12] we have D¢ (p, q) = 400 forall p € Ay \ Ay. Therefore,

Mixg(d, q) = inf (u,d) + Da(p,q),
HEA,

= inf (4,ILd) + Do, (i1, 1L1q), (24)
REA
where @ := ® o Il;. Since II;q € ri A, we can use the same argument as the previous paragraph

with ® and q replaced by @ and II;q, respectively, to show that the infimum in (24)) is attained at
some g, € Ay. Thus, g, := H-[r(j € Ay, attains the infimum in (20).

Now we show the second part of the lemma. Let g € ri Ay, and g, be the infimum of (Z0). Since P
is convex and g = I, (q) € int A, = int dom @, we have 8@(@) # @ [11, Thm. 23.4]. This means
that there exists s, € 0®(q) such that (s}, G — ) = ®(q; G, — §) [T, p.166]. We will now show
that s, — JTd € 99(q.), which will imply that G, € 9®* (s}, — JId) (ibid., Cor. D.1.4.4). Let
g = argmmueAk (u,d) + Do (p, q). Thus, for all pu € Ay,

(. d) + D() — (q) — (G o — §) > (g d) + () — B(G) — (55, G — 4),
= O(p) > ®(q.) — (o — Go, JLd) + (55,4 — Gu) + ¥/ (G 1 — G),
— O(p) > B(G.) — (o — Gu, ST d) + (85,4 — G.) + (85, 1 — @),
= (1) > ©(g.) + (i — Gu, 85 — T d),

where in the second line we used the fact that Vg € Ay, <q, d) = (q,J]d) + dj, and in third
11ne we used the fact that Vs € d®(q), (s, i — G) < ®(q;fr — ¢) (ibid.). This shows that
— Jld € 0%(q.).

Substituting ®’(g; ¢, — §) by (8@« — q) in the expression for Mixs (d, q), we get

Mixe(d. q) = di + (G, i d) + ®(q) — ©(q) — (55,4 — @),
= dy + (s, @) — D(q) — [(s5 — I\ d, 4.) — ©(q.)],
= dip + ®*(s) — (s, — Ji d),
where~in the last line we used the fact that @ is a closed convex function, and thus Vq € Ak,
s € 09(q) = D*(s) = (s,q) — ®(q) (ibid., Cor. E.1.4.4).
O

Lemma 15. Let ¢ € Ay. For any sequence (d,,) in [0,+oc[F converging to d € [0, +oc]”
coordinate-wise and any entropy ®: R¥ — R U {400} satisfying (10) for | C [k] such that |I| > 1,

lim Mixg(d,, q) = Mixe(d, q). (25)
m—r o0

Proof of Lemma[I3] Letq € Ay and ®: R* — R U {400} be an entropy as in the statement of the

Lemma. Let (d,,) C R such that d,, "= d € R¥. in [0, 4-00[". Let [ == {# € [k] : dp < +00}.
If [ = @ then the result holds trivially since, on the one hand, Mixg(d, q) = 400 and on the other

hand Mixg (d,y,, ) > minger) dm,o "3 4.
Assume now that [ # &. Then

Mixg (dma Q) = ”inf <:u’7 dm> + Do (lu'7 q)a (26)
< inf < d> + D‘i’(ﬂv q)7 (27)

REA
< to0, (28)

where the last inequality stems from the fact that I1;d,, is a finite vector in RIY. Therefore, 28)
implies that the sequence «,,, := Mixg¢(d,, q) is bounded. We will show that (v, ) converges in R
and that its limit is exactly Mixq(d, q). Let (&) be any convergent subsequence of (cv,, ), and let
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(d,,) be the corresponding subsequence of (d,,). Consider the infimum in (I00) with d,,, is replaced

by cim From Lemma this infimum is attained at some g,,, € Ay. Since Ay, is compact, we may
assume without loss of generality that g,,, converges to some q € Aj. Observe that g must be Ay;

suppose that 3, € [such that gy, > 0. Then

dm Z <Qm7dm>7
> qm,0., sz,(?* mj;” +00.

This would contradict the fact that «,, is bounded, and thus g € A,. Using this, we get

MiX(I)(dm7 Q) = <qma dm> + D@(qm>q)7
> (ILigm, Iidn) + Do (gm. q).
m2>00 <H[(j7 H[d> + D<1> (‘ja q)a

> inf (fi.d) + Da(fn.q). (30)

where in (29) we use the fact that ¢ € A. Combining (30) with (2Z7) shows that é&,,, converges to
Mixe (d, g) = infuen, (1, d) + Do (ft, g). Since (&,,) was any convergent subsequence of ()
(which is bounded), the result follows. O]

C Proofs of Results in the Main Body

C.1 Proof of TheoremM

Theorem EI]Any loss £: A — [0, +00]™ such that dom ¢ # &, has a proper support loss £ with the
same Bayes risk, L,, as L.

Proof. We will construct a proper support loss £ of £.

Letp € riA,, (—p € intdomo y,). Since the support function of a non-empty set is closed and
convex, we have 0y = 0., [, Prop. C.2.1.2]. Pick any v € 0o.9,(—p) = 8035@(—p) + .
Since 07, = 1.7, [11]l, we can apply Proposition (iv) with f replaced by 0, to obtain (—p,v) =
0.9,(—p) + ., (v). The fact that (—p, v) and o.5,(—p) are both finite implies that ¢, (v) = 0.
Therefore, v € .%; and (p,v) = —0.9,(—p) = L,(p). Define {(p) == v € ..

Now letp € tbd A, and q == 1,,/n. Since the L, ¢ is a closed concave function and q € int dom L, it

m— 00

follows that L,(p+m~*(q—p)) "= L,(p) [, Prop. B.1.2.5]. Note that q,,, := p+m~'(g—p) €
riA,,Vm € N. Now let Vg = ﬁx(qm): where £(g,,) is as constructed in the previous paragraph.
If (v1,m) is bounded [resp. unbounded], we can extract a subsequence (vy,,, (m)) Which converges
[resp. diverges to +-oc0], where 1 : N — N is an increasing function. By repeating this process
for (v2,4, (m)) and so on, we can construct an increasing function ¢ = @, 0---0¢; : N = N,
such that v, = [”w,w(m)]le[n] has a well defined (coordinate-wise) limit in [0, +o00]™. Define
£(p) == lim,;, o0 V. By continuity of the inner product, we have

<p7£(p)> = W}gnoo<qga(m)vvm> = lim <q¢(m)7£(qg)(m))>7

m—r00
= w}gnoo LZ(Q@(m)) = L,(p).
By construction, Vm € N, p,, = qu(m) € 1iA, and £(py,) = vy M0 £(p). Therefore, £ is
support loss of /.

It remains to show that it is proper; that is Vp € A,,Vq € A,, (p,{(p)) < (p,L(q)). Let
g € riA,. We just showed that Vp € A, (p,{(p)) = L,(p) and that £(q) € .%;. Using the fact

that L,(p) = inf,c.o, (p, 2), we obtain (p, £(p)) < (p, £(q)).

Now let g € rbd Ay. Since £ is a support loss, we know that there exists a sequence (g,,) C ri A,
m—0o0

such that £(q,,) "= £(q). But as we established in the previous paragraph, (p, £(p)) < (p, £(qm)).
By passing to the limit m — oo, we obtain (p, £(p)) < (p,£(q)). Therefore £ is a proper loss with
Bayes risk L,. O
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C.2  Proofs of Theorem |5|and Proposition

For a set C, we denote co C and €oC its convex hull and closed convex hull, respectively.

Definition 16 ([7]). Let C be non-empty convex set in R"™. We say that u € C is an extreme point of
C if there are no two different points uy and uz in C and A €]0, 1] such that w = Auy + (1 — N)uo.

We denote the set of extreme points of a set C by ext C.
Lemma 17. Let {: A — [0, +00]™ be a closed loss. Then ext 0.7, C Sy.

Proof. Since co.#; C R™ is connected, co.y = {v + >, _; arpl(ar): (akep), a,v) € A" x
A, x [0, +oo[™} [ Prop. A.1.3.7].

We claim that ©0.%; = co.%}. Let (2,) == (Vm + > p—q @m.kl(@m, i)) be a convergent sequence

in [0, +oo[", where (), ([@m,k]ke[n)) and (vy,) are sequences in A, A", and [0, +oo[", re-

spectively. Since A,, is compact, we may assume, by extracting a subsequence if necessary, that
m—0o0

a, — oael, LetK:={ke[n]:aj #0}. Since z,, converges, ([[{(@m.i)|reci,vm]) is a

bounded sequence in [0, +oo[™*I*™ Since ¢ is closed, we may assume, by extraction a subsequence
m—r o0 m—r 00

if necessary, that Vk € KC, {(amx) — 4(a}) and v,, —  v*, where [a}]rex € AXl and
v* € [0, +o0[™. Consequently,
v* 4 Zakﬁ(ak) = ngnoo Vpn ks + Z amkl(@m k)|
k=1 keK

< lim z,,,
m—r 00

where the last inequality is coordinate-wise. Therefore, there exists v’ € [0, +oc[™ such that
lim,, oo 2 = v +v* + Y7_ ajl(a}) € co.7. This shows that ¢0.%; C co.¥;, and thus
€0.%; = co.¥; which proves our first claim.

By definition of an extreme point, extco.”; C ¢0.7;. Let e € extc0.7; and (Gyepn), @, v) €
A" x Ay, x [0,400[" such thate = >, axl(ay) +v. If there exists 4, j € [n] such that a;aj # 0
or o;;v; # 0 then e would violate the definition of an extreme point. Therefore, the only possible
extreme points are of the form {{(a) : @ € dom¥¢)} = S,.

Theorem Let £: A — [0, 400]™ be a loss and £ be a proper support loss of L. If the Bayes risk L,
is differentiable on |0, +00[", then { is uniquely defined on ri A,, and

Vp € dom/, 3Ja, € dom¥, U ay) = L(p),

Va € doml, 3I(pm) CriA,, Lpm) "= {(a) coordinate-wise.

Proof. Letp € riA,, and suppose that L, is differentiable at p. In this case, 0., is differentiable at
—p, which implies [[7, Cor. D.2.1.4]

F(p) = 00.9,(—p) = {Voz,(-p)}. (31

On the other hand, the fact that 0., = 0es.9, [Il Prop. C.2.2.1], implies F(p) = 0o.s,(—p) =
00s.7,(—p). The latter being an exposed face of ©0.7; implies that every extreme point of F(p
is also an extreme point of ¢6.% [[7, Prop. A.2.3.7, Prop. A.2.4.3]. Therefore, from (31), £{(p) =
Vo.5,(—p) is the only extreme point of F(p) C €0.7;. From Lemma|17] there exists a. € A such
that £(a.) = £(p). In this paragraph, we showed the following

Vp € riA,, Ja, € dom ¥, {(a.) = £(p). (32)

~

For the rest of this proof we will assume that L, is differentiable on ]0, +o00[™. Let p € rbd A,, N
dom £. Since £ is a support loss, there exists (py,,) in ri A,, such that (£(p,,)).m converges to £(p).
From (32) it holds that Vp,,, € riA,,, Ja,, € A, {(an) = £(pm). Since (¢(ay,))m converges and ¢
is closed, there exists a, € A such that £(a.) = lim,,_, o ¢(an) = £(p).

Now leta € dom { and f(p,x) := £,(p) — £.(a). Since {(a) € %, and ¢ is proper, we have for all
p EriAL Euplf(p,2)] <0and —oo < f(p,x),Vz € [n]. Therefore, Lemmal|5|implies that for
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all m € N\ {0} there exists p,, € ri A, such that Vz € [n], £, (pm) < £y(a)+ 1/m. On one hand,
since (£(py)) is bounded (from the previous inequality), we may assume by extracting a subsequence
if necessary, that (£(py,))m converges. On the other hand, since p,,, € riA,, (32) implies that
there exists a,,, € dom ¢ such that {(p,,) = ¢(ay,). Since ¢ is closed and (¢(a,,))., converges,
there exists a. € A, such that £(a.) = limy, 00 (@) = limy, 00 £(Pm) < ¢(a). But since ¢ is
admissible, the latter component-wise inequality implies that £(a.) = ¢(a) = lim,,, £(p). O

Lemma 18. Let ¢: A — [0, +00|™ be a loss satisfying Assumption|l| If L, is not differentiable at p
then there exist ag, a1 € dom ¢, such that {(ag) # ¢(a1) and L,(p) = (p,£(ag)) = (p,£(a1)).

Proof. Suppose L, is not differentiable at p € ri A,,. Then from the definition of the Bayes risk,
0.7, is not differentiable at —p. This implies that F(p) := 0o.%,(—p) has more than one element
[7, Cor. D.2.1.4]. Since 0%, = 0w, (ibid.. Prop. C.2.2.1), F(p) = Jos.,(—p) is a subset
of ©6.%; and every extreme point of F(p) is also an extreme point of ¢6.%; (ibid., Prop. A.2.3.7).
Thus, from Lemma we have ext F(p) C Sy. On the other hand, since —p € intdomo,,
F(p) is a compact, convex set [[L1, Thm. 23.4], and thus F(p) = co(ext F(p)) [, Thm. A.2.3.4].
Hence, the fact that F(p) has more than one element implies there exists ag,a; € A such that
((ap),l(ay) € ext F(p) € F(p) and £(ay) # {(a1). Since F(p) = do.5,(—p), Proposition [1}(iv)
and the fact that 0, = 1.5, imply that L,(p) = (p, £(ao)) = (p, (a1 O

Pr0p051t10n. 12| Let &: R¥ — R U {400} be an entropy and £: A — [0, +00]". If £ is ®-mixable,
then the Bayes risk satisfies L, € C(]0,+oc["). If. additionally, L, is twice differentiable on
10, +00[", then ® must be strictly convex on Ay,.

Proof. Let [ = {1,2}. Since ¢ is ®-mixable, it must be ®;-mixable, where | := ®; o HT R2 -
R U {400} (Proposition[I0). Let ¥ := ®;.

For w €]0,+oc[ and z € intdom¥* = R (see appendix @), we define (0*)._(w) =
limy_, oo [U*(z + tw) — U*(2)]/t. The value of (¥*)’_ (w) does not depend on the choice of
z, and it holds that (U*)_(w) = o ., ¢ (w) and (¥*)" (—w) = o4, §(—w) [ Prop. C.1.2.2].
In our case, we have dom ¥ = [0, 1] (by definition of W), which implies that oy, (1) = 1 and

O gom @ (—1) = 0. Therefore, (*)’_(1) + (¥*)(—1) = 1. As aresult U* cannot be affine. For all
d>0,letgs: Rx{—1,0,+1} — R be defined by

gs(s,u) = [T (s +8(u+1)/2) — ¥*(s + 6(u — 1)/2)]/0.

Since T* is convex it must have non-decreasing slopes (ibid., p.13). Combining this with the fact
that U* is not affine implies that

sy € R, gs(s5,—1) < gs(s3,+1). (33)
The fact that U* has non-decreasing slopes also implies that

g5(s5,+1) = [W*(s5 +8) = U*(s5)]/8 < lim [ (s5 + 1) — U™ (s5)]/t = (¥")o(1) = 1.

Similarly, we have 0 = —(¥*)’_(—1) < gs(s%, —1). Let i € 9¥*(s}). Since W is a closed convex
function the following equivalence holds ji € 0U*(s}) <= s; € 0¥(f) (ibid., Cor. D.1.4.4).
Thus, if i € {0,1} = bd Ao, then 0¥ (1) # @, which is not possible since £ is U-mixable (Lemma

[We show L, € C'(]0, +00[™)] We will now show that L, is continuously differentiable on |0, +oo|[™.
Since L, is 1-homogeneous, it suffices to check the differentiability on ri A,,. Suppose L, is not
differentiable at p € riA,,. From Lemma there exists ag,a; € A such that ¢(ag),l(a1) €
00.7,(—p) and £(ag) # {(a1). Let A := [ag,a1] € R"*?, ¢ = min{|l;(ao) — ls(a1)] : z €
[TL], wm(aO) - (
9s(s5, +1) ]0 1].
U-mixable, J3 £, (

ai)| > 0}, and sj € R as in (33). We denote g~ = gs(sj,—1) and g* =
Let ji € 9W*(sf) € int Ay and p = TIp(j1) € riAy. From the fact that £ is
)
«) <

A) =L, (ag) — £, (ay), and (B), there must exist a. € A such that for all = € [n],

Mixy (€2(A), p),
= la(ar) + 0¥ (s5) = W (55 — La(ao) + La(ar)),

lz(a
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and by letting sgn be the sign function
< ly(a1) + gs(s5, —sgnllz(ao) — €z(a1)])[lz(ao) — la(ar)], (34)

where in (34) we used the fact that U* has non-decreasing slopes and the definition of §. When
lp(ag) < ly(ar), B4 becomes l,(a.) < (1 — g )li(ar) + gt lz(ap). Otherwise, we have
le(as) < (1—g )Me(ar) + g la(ag) < (1 — gT)ly(ar) + gtl.(ap). Since £ is admissible,
there must exist at least one x € [n] such that £, (ag) > ¢, (a1). Combining this with the fact that
pr > 0,Vx € [n] (p € 1iA,,), implies that (p, {(a.)) < (p,(1 — g )l(ar) + gt l(ap)) = L,(p).
This contradicts the fact that £{(a.) € .%;. Therefore, L, must be differentiable at p. As argued
earlier, this implies that L, must be differentiable on ]0, +o0o[™. Combining this with the fact that
L, is concave on |0, +-oo[™, implies that L, is continuously differentiable on |0, +-oco[™ (ibid., Rmk.
D.6.2.6).

[We show ®* € C'(R*~1)] Suppose that ®* is not differentiable at some s* € R¥~'. Then
there exists d € R¥~1\ {0;} such that —(®*)(s*; —d) < (®*)'(s*;d). Since s* € int dom ®*,
(®*)(s*,-) is finite and convex [7, Prop. D.1.1.2], and thus it is continuous on dom ®* = R¥~1
(ibid., Rmk. B.3.1.3). Consequently, there exists §* > 0 such that

vd e RF ! ||d — d|| < 6* = —(®*)(s*; —d) < (®*)'(s*;d) (35)
Let g: {—1,1} — R be such that

glu) = sup u- (") (s*;ud).
|d—d]|<s*

Note that since ®* has increasing slopes (®* is convex), g(1) < SUD||d_q <6+ ((i)*)go(d) =
SUD||g_q|<* Odom &(d) < 1, where the last inequality holds because Ay C B(0j, 1), and thus
Tgomd(d) = UAk(d> < ch(Obl)(d) = 1. Let Ag = g(1) — g(—1). From (33), it is clear that
Ag > 0.

Suppose that L, is twice differentiable on ]0, +-00[™ and let £ be a support loss of £. By definition
of a support loss, Vp € ri Ay, £(p) = £(p) = VL,(p) (where £ := £ o11,). Thus, since L, is
twice differentiable on |0, +00[™, £ is differentiable on int A,,. Furthermore, £ is continuous on
ri Ay, given that L, € C'(]0,+oo[") as shown in the first part of this proof. We may assume
without loss of generality that ¢ is not a constant function. Thus, from Theorem [ £ is not a

constant function either. Consequently, the mean value theorem applied to £ (see e.g. [12, Thm.
5.10]) between any two points in ri A, with distinct images under ¢, implies that there exists

(P, v.) € int A, x R"1, such that DZ(p, v, # 0;. For the rest of the proof let (p, v) = (P, v.)
and define J := {x € [n] : D{,(p)v # 0}. From Lemma we have (p, D{(p)) = O, which
implies that there exists « € J, D£, (p)v > 0. Thus, the set

R= {x €J: DL, (p)v > 0} (36)
is non-empty. From this and the fact that p € ri A,,, it follows that

> porDL(B)v > 0. (37)
' €ER

Let p! := p + tv. From Taylor’s Theorem (see e.g. [? , §151]) applied to the function ¢ Z(ﬁt),
there exists €* > 0 and functions 4, : [—€*,*] — R", z € [n], such that lim; ot ~15,(¢) = 0 and

VIt| <€, £,(p") = L,(p) +tDL,(p)v + 6.(t). (38)
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Forz € [n], letd, € R¥ and suppose that ld: — d|| < é* (we will define d, explicitly later). By
shrinking €* if necessary, we may assume that

Vo €3,Y0 € [Vt < €, dot~'6,(t) < ”Lﬁ“’)”' (39)

~ Tk % T % * * dg * A y ~
vrgd, (s - (s — [0 (e ff“)}w) < 28N DL (B, (40)

YV € [n], i)*(s*) — o (s* — € Dzﬁéﬁ)vdw> < —(<i>* ! (S*; —€* Dzﬁéﬁ)v dw)

where (1) is satisfied for small enough €* because of (37) and the fact that

1 (&% (o* DZ, (p)v F . _ DL, (B)v
(@ (") - @7 (" — XpiRd,) o —(@) (8- )

. . * Fox [ ok T, * * d _
and (@0) is also satisfied for small enough €* because ®*(s*) — @ (s — [630 (eﬁ”)]ee[%o =

0 (max{ee[,jﬂ} O (eﬁ) D = o(e), where the first equality is due to the fact that (A, z) —
1 <<f>*(s*) — O*(s* — )\z) is uniformly bounded on compact subsets of R x RF (by continuity of
the directional derivative (®*)'(s*;-)).

If D/ . (P)v <0, then by the positive homogeneity of the directional derivative, the definition of the
function g, and @T)), we get

*o%\ _ FHE * *DZm(ﬁ)v *Dim(ﬁ) * Ag ,
(s7) - @ (S € ~fa dw) < € q 1741 2 pwOLs (P, (42)

z/ER

On the other hand, if D/ +(P)v > 0, then from the monotonicity of the slopes of d*, the positive
homogeneity of the dlrectlonal derivative, and the definition of the function g, it follows that

Tk % Tk % *Df v T % * D¢ _(p)v
(B0 - (s - Ot ) < (8 (57 ).

= —ELER () (s —d,),

DZ_(p)v
S 7T/(p) g(_l)a

= PLBY (Ag 1 g(1)). (43)
la

Let \g == e*%, for 6 € [k]. From Theoreml there exists [aglpepr) € A", such that

Uap) =Lp) and VO € [K], ag) = (p™) = L(p) + € 5 DUB)v +0 ("), @4)
where [§(+)], = 0 (+) for z € [n].
From the fact that ¢ is ®-mixable, it follows that there exists a. € A such that for all z € [n],
le(ay) < Mixg (by(arr), p) = Lo (ag) + ®*(s*) — &* (8" — Jilo(ark)) - (45)
For = € [n], we now define d,, € R¥ explicitly as

7, & * dg .
Vo € [k]a dz,e = do + e*[DL,, (p)v] Oz (6 Hdl\) ) ifreld
05 otherwise.

From (39), we have ||d, — d|| < §*,Vz € [n]. Furthermore, from (@4) and the fact that for all
€ [n], Jlle(ar.x) = [lz(ag) — Cz(ak)]pe > we have

T €* Dgﬁéﬁ)v d,, ifxreld
T ba(are) = {(5 e* o otherwise. (46)
® lldll oclk] ’



Using this, together with (#2)) and @3)), we get Vz € J,

(P*(S*) _ (i)* (S* _ J];rgz(alk)) _ (i)*(s*) _ é* (8* — Dﬁﬂ,;ﬁ)vdm) ’

« DL (P)v A DL (Pvy
< € =ar9(1) = €A=" Ling (500

* A by ~
+€ Wgul{ozm@wgo} Z pe DL, (D). (47)

T'eER
Combining @3), (@6), and 7)) yields
' ER
Fok /[ ok T, * * * d
e el
using ([@0) and the fact that (p, D{(p)) = O] (see Lemma 8] , we get
< (p,(ar)) — 5t > DL (D (48)
' ER
<(p,L(p)), (49)
where in #9) we used (37) and the fact that {(p) = ((ay) (see (@3)). Equation [49] shows that
¢(a*) € S, which is a contradiction. O

C.3 Proof of Theorem(7|

Theorem[7] Let n > 0, and let £: A — [0,400]" a loss. Suppose that dom { = A and that L, is
twice differentiable on |0, +o0o[". If ng > 0 then £ is ny-mixable. In particular, 1y > n;.

Proof. Let ) := n,. We will show that exp(—7.%;) is convex, which will imply that ¢ is -mixable
[51. o

Since 7y = inf,; & (Amax([HLiog (B)]"HL,($))) ™ > 0, nL, — Ly, is convex on i A, [14,
Thm. 10]. Let p € ri A,, and define
A(T) = Llog<r) + <T77]ﬁ(P) - glog(p», r eri An

Since A is equal to L;,,, plus an affine function, it follows that nL, — A is also convex on i A;,. On the
one hand, since £ and £1,4 are proper losses, we have (p, £(p)) = L,(p) and (p, liog(P)) = Lyog(P)
which implies that

nL,(p) — A(p) = 0. (50)

On the other hand, since L, and L, are differentiable we have {(p) = VL,(p) and VL,,,(p) =
liog(p), which yields nVL,(p) — VA(p) = 0,,. This implies that nL, — A attains a minimum at p
[7, Thm. D.2.2.1]. Combining this fact with (30) gives nL,(r) > A(r),Vr € ri A,,, or equivalently
—nL, < —A. By Propositionm-(iii), this implies

[=nL,]" > [-A]". (51)

Using Proposition (ii), we get [~A]*(8) = [~Lyogl*(s — liog(P) + né(p)) for s € R™. Since

—nLy(u) = —L,(nu) = 0.9,(-nu) and 0%, = 1y,, Proposition [I-(v) implies [-nL,]*(s) =
t#,(—s/n). Similarly, we have [ L,.,]*(s) = t.9,, (—s). Therefore, (51)) implies

Vs €R", 1, (=8/1) 2 L1, (=8 + log(P) — nk(p))-

This inequality implies that if s € —n.7,, then s € —Hg + liog(P) — n¢(p). In particular, if
u € e~ "7 then

w € e~ Floathos(P)—nLl(P) C Hepy1 ={v ER": (v,p® enﬁ(p)> <1} (52)
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To see the set inclusion in (52), consider s € — Ao + Liog(P) — n¢(p), then by definition of the
superprediction set Aoq there exists 7 € A, and v € [0, +o00[", such that s = logr — logp —
né(p) — v. Thus,

(e*,p@e™P)) = (r.e¥) <1, (53)

where the inequality is true because » € A,, and v € [0, 400[". The above argument shows that
e 1 C Hr(p),1» Where 7(p) == p © e"t(P) Furthermore, e~ C H 1 (p),1M]0, +o00[", since
all elements of e~ "* have non-negative, finite components. The latter set inclusion still holds

for p € rbd A,,. In fact, from the definition of a support loss, there exists a sequence (p,,) in
ri A,, converging to p such that £(p,,) "=~ £(p). Equation |53[implies that for u € =",
(U, Py © e”g(pm» < 1. Since the inner product is continuous, by passage to the limit, we obtain

(u,p ® e"P)) < 1. Therefore,

et C () Hrp),1N]0,+o0[" (54)
PEA,

Now suppose u € (e, Hr(p),1M]0, +00["; thatis, forall p € Ay,

12 (u,p @) = (pucen®) = (pentieriiosn)

> e(Pme(p))+(p;log u>’ (55)

where the first equality is obtained merely by expanding the expression of the inner product, and
the second inequality is simply Jensen’s Inequality. Since u — e is strictly convex, the Jensen’s
inequality in (53) is strict unless 3(c, p) € R x A,,, such that

nl(p) +logu = cl,,. (56)

By substituting (56) into (53), we get 1 > exp(c), and thus ¢ < 0. Furthermore, (56) together
with the fact that u €]0, +oo[™ imply that p € dom ¢, and thus there exists a € dom ¢ such that
{(a) = £(p) (Theorem 5). Using this and rearranging (56), we get u = exp(—n/(a) + c1). Since
¢ < 0, this means that u € exp(—7.7%). Suppose now that (36) does not hold. In this case, (33) must
be a strict inequality for all p € A,,. By applying the log on both side of (53],

Vp € An,nLy(p) + (p,logu) = (p,nl(p)) + (p,logu) < 0. (57)

Since p — L,(p) = —0.,(—p) is a closed concave function, the map g: p — nL,(p) + (p, logu)
is also closed and concave, and thus upper semi-continuous. Since A,, is compact, the function g
must attain its maximum in A,,. Due to (57) this maximum is negative; there exists ¢; > 0 such that

Vp € Ak, (p,nl(p)) — (p, —logu) < —c;. (58)

Let f(p,z) = nl,(p) + logu, + c1, for x € [n]. It follows from (38) that for all p € A,
Eznpf(p,2) < 0and YV € [n],—co < f(p,). Thus, Lemma [6|applied to f with e = ¢1/2,
implies that there exists p, € r1iA,, such that nf(p,) < —logu — ¢1/2 < —logu. From
this inequality, p. € dom ¢, and therefore, there exists a, € dom ¢ such that ¢(a.) = £(px)
(Theorem [5). This shows that nf(a,) < —logu, which implies that u € exp —n.%. There-
fore, MNpea, Hr(p),1N)0, +00["C e 77*. Combining this with shows that e =
ﬂPEAn Hr(p),1N]0, +00[". Since e~"7% is the intersection of convex set, it is a itself convex

set. Since dom ¢ = A by assumption, it follows that ., = .#°, and thus e~ is convex. This
last fact implies that ¢ is n-mixable [5]. O

C.4 Proof of Theorem

We start by the following characterization of A-differentiability (this was defined on page 5 of the
main body of the paper).

Lemma 19. Let ®: RF — R U {+00} be an entropy. Then ® is A-differentiable if and only if
VI C [k] such that 1| > 1, ®( = ® o I}, o [TIF]T is differentiable on int AIU'
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Proof. This is a direct consequence of Proposition B.4.2.1 in [7], since 1) i)[ is convex; and 2)

for all @, € int Ay and @ = ® o ITj. O

Theorem[10] Let ® : R — R U {00} be a A-differentiable entropy. Let { : A — [0, +00]|" be a
loss (not necessarily finite) such that L, is twice differentiable on |0, 4+oc[". If { is (n, ®)-mixable
then the GAA achieves a constant regret in the &7 (A, k) game; for any sequence (z*,al ; )i—,,

Lossbaa (T L < R? = inf Do (e, ,
0ssgaa () — min ossy(T) < R Juf max Da(eg a)/n}

where ey is the 0th basis element of RF.

Proof. Forall [ C [k] such that |I| > 1, let & := & o IT;, and <I>[ =do [Hk] From Lemmathe
infimum involved in the definition of the expert distribution q* in Algorithm 2| IIS indeed attained. It
remains to verify that this minimum is unique. This will become clear in what follows.

Let1° = [k] and 3° := {0 € [k] : £,+(al) < +oo},t € [T]. Fort € [T, we define the non-increasing
sequence of subsets (I*) of [k] defined by I' := J* N [*~1. We show by induction that q° € A+ and

_ _ R t
Vo (Il g") = I (W(d% =D il <AS>) : (59)
s=1

where A® = [a}] € AF, s € N. Suppose that (59) holds true up to some ¢ > 1. We will now
show that it holds for ¢ + 1. To simplify expressmns we denote | := Hkac € R' for & € R*, and
= {,(A),t € [T]. From the definition of g* in Algorithm[2] we have
e M = Argmin{p, 2™) + Do (11, q°).
HEAY
Using the definition of J*1,
M = Argmin{p, ') + Dy (u, q*),

HEA 111

= Argmin(p, 2! + @ (fire) — P (Gh) — P (Ghe; fore — Gh).
BEA 141

Now using the facts that ¢* € Ay, u € Apyr C Ap, ® is A-differentiable, and Lemma we have
M= Argmin(u,th) + Ci)[t+1(ﬂ[f,+1) - é[t ((ﬁt) — <I]_,[t - (jft,V@)[t ((ﬁt»
HEA 111
Using the facts that (p,z't') = 2171 + ([L[Hl,H’;iH T2t for i € Apii, and
(foe, VO (qf )M = <ﬂ[t+1,H{t+1v®[t (g})) (since p € Ap+1)

M= Argmin<ﬂp+1, —H{:+1 V(i)[t (q~€t) —+ Hﬁﬂ JT t+1> + (i[t+1 (ﬂ[t+1)
BEA 141

+{die, VOr () — Pe(gi),
and since the last two terms are independent of u,

M= Argmin(ﬂ[tH, [z+1 V(I)[t (q[{) + H[t+1 T t+1> + q)[t+1 (/J,[t+1).
BEA 141

Now using Fenchel duality property in Proposition [T}(iv),
M={p€ A Ty 0 () = fens € 005 (L1 VO (Gh) — I JT 271}
Finally, due to Lemmaand Proposition (if{tﬂ is differentiable on RI"'1-1 , and thus
= {10}, 0 [I ] T 0 V54 (Il VB (Gh) — Ty JT 2441} (60)
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From (60), we obtain
Vs (I g = Tlfea Ve (gh) — T 0 T2 (61)

Thus using the induction assumption and the fact that H[HIH’[“, = {“Hl (since [*T1 C ), the result
follows, i.e. (39) is true for all ¢ € [T']. Furthermore, g'™! € Ay:+1, since H[qu“rl € dom @41 C
A\p+1). Using the same arguments as above, one arrives at

Mixo (g, 21 = 2( il (e, ~Tlfin V0 (gh) + s JT2H) + @i (fues)
122 t+1

+ (@i, VOu (qh)) — Do (dh).
Using the Fenchel duality property Proposition [T}(vi) and (60),

= 2 L D5 (VD (gh)) — Bhes (T, V() — TR, JT 20, (62)
On the other hand, ®-mixability implies that there exists ai e At, such that for all ¢ € [n],

Vt € [T, £, (al) < Mixe(q' ", 2"),
Summing this inequality for ¢ = 1,...,T yields,

T T
D ler(al) <) Mixa(q' ™, 2"),
t=1 t=1
and thus using (62) and (61)) yields
T
S lalal) <N lo(ah) + (V) — Bir (Wi V-1 (G-} — I 27).
t=1 t=1

Finally, using (39) together with the fact that H% H’fT L= Hk

T T ~ 5 X
D lae(al) < lae(af) + 21 (VO(G°)) — (H?T (W(go) = Tt (At)>> :

t=1

Using the definition of the Fenchel dual and Proposition [T}(vi) again, the above inequality becomes

Zezt ) <D taelah) + (@, VE(G"))) - 2(¢°)

=D tu(a)) + (g, VE(G)) - 2(q°)

<u7ZJk 2 (A") = V(g °)> + @(ﬁ)] . (63)

Using the fact that V¢ € [k] \ I7, Zthl Lyt (al) = +oo (by definition of (I*)), the right hand side of

(63) becomes

inf
HEA[T

T T
> lalal) + (@, VO(§°) — 2(@°) + Jnf <ﬂ7 > TN (AY) - V<I>(c1°)> + <I>(ﬁ)1 :
t=1 t=1
Thus, we get
T T T
Y € Ay, Zfa:t SZ[mt(a2)+<ﬁ,ZJ;—£mt(At)>
t=1 t=1 t=1

+®(R) — 2(¢°) — (- ¢°, V("))
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Using the facts that Zthl lye(al) + <ﬂ, Zthl yAN (At)> = <u, Zthl Lyt (At)> and the defini-
tion of the divergence,

Vi € Ay, Y lpi(al) < <Z >+D¢(uq)

t=1
which for pp = ey implies

T T
0 € k], Y Llor(al) Z :(ah) + Do(eq, q°). (64)

When instead of ®-mixability, we have (1), ®)-mixability, the last term in becomes %&qﬂ)

and the desired result follows.
O

C.5 Proof of Theorem [11]

We require the following result:

Proposition 20. For the Shannon entropy S, it holds thatg*('u) = log({exp(v), 1;)+1),Vv € RF7L
and S*(z) = log({exp(z), 11),Vz € R¥.

Proof. Given v € R*~!, we first derive the expression of the Fenchel dual g*(v) =
Supgea, (4, v) — S(g). Setting the gradient of ¢ — (g, v) — S(q) to 0f, gives v = V5(q). For
q €]0, +ool¥, we have V S(q) = log g+14, and from appendixwe know that VS(q) = JI V S(q).
Therefore,

v=VS(g) = v=JVS(q) = v:logqi,
k

where the right most equality is equivalent to ¢/q, = exp(v). Since (g,1;) = 1 — qx, we get
g = ({exp(v),1;) + 1)~'. Therefore, the supremum in the definition of S"(v) is attained at
G. = exp(v)({exp(v), 1;) +1)~". Hence 8™ (v) = (G, v) — (G, log G..) = log({exp(v), 1;) +1).
Finally, using (@) we get S*(z) = log{exp(z), 1), for z € RF, O

Theorem[11]Let n > 0. A loss £: A — [0, +00]™ is n-mixable if and only if € is (n, S)-mixable.

Proof.
Claim 1. Forallq € Ay, A = ay.;, € R¥, and x € [n]

=~ log (exp(—nls(A)), q) = Mixg (£, (A), q). (65)

Let q € ri Ag. From Proposition 20 the Shannon entropy is such that S* is differentiable on R”, a
thus it follows from Lemma.(@]) [@2)) that for any d € [0, +-oo[
Mixs(d, q) = 5"(VS(q)) — S"(VS(q) — d). (66)

By definition of S, V S(q) = log g+ 1, and due to Proposition[20} S*(2) = log{exp z, 1), z € R*.
Therefore,

VS(q) — nd = log(exp(—nd) © q) + 1. (67)
On the other hand, from [9] we also have
Mixd(d, q) = n~ ' Mixs(nd, q), 7 > 0. (68)

Combining (66)-(68), yields
—n ' log (exp(—nd, g) = Mixg(d, q). (69)
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Suppose now that q € ri A for | C [k] such that |I| > 1. By repeating the argument above for
Sy == Soll], we get

vd € [0, +o0[", Mix{ (I d, IT;q) = —n~ ' log(exp(—nlld), I1,g),

= —n" ' log(exp(-nd), q). (70)
Fix z € [n] and let d := £, (A) € [0, +o0]*. Let (d,,) C [0, +oo[* be any sequence converging to d.
Lemma|15) Mix?(d,, q) "=~ MIXS(d q). Using this with (70) gives
—n" log {exp(—11ls(A)). q) = lim_—y~ log(exp(~ndum). q),
= lim Mix{ (. q),
= Mix{ (d,q) = Mix{ (¢, (A), q). (71)

It remains to check the case where q is a vertex; Without loss of generality assume that ¢ = e; and
let p € Ay \ {e1}. Then there exists [, C [k], such that (e1, ) € (rbd Ay,) x (riAy,) and by
Lemma S'(e1; u — e1) = —oo. Therefore, Vg € Ay \ {e1}, Ds, (g, e1) = +oo, which implies

Va € [n], Mixg((;(A), e1) = inf (q,£(4)) + Ds, (g. 1),
q k

= (e1,0.(A)) + Ds, (e1,e1),
= (e1, £z (A)),
=l,(a1) = —n log (exp(—nl.(A)), e1). (72)
Combining (72)) and (7T)) proves the claim in (63). The desired equivalence follows trivially from the
definitions of -mixability and (7, S)-mixability.
O

C.6 Proof of Theorem

We need the following lemma to show Theorem [I3]
Lemma 21. Let ® be as in Theorem[I3} Then n¢® — S is convex on Ay, only if ® satisfies (10).

Proof. Let ¢ € rbd Ay. Suppose that there exists g € ri Ay, such that ®'(§; g — q) > —oo. Since @
is convex, it must have non-decreasing slopes; in particular, it holds that ®(g; g — ¢) < ®(q) — ®(g).
Therefore, since P is finite on Ay, (by definition of an entropy), we have ®'(g; ¢ — ) < +o0. Since
by assumption 7,® — S is convex and finite on the simplex, we can use the same argument to show
that [n,® — S)'(¢;q — G) = 7e®'(¢;q — §) — S'(4;q — §) < +oo. This is a contradiction since
S'"(4;q — q) = —o0 (Lemma. Therefore, it must hold that ®'(g; g — §) = —oc.

Suppose now that (¢,q) € (rbd A;) x (riAy) for [ C [k], with [[| > 1. Let &; := ® o II] and
Sy = SoH[T. Since 7y® — S is convex on Ay and II, is a linear function, n,®; — Sy is convex
on Ajy. Repeating the steps above for ® and S substituted by ®( and Sy, respectively, we get
that (®()'(I1,¢;II,q — II,q) = —oo. Since (®()'(II,g;11,q — I1,4) = ®'(4; g — §) the proof is
completed. O

Theorem Let n>0,¢: A—[0,4+00]" an-mixable loss, and ®: R — R U {+o0} an entropy.
If n® — S is convex on Ay, then € is O-mixable.

Proof. Assume 1y® — S is convex on Ay. For this to hold, it is necessary that ), > 0 since — S is
strictly concave. Let 7 := 7y and S, := 1~ 'S. Then S,, = n~'Sand ® — S, = (® —S,) o I} is
convex on Ay, since ® — Sy is convex on Ay, and Il is affine.

L € 00(qg) be
as in Proposition [14] Note that if ¢,(ap) = +o00,V0 € [k], then the ®-mixability condition
@) is trivially satlsﬁed Suppose, without loss of generality, that £, (a;) < +oo. Let (d,,) C

Letx € [n],A = [ae]ge[k], and ¢ € Aj. Suppose that ¢ € ri Ay and let s
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[0, +00[* be any sequence such that d,,, "= d = £,(A) € [0, +oc]*. From Lemmasand
Mixy (dpm,q) "= Mixy(d, ) for ¥ € {®,S,}.

Let T, : R¥=1 — R U {+0c} be defined by

Tq(f1) = Sy(f2) + (1, 85 — VS,(@) — ®"(s7) +5,(VS, (@),

and it’s Fenchel dual follows from Propositionm (i+ii):
Y;(v) = Sn('v — 84t Vgn((j)) + é*(s;) - Sn(vSn(q)),

After substituting v by sy — JkT d in the expression of Tfl and rearranging, we get

S, (VS,(@) — S, (VSy(q) — Tl dm) = B*(s5) — Ti(s, — Iy dm). (73)

Since s € ati)((j) and @ is a closed convex function, combining Proposition (iv) and the fact that

®** = ® [, Cor. E.1.3.6] yields (g, sy) — i)*(sfl) = ®(q). Thus, after substituting fi by ¢ in the
expression of Tq, we get

D(q) = Tq(q). (74)

On the other hand, ® — Yq is convex on Ay, since Tq is equal to Sn plus an affine function. Thus,
@ — Tgl(q) + 0T 4(g) = dB(q), since ® and T, are both convex (ibid., Thm. D.4.1.1). Since
T, is differentiable at g, we have 0T 4(q) = {VY4(q)} = {s5}. Furthermore, since s, € o®(q),
then 07 € 0B (q) — 9T4(q) = A[® — T,](g). Hence, & — T attains a minimum at § (ibid., Thm.
D.2.2.1). Due to this and (74), ® > Y, which implies that ©* < T}, (Proposition(iii)). Using this
in (73) gives for all m € N

S, (VS,(@)) — S, (VSy(@) — i dm)
= Mixg(dm, q)

é*(s;) - i)*(s(*l — Jrdn),

MiX(} (dnn q)a

where the implication is obtained by adding [d,,] on both sides of the first inequality and using
Proposition[T4]

Suppose now that g € ri Ay, with [[| > 1, and let ®; := ® o H[T and Sy = S oH[T. Note that since
ne® — S is convex on Ay, and I1, is a linear function, 7,®; — Sy is convex on A;. Repeating the

steps above for @, S, g, and A substituted by @, Sy, II,g, and AH[T, respectively, yields
Mix, (I, Iq) < Mixe, (o, ITiq),
MiX@(dma q)a
Mixg (£2(A), q), (75)

where the first implication follows from Lemma|[T3} since S, and ® both satisfy (T0) (see Lemmas
[[T]and [21)), and (73) is obtained by passage to the limit m — co. Since = 1, > 0, £ is n-mixable,
which implies that £ is S,-mixable (Theorem . Therefore, there exists a, € A, such that

ly (a*) < Mng (gz (A)a Q) < Mixg (gz (A)a Q)' (76)

<
<

= Mix{d(d, q)

<
— Mixd((,(A),q) <

To complete the proof (that is, to show that ¢ is ®-mixable), it remains to consider the case where g
is a vertex of Aj. Without loss of generality assume that ¢ = e and let u € Ay, \ {e1}. Thus, there
exists [, C [k], with || > 1, such that (e, ) € (rtbd Ay,) X (riAy,), and Lemmaimplies that
®'(eq; pu — e1) = —oo. Therefore, Vg € Ay \ {e1}, Dy (g, e1) = 400, which implies

Vo € [n]vMixi’(&c (A)a 61) = qienAfk <Q7£a:(A>> + D<1>(q, e1)7
= (e1,0.(A)) + Do (e1,e1) = (e1,.(A)),
= lz(a1). (77)

The ®-mixability condition () is trivially satisfied in this case. Combining (76) and (77) shows that
¢ is ®-mixable. O
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C.7 Proof of Theorem

The following Lemma gives necessary regularity conditions on the entropy ® under the assumptions
of Theorem [14

Lemma 22. Let ® and { be as in Theorem[I4} Then the following holds

(i) ® is strictly concave on int Ak.

(i) ®* is be continuously differentiable on R*~1,

(iii) ®* is twice differentiable on R*~" and Vg € int Ay, HO*(V®(G)) = (H®(G)) "

(iv) For the Shannon entropy, we have (HS(§)) ™" = Hé*(vé@) = diag g — qq".

Proof. Since ¢ is ®-mixable and L, is twice differentiable on ]0, +o0[", ®* is continously differen-
tiable on R™~! (Proposition . Therefore, ® is strictly convex on ri Ay, [7, Thm. E.4.1.2].

The differentiability of ® and ®* implies V&*(VP(q)) = g (ibid.). Since ® is twice differentiable
on int Ay, (by assumption), the latter equation implies that ®* is twice differentiable on V<I>(1nt A k)

Using the chain rule, we get HO* (V (u))HD(u) = I}, Multiplying both sides of the equation by
(H®(u 1))~ ! from the right gives the expression in (iii). Note that H®(- ) is in fact invertible on int Ay
since @ is strictly convex on int Ay. Tt remains to show that V<I>(1nt A 1) = R¥~1 This set equality
follows from 1) [§ € 09*(s) <= s € dP(q)] (ibid., Cor. E.1.4.4); 2) dom ®* = R¥~1; and 3)
Vg € bd Ay, 00(q) = @ (Lemma.

For the Shannon entropy, we have g*(v) log({exp(v ) > 1) (Proposition and VS(q) =
log L, for (v, q) € R¥! x Ay. Thus (HS(G))~* = HS™(VS(§)) = diag G — 4" O

To show Theorem [[4] we analyze a particular parameterized curve defined in the next lemma.

Lemma 23. Let ¢: A, — [0,4+00]" be a proper loss whose Bayes risk L, is twice dlﬁ‘erentlable on
10, +00[", and let ® be an entropy such that ® and ®* are twice differentiable on int Ay, and R*~1,
respectively. For (p,q,V) € int A, x int Ay x R"Xk, let B : R — R™ be the curve defined by

where Pt = [plT +tV, pl e R  andt € {s e R:Vj € [k], p+ sV.; € int A,,}. Then
B(0) = U(p),
B(0) =DI(p)V4,
k—1
(P AW ==Y aVIHLB)V.; - trdiag (p) DIV (HE(@) ™ (DIHV)T).
t=0 j=1

(79

Proof. Since P* = [p1] + 1V, Pl
JI0.(P°) = 07, and thus 3, (0)

Rk, PO = p1T and ,(P°) = £,
=7, 0;)
that 5(0) = £(p). Let (1) = V&(q

S
( )+‘I’*(V‘I’( 7)) — &*(VO(G) —
) — J1 . (P?). For j € [k — 1],

( ) . As a result,
= {,(p). This shows
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From the definition of P?, 15_?j = p, Vj € [k], and therefore, 4, (0) = —(DZ,(p)V)T. By differ-
entiating 3, in (78) and using the chain rule, Ba(t) = f(f'yx(t))TYi)*(%(t)). By settingt = 0,
B:(0) = —(7:(0))TVE*(V®(G)) = DL,.(p)Vq. Thus, 3(0) = D¢(p)V G. Furthermore,

n k—1
% <p,8(t)> . = disz ( Dgz(p.fj)vj[vq)*(vr(t))]]) )
t= x=1 Jj=1 t=
k—1 d n - ’
= o prDéac(R,j)Vj[v(I) (%c(t))]J )
j=1 r=1 t=0
k—1 d n d
- (dt (P DUPLYV.07)|  + D paDL@V.y V8 (a0 ) ,
j=1 t= =1 t=
k—1 n k—1
= S GVIHLB)Vy — 3. 3 paDLL(B)V.,;[H* (V&())],.:DL (H)V.s,
j=1 x=1 7?%
k—1 . N ~ ~
==Y ¢;V.IHL,(B)V. ; — tr(diag (p) DI(B)VHE" (VE(q))(DL(B)V)T),
j=1
k—1
= - Z q;V.5HL,(B)V. ; — tr(diag (p) DI(B)V (H®(4)) "' (DL(B)V)T),

where in the third equality we used Lemmal6} in the fourth equality we used Lemmal9} and in the
sixth equality we used Lemma 22} (iii).

O

In next lemma, we state a necessary condition for ®-mixability in terms of the parameterized curve
defined in Lemma[23]

Lemma 24. Let ¢, ®, and 3 be as in Lemma If3(p,q,V) €int A, x int Ay x R such that
the curve y(t) = 0(p + tVq) satisfies 4 (p, B(t) — 7(25))’ < 0, then { is not ®—mixable. In

particular, AP € 1i AF, such that [Mixg (£, (P), q)]l-e[n] lies outside ..

Proof. First note that for any triplet (p,q,V) € int A, x intAj x RE | the map t +—
<p, B(t) — ﬁ(t)> is differentiable at 0. This follows from Lemmas|§|and Letr(t) .= I1,,(p+tVq)
and §(t) :== (r(t), B(¢t) — v(t)). Then

8() = (r(8), (1) = 4(1)) + (V@ B(1) = (1)

Since ¢t — (p, B(t) — 4(t)) is differentiable at 0, it follows from Lemma|§| that ¢ — §(¢) is also
differentiable at 0, and thus

= (50).50) ~30)) + 5 (p.50) = 50)| (50)
- d

= (IVa.80) =50) + 5 (p 50O —30))| .

= 5 (A0 —3w)| <o @1




where and (8T) hold because 3(0) = D{(p)V § = +(0) (see Lemma . According to Taylor’s
theorem (see e.g. [? , §151]), there exists € > 0 and h : [—¢, €] — R such that

V|t| < e, 6(t) = 6(0) + t5(0) + gés'(O) + h(t)t?, (82)

and lim, o h(t) = 0. From Lemma[23] 8(0) = 7(0) = 0 and 8(0) = 4(0). Therefore, 5(0) =
5(0) = 0 and (82) becomes §(t) = £ 5(0) + h( )t2. Due to (8T) and the fact that lim;_,¢ h(t) = 0,

€

we can choose €, > 0 small enough such that §(e,) = 7*5(0) + h(e.)e2 < 0. This means that

(I (P + €V @), B(ex)) < (n(p + E*V(j),g(ﬁ + eV q) = (Un(p + e.Va), {(n(p + €.V q)).
Therefore, 5(e,) must lie outside the superprediction set. Thus, the mixability condition (8) does not
hold for P& = Hn[ﬁlg + €.V, p] € ri AE. This completes the proof. O

Theorem[14] Ler £: A — [0, +00]™ be a loss such that L, is twice differentiable on |0, +oo[", and

®: R*¥ — R U {+o0} an entropy such that d = & o I1}, is twice differentiable on int Ay. Then Uis
®-mixable only if ng® — S is convex on Ay,

Proof. We will prove the contrapositive; suppose that @fIJ — S is not convex on Ay and we show

that £ cannot be ®-mixable. Note first that from Lemma (iii) ®* is twice differentiable on R¥~!,
Thus Lemmas [23|and [24] apply. Let £ be a proper support loss of £ and suppose that 7,® — S is not

convex on Ay, This implies that ng<I> — S is not convex on int A, and by Lemmalthere exists
G € int A, such that 1 > ﬂ)\mm(Hd)(q*)(HS(q*)) !). From this and the definition of 7, there
exists p, € int A" such that

Amin(HE(G)(HS(@) ™) _ Amin(HE(G.)(ding () —4-a1)) g5

Amax (HLiog ()] 7P HLy(B2))  Amax([HLiog (5+)] " 'HL,(51)
where the equality is due to Lemma (iV). For the rest of this proof let ~(j)', q) = (p*,q").

By assumption, L, twice differentiable and concave on int A,,, and thus —HL,(p) is symmetric
positive semi-definite. Therefore, their exists a symmetric positive semi-definite matrix A, such

that ApA, = —HL,(p). From Lemma (i),  is strictly convex on int A, and so there exists a
symmetric positive definite matrix K, such that K, K, = H<i>( G). Let w € R"~! be the unit norm
eigenvector of [HLlog( 5)]"'HL,(p) associated with )\Z = )\max([HLlog( 5)]"'HL,(p)). Suppose
that ¢, == wTHLe( p)w = 0. Since wTApAp,w = —c, = 0, it follows from the positive semi-
definiteness of A, that Apw = 0, and thus HL,(p)w = —ApA,w = 0. This implies that
MY = 0, which is not possible due to (83). Therefore, HLZ( p)w ;é 05. Furthermore, the negative
semi-definiteness of HL,(p) implies that

co=w HLe( p)w < 0. (84)

Let v € RF~! be the unit norm eigenvector of K, (diag (q) — ¢gq')K, associated with A? =
Amin(Kg(diag (§) — 47)Kg) = Amin(H®(q)(diag (§) — ¢q")), where the equality is due to
Lemmal2] Let ¢ := Kgv.

We will show that for V' = w®', the parametrized curve 3 defined in Lemma satisfies
4 (p, B(t) — "y(t))‘tzo < 0, where y(t) = £(p + tV§). According to Lemma [24 this would
imply that there exists P € ri A¥, such that [Mixe (£, (P), q)]]. n) lies outside .#. From The-
orem we know that there exists A, € A, such that £,(A,) = (,(P),Vx € [n]. Therefore,
[Mixg (£, (AL), q)];e[n] = [Mixa (£, (P), q)]le[n] ¢ .7, and thus £ is not ®-mixable.

From Lemma(Equation and the fact that V. ; = 9w, for j € [l;:] we can write

% <p,/6"(t)>

k—1
= — Y q;0jw HL,(B)w — tr(diag (p) DL(H)V (HE(§)) " (DLB)V)T),
t=0 j=1

— (G, ®@0) w HL,(p)w — (6" (H®(q)) ' 9)(p, [DL(p)w] © [(DL(p)w]),
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where the second equality is obtained by noting that 1) (0T (H®(q))"'9)isa scalar quantity and can
be factorized out; and 2) tr(diag(p)D4( ~)'w(DE( p)w)T) = (p, (D{(p)w) ® (DI(p)w)).

On the other hand, from Lemma@ S, ( = —(q,9)>w HL,(§)w. Using (3) and the

e )=
definition of ¢y, we get

& (p.60)—4(1)

(8T (HD(q)) ' 9)(w' (HL(5))(HLiog (B)) " HL,(p)w),

= —c(G, 5 © 0) — (§,0)° — \o(8" (HD(q)) '9)],

= —co[®" (diag (§) — " )6 — AL(8" (HD(q)) ")),

= —¢o[o" (diag (q) — GG" )0 — M(vT K (K Kq) ' Kqv)),

= —co[v" Kq(diag (§) — §G" ) Kqv — \.], (85)
[
[

= —ce[Amin(H®(q)(diag (@) — 44")) — Amax (HL,(B) (HL1oe (B)) ),

where in (83)) we used the fact that vTv = 1. The last equality combined with (83) and (84) shows
that 4 (p, B(t) — 7(15))’ < 0, which completes the proof. O
t=0

C.8 Proof of Lemma

LemmaLetﬁ: A — [0, +00]™ be a loss. If dom £ = A, then either $; = & or 1y € $.

Proof. Suppose $; # 3. Let ¢ € Ay, A = ay.;, € AF. By definition of 7, there exists (1,,) C
[0, +o00] such that £ is 7),,,-mixable and 7, M0 7¢. Therefore, Vm € N, Ja,,, € A such that

Vz € [n], Lu(am) < —n;," log(q, exp(—n, (£:(A4))) < 400, (86)

where the right-most inequality follows from the fact dom ¢ = .A. Therefore, the sequence (¢(a.,)) C
[0, 4+o00[™ is bounded, and thus admits a convergent subsequence. If we let s be the limit of this
subsequence, then from (86) it follows that

Va € [n], s < —n; ' log(g, exp(—ne(lx(A))), (87)
On the other hand, since / is closed (by Assumption|[T)), it follows that there exists a, € A such that
{(a,) = s. Combining this with (7)) implies that ¢ is n,-mixable, and thus 7, € $);. O

C.9 Proof of Theorem[17]
Theorem [17] Let ¢ and ® be as in Theorem[I6 Then
ng =mne inf  Amin(H®(G)(HS(§)) ™),

— geint A,

Proof. From Theorem 6} ¢ is @, -mixable if and only if n,®, —S =n~ 77@<I> S is convex on Ay,
When this is the case, mma|z|1mpl1es that

1<n Y inf  Apin[H®(§)[HS(@)] ™)), (88)

T geEint Ay

where we used the facts that H(n~!n,®) = 1~ 11¢H®, Amin(*) is linear, and 7~ '7; is independent
of ¢ € int Ay, Inequality 88| shows that the largest 7 such that ¢ is ®,-mixable is given by 7} in
. O
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C.10 Proof of Theorem

Theorem [18| Let S, ®: R — R U {+00}, where S is the Shannon entropy and ® is an entropy
such that © := ® o I, is twice differentiable on int Ag. A loss £: A — [0, +o00[", with L, twice
differentiable on |0, +oco[", is ®-mixable only if R} < RY.

Proof. Suppose ¢ is ®-mixable. Then from Theorem 1e® — S is convex on A, and thus

e = 77? >0 (Corollary. Furthermore, ﬂ(i ~-S= [n¢® — S] o I, is convex on int Ay, since 11
is an affine function. It follows from Lemma [3|and Corollary [T7] that

ng =ne inf  Amin(H®(G)(HS(§)™") > 1> 0.

T g€int Ay,

Let p € riAy and 0, = argmaxy Dg(eg, ). By definition of an entropy and the fact that
the directional derivatives ®'(y;-) and S'(u;-) are finite on Ay [7, Prop. D.1.1.2], it holds that
Dg(eq,, ), Ds(eg,, ) €]0,+00]. Therefore, there exists o > 0 such that a~'Dg(eq,, ) =
Ds(eq, , ). If we let ¥ == o~ 1®, we get

Dy (eq., 1) = Ds(eq., p)- (89)

Let dy (q) = ¥(q) — V(1) — (G — fr, V¥(f1)). Observe that
dy(q) = V(q) — V() — (g — 1, V¥(n)) = Du(q, p).

We define dg similarly. Suppose that 7721’ > 77? = 1n¢. Then, from Corollary Vg € int Ay,
Amin (HZ(G)(HS(¢))~") > 1. This implies that ¥q € int Ay, Ain(Hdy (q)(Hds(q)) ") > 1, and
from Lemma dy — dg must be strictly convex on int A;. We also have Vdy (j2) — Vdg(fz) =0
and dy (f1) — ds(fr) = 0. Therefore, dg — dg attains a strict minimum at /& (ibid., Thm. D.2.2.1);
that is, dy(q) > ds(q), Vg € Ag \ {ft}. In particular, for § = T (eg, ), we get Dy(eg,, p) =
dy(q) > ds(q) = Ds(eg. , ), which contradicts (89). Therefore, n,’ < 1}, and thus

R}(p) = maxy Ds(eg, p)/n; = Ds(eq., 1) /7;,

< Dy(eq.,p)/ny , (90)
< maxy Dy (eq, )/},
= R} (w), 91)

where (90) is due to Dy (eq,, 1) = Ds(eg, , p) and 5 < n7. Equation[91] implies that R (p) <
RY (p), since RY () = Ry®(p) = R (1) [9]. Therefore,

Vi € ridg, Rp(u) < RY (). (92)

It remains to consider the case where p is in the relative boundary of Ag. Let u € rbd Ag. There
exists [p C [k] such that g € Ay,. Let * € [k] \ lp and [ := [, U {6*}. It holds that p_€ rbd A
and p + 271 (eg- — p) € riAr. Since £ is ®-mixable, it follows from Proposition [10| and the
1-homogeneity of ®'(u;-) [[Z, Prop. D.1.1.2] that

O (s egr — p) = 20 (p; [p + 27 (eg- — p)] — p) = —oc.

Hence,
R} (p) = maxgeps) Da(eq, 1),
> Da(epe, p) = D(ep-) — () — ' (ps; €9 — p) = +00. 93)
Inequality also applies to S, since £ is (n; " S)-mixable. From (93) and (92), we conclude that
Vi € Ay, R} () < RY (p). O

28



C.11 Proof of Theorem [19]

Theorem Let ® : RF — R U {+oco} be a A-differentiable entropy. Let £: A — [0, +00]"
be a loss such that L, is twice differentiable on |0, +oc[™. Let B' = —n Zi;ll (Lys(A%) + v%),
where v¢ € R* and A® = a3, € AF. If L is (n, ®)-mixable then for initial distribution q° =
argminge x, maxge(x) Da(es, q) and any sequence (2, al )], the AGAA achieves the regret

VO € [k], Loss4gaa(T) — Lossy(T) < RY + Z(vz -

Proof. Recall that ;(w) = ®(w) — (w, B* — 0"), where 8" = —1>""_" £,.(A*). From Theorem
and since ®; is equal to ® plus an affine function, it is clear that if £ is (7, ®)-mixable then ¢ is
(n, ®;)-mixable. Thus, for all (A, g'~1) € A* x Ay, there exists a’. € A such that for any outcome
zt € [n]

lar(al) <07 H[OF(VP(g' ™)) — F (Vg ™) — nler (A"))].
Summing over t from 1 to T, we get

Z lyr(al) < n ' [@T(VR1(g°) — @7 (Ver(q" ™) — nlyr (AT))] (94)

- Z 11(VOei1(a") — @7 (VPe(q'™") =l (AY))] .

ODue to the properties of the entroplc dual [9] and the definition of ®,, the following holds for all
t € [T] and z in R¥,

VO,(q") = —n) (A%, 95)
t—1

Oi(z) = (z+ V(g +n)_ las(A%)), (96)
s=1

Ve(g') = V&(q') —nly(A") — it 97)

s1ng ©3)-©6), we get forall 0 < ¢ < T, <I>t+1(V<I>t+1(qt)) = ®*(V®(q')), and in particular

P3(VP(q° )) O*(V®(q°)). Similarly, using (93)-(©7), gives ®; (VP;(q' 1) — nl:(A?)) =
P*(VO(q') + no') forall 1 < ¢ < T Substituting back into (94) ylelds

mert al) <07l [*(Ve(q°)) - @*(Ve(q") +noT)]

T-1

7ty [@N(Ve(g) - @(Ve(g) + o)) (98)
t=1
To conclude the proof, we note that since ® is convex it holds that
*(Ve(q")) — ©*(Ve(q) + ') < —n(v", VO (VE(q"))) = —n(v',q"), (99)

which allows us to bound the sum on the right hand side of [98] To bound the rest of the terms, we use
the fact that V®(g”) = V& (q°) — 131, (£s+ (A*) + v*), and thus by letting &, = 1~ ®,
172" (Ve(q") — @*(Ve(q") + ")) = €5 (Ve,(q”))

T T-1
- o <V<I>,7(q0) =) e (AY) — vt> :

t=1 t=1
T T-1
Dy (eg,
< lar(ah) + ) vh+ (e0, ') V0 € [k]
=1 t=1 "
Substituting this last inequality and (99) back 1nt0 (©8) yields the desired bound. O
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D Defining the Bayes Risk Using the Superprediction Set

In this section, we argue that when a loss £: A — [0, +-00]™ is mixable, in the classical or generalized
sense, it does not matter whether we define the Bayes risk L, using the full superprediction set .
or its finite part .#;. Recall the definition of the Bayes risk;

Definition 2] Ler ¢: A — [0, +00]™ be a loss such that dom ¢ # &. The Bayes risk L, : R" —
R U {—o0} is defined by

Yu € R", L,(u):= inf (u,z). (100)
zeY
Note that the right hand side of (T00) does not change if we substitute .#; for its closure — . —
with respect to [0, +00]™. Thus, it suffices to show that #° C ., when the loss / is mixable. We
show this in Theorem [26] but first we give a characterization of the (finite part) of the superprediction
set for a proper loss.

Proposition 25. Let {: A,, — [0, 400]™ be a proper loss. If L, is differentiable on |0, 4+o00[", then

T 2C ={uec[0,+00]": Vp € A, L,(p) < (p,u)}. (101)

Proof. Letv € C; N [0,4o00[" Let f: riA, X [n] — R be defined by f(p,x) = l,(p) — vy.
By the choice of v, we have E . f(p,z) = (p,{(p)) — (p,v) < 0forall p € A,,. Since L, is
differentiable on ]0, +o00[™, by assumption, ¢ is continuous on ri A, and thus f is continuous in the
first argument. Since v has finite components, the map f satisfies all the conditions of Lemma 3]
Therefore, there exists (py,) C ri A, such that

1
Ym € N,V € [n], y(pm) < v, + e (102)

Without loss of generality, we can assume by extracting a subsequence if necessary that ¢(p,,)
converges to s € [0, +oc]™. By definition, we have s € .%, and from (T02) it follows that s < v
coordinate-wise. Thus, v is in .%.

The above argument shows that C, N [0, +-00["C 71, and since .7} is closed in [0, +00]™ we have
C C %, where C is the closure of C, N [0, +oo[™ in [0, +00]™. Now it suffice to show that C; C C to
complete the proof.

Letu € Cpand [ := {z € [n]: u, < 4o00}. Define (u,,) C [0, +00[" bY Up, » = uy if 2 € [; and
m otherwise. Let p € A,,. It follows that

<pa um> - sz/um,:v’ + Zp:cum,za

z'el z&l
= Zp:c/um,m’ + meum,m» . (103)
z' el z&l

Claim 2. Ve > 0,3Im, > 1,Vp € A, L,(p) < (P, Um,) — €.

Suppose that Claim [2]is false. This means that there exists § > 0 such that
Vm Z 1; 3pm S Ana <pm; um> - 6 < Lz(Pm) (104)

We may assume, by extracting a subsequence if necessary (4, is compact), that (p,,,) converges to
P« € A,,. Taking the limit m — oo in (I04) would lead to the contradiction ‘(p.,u) < L,(p«)’,
since from (103) we have lim,,, oo (P, Uim) = (s, u). Therefore, Claimis true. For e = % let
my, := me be as in Claim (). The claim then implies that lim infy_, o (p, wn,, ) > L,(p) uniformly
for p € Ay. By the claim we also have that u,,, € C, N[0, +oo[" for all k¥ € N, and by construction

of v,,, we have limy_, o U, = u. This shows that C; C C, which completes the proof.
O

Theorem 26. Let { : A — [0, +00]" be a loss. If /° ¢ 7, then [ is not mixable.
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Proof. Suppose that ¢ is mixable and let £ be a proper support loss of ¢. From Proposition|12} L,
is differentiable on ]0, +oc[", and thus Theorem |5|implies that .%; = .7,. Therefore, Lemma
implies that ., 2 {u € [0,+00]": Vp € A, L,(p) < (p,u)}. Thus, if #2° ¢ .7, there exists
€>0,pe € Ag,and s € .7\ .7 such that

(Pe, 8) < Ly(pe) — 2e. (105)

Note that p. cannot be in ri A,,; otherwise, (I03)) would imply that s has all finite components, and
thus would be included in .%;, which is a contradiction. Assume from now on that p. € rbd A,,.
From the definition of the support loss, there exists a sequence (p,,,) C ri A,, such that p,, "3 p.

m—»0o0

and £(p,,) —  £(pe). Therefore, Theoremimplies that there exists a. € A such that
(Pe, lac)) < (P, £(pe)) + €. (106)

To see this, note that since (p,,) C riA,, C dom /4, Theorem guarantees the existence of a sequence
(am) C Asuch that £(a,,) = £(pm). On the other hand, for any = € [n] such that £, (p.) = +oo,

we have p. , = 0 — otherwise, L,(p.) would be infinite. It follows, by continuity of the inner
product that (p, £(a,)) "= (pe, £(pm)), and thus it suffices to pick a. equal to a,, for m large
enough.

Now since / is -mixable, there exists > 0 and a.. € A such that

1 1
la,) < —77_1 log (26_”3 + 26—77@(116)) ,

and due to the convexity of — log,

1 1
Using (103)) and yields
(Pe, l(ax)) < Ly(pe) — €/2. (107)
On the other hand, by definition of a proper support loss, (pc, £(pe)) < (pe, £(a.)). This combined
with (I07), lead to the contradiction (pe, £(pe)) < L,(pe). O

E The Update Step of the GAA and the Mirror Descent Algorithm

In this section, we demonstrate that the update steps of the GAA and the Mirror Descent Algorithm
are essentially the same (at least for finite losses) according to the definition of the MDA given by
Beck and Teboulle [2]];

Let £: A — [0,400[" be aloss and @: R¥ — R U {+00} an entropy such that ® is differentiable

on int Ay. Let q* be the update distribution of the GAA at round ¢ and §* = ITj,(g"). It follows from
the definition of g (see Algorithm that

qt - argmin <Hk((j)7£w‘ (At)> + nle&)((j’ q~t71)’
geAy
— arguiin (¢, /] (4) + 17" Dy (4.4"),
geA

= argmin (¢, VI,(§" ")) + 1" 'Dg(q.¢""), (108)
geEA

where I;(f1) = (g (f1), £zt (A")) = (p, £+ (A)). Update (IO8) is, by definition [2]], the MDA with

the sequence of losses [; on int Ay, ‘distance’ function D&)(-, -), and learning rate ). Therefore, the
MDA is exactly the update step of the GAA.

F The Generalized Aggregating Algorithm Using the Shannon Entropy S

The purpose of this appendix is to show that the GAA reduces to the AA when the former uses the
Shannon entropy. In this case, generalized and classical mixability are equivalent. In what follows,
we make use of the following proposition which is proved in
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Proposition For the Shannon entropy S, it holds that S” (v) = log((exp(v), 1;)+1),Vv € RF1,
and S*(z) = log(exp(2), 11),Vz € RE.

Let £: A — [0,+o00[™ be a loss and ® be as in Proposition |14] and suppose that ¢ and * are
differentiable on ri Ay, and RF~1, respectively. It was shown in [9]] that

Vor(Vo(q) — €.(A)) = argeriliwn<u,€m(z4)> + Do (1, q), (109)
Mixe ((:(A), q) = 2*(VE(q)) — 2*(V®(q) — L. (A)). (110)

Let ¢ € riA;. By definition of S, V S(q) = logq + 1, and due to Proposition R0 S*(z) =
log(exp z,1;),z € RF. Therefore, VS(q) — nl.(A) = log(exp(—nl.(A)) ® q) + 1; and
VS*(z) = Tomeay V@, A) € [n] x (dom £)*. Thus,

oxp 2,15

« B _exp(=nta(4) O ¢
VSV S =0 ) = o e (), )

(111)

LetS, :=7"'S. Then VS =V S, and Vz € R¥, V S} (2) = VS*(nz) [9] Then the left hand
side of (ITI) can be written as V S} (V' S,)(q) — £.(A)). Using this fact, (I09) and (ITI) show that
the update distribution q* of the GAA (Algorithm coincides with that of the AA after substituting
q.z,and Aby ¢'~', 2", and A" := [ag]gci), respectively.
Now using the fact that Mix{ (¢, (4), g) = n~! Mixg(nl,(A), q) [9] and (TT0), we get
Mixg (€, (4),q) = 17 [S*(VS(q)) — S*(VS(q) — nlu(A))],
= 1" log(exp(~1lz(A)), ). (112)

Equation shows that the 7-mixability condition is equivalent to the (7, S)-mixability condition
for a finite loss. This remains true for losses taking infinite values — see the proof of Theorem [IT]in

Appendix

G Legendre ¢, but no ®-mixable /

In this appendix, we construct a Legendre type entropy [11]] for which there are no ®-mixable losses
satisfying a weak condition (see below).

Let ¢ : A — [0,4+00]" be a loss satisfying condition [1} According to Alexandrov’s Theorem, a
concave function is twice differentiable almost everywhere (see e.g. [4, Thm. 6.7]). Now we give a
version of Theorem [I4] which does not assume the twice differentiability of the Bayes risk. The proof
is almost identical to that of Theorem [I4] with only minor modifications.

Theorem 27. Let : R¥ — R U {+o0o} be an entropy such that P is twice differentiable on int Ay,
and l: A — [0,400]™ a loss satisfying Conditionand such that 3(p,v) € DxR™ HL,(p)v # 07,
where D C int A, is a set of Lebesgue measure 1 where L, is twice differentiable, and define

0" = 10 (e (HLiog ()] HL, (5)) " (113)

p
Then ( is ®-mixable only if ;" ® — S is convex on Ay,
The new condition on the Bayes risk is much weaker than requiring L, to be twice differentiable on

10, +00[™. In the next example, we will show that there exists a Legendre type entropy for which
there are no ®-mixable losses satisfying the condition of Theorem

Example 1. Let ® : R? — R U {-+0o0} be an entropy such that

¥g €)0,1[, B(q, 1 — ) = B(q) = /1; log <log1(01g;t)> "

*Reid et al. [9]] showed the equality V& (u) = V&*(nu), Vu € dom ®*, for any entropy differentiable
on Ay, - not just for the Shannon Entropy.
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d is differentiable and strictly convex on the open set (0,1). Furthermore, it satisfies (I0) which
makes it a function of Legendre type [[I1| Lem. 26.2]. In fact, (10) is satisfied due to

%] = o (107"

d? B(g) -1 N -1
L $(g) =
dqg? qlogqg = (1 —q)log(l —q)

iz +00, where b € {0,1},

> 0, Vq €]0,1].

The Shannon entropy on Ay is defined by S(q,1 — q) = S(q) = qlogq + (1 — ) log(1 — q), for
2 ~

q €0, 1[. Thus, (%128((]) _ ﬁ

Suppose now that there exists a ®-mixable loss £: A — [0, 400" satisfying COnditionand .

that 3(p,v) € D x R HL,(p)v # 0s. Let 1,* be as in (T13). By definition, we have ny* < +0o0,
and thus o o

[d? - 2. 1! L (q—1 —q g—sb

where b € {0,1}. From Lemma 3| (L14) implies that n,*® — S is not convex on Ay, which is a
contradiction according to Theorem|27)

H Loss Surface and Superprediction Set

In this appendix, we derive an expression for the curvature of the image of a proper loss function. We
will need the following lemma.

Lemma 28. Let o : [0, +00["— R be a I-homogeneous, twice differentiable function on |0, 4o0o[™.
Then o is concave on |0, +oco[™ if and only if & = o o I, is concave on int A,,.

Proof. The forward implication is immediate; if o is concave on |0, +o0o[™, then ¢ o 1T}, is concave
on int Ay, since 11}, is an affine function.

Now assume that & is concave on int Ag. Let A € [0, 1] and (p, q) € [0, +-00[" x[0, +00[". We need
to show that

Ao(p) + (L —=XNo(q) <o(Ap+ (1 —AN)q). (115)

Note that if p = 0 or ¢ = 0, (T19) is trivially with equality due to the 1-homogeneity of . Now
assume that p and g are non-zero and let ¢ := A ||p||; + (1 — ) ||q||,. For convenience, we also
denote p; = p/ ||pl|, and g1 = q/ ||q||; which are both in A,,. It follows that

sotp) + (1= Nota) =t (Ao 4 1= ) Do),

=c <A|pc||16(ﬁ1) +(1— /\)IqC”l&(dl)) ;

<o (M2l -yl

C C

o (Allplp1 +(I_A)Iltllll(h)’
C C
=oc(Ap+(1-N)q),

where the first and last equalities are due the 1-homogeneity of o and the inequality is due to & being
concave on the int A,,. O
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H.1 Convexity of the Superprediction Set

In the literature, many theoretical results involving loss functions relied on the fact that the superpre-
diction set of a proper loss is convex [16} 6]. An earlier proof of this result by [16] was incompleteﬂ
In the next theorem we restate this result.

Theorem 29. If ¢: A,, — [0, +oc[" is a continuous proper loss, then /¢ = (\,en, Hop —L,(p)- I
particular, %y is convex.

S S Npen, Hp—L,(p)- : Letv € S, u € [0,4+00[", and ¢ € A,, such that v = £(q) + w.
Since (s proper then Vp € Ay, Ly(p) = (p, {(p)) < (p.{(q)) < (p,{(q)+u) = (p,v). Therefore,
vE ﬂpeAn H—Pa_éz(P)'

[ﬂpeAn H p -1, S S Letv € ﬂpeAn H pL,p) LetQ = [n], A(Q) = A, and

Q(p,z) = Ly(p) — vy forall (p,z) € Ay x [n]. Since v € (pen, Hop—L,(p)> Eznp@(P, ) =
(p,l(p)) — (p,v) < Oforall p € A,. Lemma E], implies that there exists p, € A, such that
Q(ps«, ) = Ly (ps) — vy <0, forall z € [n]. This shows that v € .. O

H.2 Curvature of the Loss Surface

The normal curvature of a n-manifold S [[13]] at a point 7 € S in the direction of w € T,.S, where
T, S is the tangent space of S at r € S, is defined by

{w, DN¥(r)w)

k(r,w) = T, w)

) (116)
where N (r) is the normal vector to the surface at r. The minimum principal curvature of S at r is
expressed as k(r) = inf{x(r,w) : w € T,SNB(r,1)}.

In the next theorem, we establish a direct link between the curvature of a loss surface and the Hessian
of the loss’ Bayes risk.

Theorem 30. Let {: riA, — [0, 400" be a loss whose Bayes risk is twice differentiable and
strictly concave on )0, +oo[™. Let p € 1i A, X, = I — pl], and w € Tg(ﬁ)Sg. Then

1. Jv € R™ ! such that DI(p)v = w.

2. Sy is a n-manifold.

3. The normal curvature of Sy at {(p) = {(p) in the direction w is given by
—1
(. H[);”] - ﬁ))éu’ 7 117)

where u = (~HL,(p))?v/||(~HL,(B))? 0.

It becomes clear from (ﬂlﬂ) that smaller eigenvalues of —HL,(p) will tend to make the loss surface
more curved at £(p), and vice versa.

Before proving Theorem [30] we first define parameterizations on manifolds.
Definition 31 (Local and Global Parameterization). Let S C R" be a fi-manifold and U an open
set in R". The map o : U — S is called a local parameterization of S if Dp(u) : R" — Ty, S is

injective for all w € U, where TS is the tangent space of S at p(u) € S. p is called a global
parameterization of S if it is, additionally, onto.

Let ¢ be a global parameterization of S and N¥ := N o ¢. By a direct application of the chain rule,
(T16) can be written as
(w, DN?(u)v)

(ww) .

r(p(u), w) =

31t was claimed that if .%7 is non-convex, there exists a point so on the loss surface Se such that no hyperplane
supports .# at so. The non-convexity of a set by itself is not sufficient to make such a claim; the continuity of
the loss ¢ is required.
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where v is such that Dp(u)v = w. The existence of such a v is guaranteed by the fact that Dy is
injective and dim R" = dim T}, (,,)§ = 7.

Ti hegrem First we show that Sy is a n-manifold. Consider the map /:int Ap — Sy and note that
int A, is trivially a n-manifold. Due to the strict concavity of the Bayes risk, ¢ is injective [14] and
from Lemmasand D{(p) : R* - T g(ﬁ)SZ is also injective. Therefore, ¢ is an immersion [10]. ¢

is also proper in the sense that the preimage of every compact subset of S, is compact. Therefore, l
is a proper injective immersion, and thus it is an embedding from the 2-manifold int A,, to S; (ibid.).
Hence, Sy is a manifold.

Now we prove (I17). The map lisa global parameterization of Sp. In fact, from Lemmal D€
has rank 7, for all p € int A,,, which implies that DZ( p) is onto from R” to Ty )Sg Therefore

given w € Ty, )Sg, there exists v € R™ such that w = Dé( p)v. Furthermore, Lemmalmphes that
N’(p) = p, since (p, DI(p)) = 0T . Substituting N’ into (TT) yields

re(0(p), w) = —— :

_ = - (119)
vTHL,(p) [ X, —P] [ I;’T} HL,(p)v

Setting u = (—HL,(p))2v/||(—=HL,(p)) 2 v|| in (TT9) gives the desired result. O

I Classical Mixability Revisited

In this appendix, we provide a more concise proof of the necessary and sufficient conditions for the
convexity of the superprediction set [14].

Theorem 32. Let{: A, — [0, +00[" be a stricily proper loss whose Bayes risk is twice differentiable
on 10, +oo[™. The following points are equivalent;

(i) Vp € int A,,, nHL,(p) = HLlog( D).
(ii) e "7t = ﬂpeAn Hr(py1 N[0, +0o[", where 7(p) == p © ent(P),
(iii) e~ "t is convex.

Proof. We already showed (i) = (ii) = (iii) in the proof of Theorem{[7}

We now show (iii) == (i). Since e~"“* is convex, any point s € bde~"”* is supported by
a hyperplane [7, Lem. A.4.2.1]. Since © — e~ " is a homeomorphism, it maps boundaries to
boundaries. From this and Lemma[17] bd e=""* = ¢~"¢. Thus, for p € 1iA,, there exists a
unit-norm vector w € R™ such that for all s € 5’@ it either holds that (w,e Py < (u, e "8);

or (u,e "P)) > (y,e"%). It is easy to see that it is the latter case that holds, since we can

choose s = £(r) + cl1 € ., for r € A,,, and make (u, e~"®) arbitrarily small by making ¢ € R
large. Therefore, Vr € ri A, (u, 6*77’7('5)) = (u,e 1P > (u, e M) = (u, e*”Z(’:)> and pisa
critical point of the function f(7) = (u, e*”Z(f')> on int A,,. This implies that V f(p) = 0j; that
is, —n(u, diag(e =" ®))DI(p)) = —n(diag(e~""®)u, DI(H)) = 0. From Lemma there exists
A € R such that diag(e”’é(ﬁ))u = Ap. Therefore, u = Ap ® "), where A = lp© ent(®) =1,
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since ||u|| = 1. Forv € R !, let & := p + tv, where t € {s : p+ sv € int A, }. Since f is twice
differentiable and attains a maximum at p,

2 1 d ~
> 2 ~1 di —nl(& )Dg ~1
025 @@ — Nt (u dinge (@)o) .
d - S d .
- - ne(B) J3; —nl(&a") 5 el ~t
o <p®e ,diage Dé(p)'u> _ O+ o <p, D/(&a )v> .
= v HLy(P)(HLyoy () ""HLy(B)v — v HL,(P)v, (120)

where in the second equality we substituted « by Ap ® "(P) and in (T20) we used (5) and () from
Lemma@ Note that by the assumptions on ¢ it follows that the Bayes risk L, is strictly concave [14}
Lemma 6] and HL,(p) is symmetric negative-definite. In particular, HL,(p) is invertible. Setting

¥ = HL,(p)v in (T20) yields

0> 1H(HLy, ()16 — H(HL(5)) 15,
Since v € R™! was chosen arbitrarily, (HL,(p))~' = n(HL,(5)) ", VP € int A,. This is
equivalent to the condition Vp € int A,,, nHL,(p) = HLlog( D). O

J An Experiment on Football Prediction Dataset
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Figure 1: The figure corresponds to the 2005/2006, 2006/2007, 2007/2008, and 2008/2009 seasons.
The solid lines represent, at each round ¢, the difference between the cumulative losses of the experts

and that of the learner who uses either the AA (left) or the AGAA (right); that is, LosséBrier (t) —
Lossgﬁ““(t), for M € {AA, AGAA}. The red dashed lines represent the negative of the regret
bound in (T2) with respect to the best expert 6*; that is, th?Brm_ — ARy~ (t) at each round ¢.

J.1 Testing the AGAA

To test the AGAA empirically, we used prediction dateﬂ from the British football leagues, including
the Premier Leagues, Championships, Leagues 1-2, and Conferences. The first dataset contains
predictions for the 2005/2006, 2006/2007, 2007/2008, and 2008/2009 seasons, matching the dataset
used in [15]. The second dataset contains predictions for the 2009/2010, 2010/2011, 2011/2012, and
2012/2013 seasons. For this set, we considered predictions from 9 bookmakers; Bet365, Bet&Win,
Blue Square, Gamebookers, Interwetten, Ladbrokes, Stan James, VC Bet, and William Hill.

On each dataset, we compared the performance of the AGAA with that of the AA using the Brier

score (the Brier loss is 1-mixable). For the AGAA, we chose 3¢ according to Theorem with

vt =L 221 £,s(A®) and we set @ = S, i.e. the Shannon entropy. The results in Figure [resp.

¢
Figure@ﬁ correspond to the seasons from 2005 to 2009 [resp. 2009 to 2013]. For fair comparison

*The data was collected from http://www.football-data.co.uk/.
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Figure 2: The figure corresponds to the 2009/2010, 2010/2011, 2011/2012, and 2012/2013 seasons
The solid lines represent, at each round ¢, the difference between the cumulative losses of the experts

and that of the learner who uses either the AA (left) or the AGAA (right); that is, Lossf)Bricr (t) —
Lossgj‘%“”(t), for M € {AA, AGAA}. The red dashed lines represent the negative of the regret
bound in (]LZI) with respect to the best expert 6*; that is, —RE’B“CT — ARy~ (t) at each round ¢.

Predictions using the AA-AGAA Predictions using the AA-AGAA
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Figure 3: The figure on the left [resp. right] hand side corresponds to the football seasons from 2005
to 2009 [resp. 2009 to 2013]. The solid lines represent, at each round ¢, the difference between the
cumulative losses of the experts and that of the learner using the AA-AGAA meta algorithm (refer

to text); that is, LossgBrier (t) — LOSS?X_QAG A (£). The red dashed lines represent the negative of the
regret bound in (T2)) with respect to the best expert *; that is, —R?Brier — ARy~ (t) at each round ¢.

with the results of Vovk [[15]], we 1) used the same substitution function as [[15]]; 2) used the same
method for converting odds to probabilities; and 3) sorted the data first by date then by league and
then by name of the host team (For more detail see [13]).

In all figures the solid lines represent, at each round ¢, the difference between the cumulative losses of
the experts and that of the learners; that is, LossgBrier (t) — LossErier (¢), for M = AA, AGAA. The
red dashed lines represent the negative of the regret bound in with respect to the best expert 60*;

that is, —R?Brm — ARp«(t) = —R?Brm - 22;11 (v§ — (v®, @°)) at each round ¢, where (g®) are the
distributions over experts.

From Figures T]and 2] it can be seen that the learners using the AGAA perform better than the best
expert (and better than the AA) at the end of the games.

J.2  Testing a AA-AGAA Meta-Learner

Consider the algorithm (referred to as AA-AGAA) that takes the outputs of the AGAA and the AA as
in the previous section and aggregates them using the AA to yield a meta prediction. The worst case

37



regret of this algorithm is guaranteed not to exceed that of the original AA and AGAA by more than
1! log 2 for an n-mixable loss. Figure [3|shows the results for this algorithm for the same datasets as
the previous section. The AA-AGAA still achieves a negative regret at the end of the game.
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