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A Notation and Preliminaries

For n ∈ N, we define ñ = n− 1. We denote [n] := {1, . . . , n} the set of integers between 1 and n.
Let 〈·, ·〉 denote the standard inner product in Rn and ‖·‖ the corresponding norm. Let In and 1n
denote the n× n identity matrix and the vector of all ones in Rn. Let e1, . . . , en denote the standard
basis for Rn. For a set l ( N and r1, . . . , rn ∈ Rk, we denote [ri]i∈l := [ri1 , . . . , rik ] ∈ Rn×k,
where l = {i1, . . . , ik} and i1 < · · · < ik. We denote its transpose by [ri]

T
i∈l ∈ Rk×n. For two

vectors p, q ∈ Rn, we write p ≤ q [resp. p < q], if ∀i ∈ [n], pi ≤ qi [resp. pi < qi]. We also
denote p � q = [piqi]

T
1≤i≤n ∈ Rn the Hadamard product of p and q. If (ck) is a sequence of

vectors in C ⊆ Rn, we simply write (ck) ⊂ C. For a sequence (vm) ⊂ Rn, we write vm
m→∞→ v

or limm→∞ vm = v, if ∀i ∈ [n], limm→∞[vm]i = vi. For a square matrix A ∈ Rn×n, λmin(A)
[resp. λmax(A)] denotes its minimum [resp. maximum] eigenvalue. For k ≥ 1, u ∈ [0,+∞[k and
w ∈ Rk, we define logu := [log ui]

T
1≤i≤k ∈ Rk and expw := [expwi]

T
1≤i≤k ∈ Rk.

Let ∆n := {p ∈ [0, 1]n : 〈p,1n〉 = 1} be the probability simplex in Rn. We also define ∆̃n :=

{p̃ ∈ [0,+∞[ñ: 〈p̃,1ñ〉 ≤ 1}. We will use the notations ∆k
n := (∆n)k and ∆̃k

n := (∆̃n)k. For
l ⊆ [n], the set ∆l = {q ∈ ∆n : qi = 0,∀i ∈ [n] \ l} is a |l|-face of ∆n. We denote Πn

l : Rn → R|l|
the linear projection operator satisfying Πn

l u = [ui]
T
i∈l. If there is no ambiguity from the context,

we may simply write Πl instead of Πn
l . It is easy to verify that ΠlΠ

T
l = I|l| and that q 7→ Πlq is

a bijection from ∆l ⊆ ∆n to ∆|l|. In the special case where l = [ñ], we write Πn := Πn
[ñ] and we

define the affine operator qn : Rñ → Rn by qn(u) := [u1, . . . , uñ, 1 − 〈u,1ñ〉]T = Jnu + en,
where Jn :=

[
Iñ
−1T

ñ

]
∈ Rn×ñ.

For u ∈ Rn and c ∈ R, we denote Hu,c := {y ∈ Rn : 〈y,u〉 ≤ c} and B(u, c) := {v ∈ Rn :
‖u− v‖ ≤ c}. Hu,c is a closed half space and B(u, c) is the c-ball in Rn centered at u. Let C ⊆ Rn
be a non-empty set. We denote int C, ri C, bd C, and rbd C the interior, relative interior, boundary,
and relative boundary of a set C ∈ Rn, respectively [7]. We denote the indicator function of C by ιC ,
where for u ∈ C, ιC(u) = 0, otherwise ιC(u) = +∞. The support function of C is defined by

σC(u) := sup
s∈C
〈u, s〉 , u ∈ Rn.

Let f : Rn → R ∪ {+∞}. We denote dom f := {u ∈ Rn : f(u) < +∞} the effective domain
of f . The function f is proper if dom f 6= ∅. The function f is convex if ∀(u,v) ∈ Rn and
λ ∈]0, 1[, f(λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v). When the latter inequality is strict for
all u 6= v, f is strictly convex. When f is convex, it is closed if it is lower semi-continuous;
that is, for all u ∈ Rn, lim infv→u f(v) ≥ f(u). The function f is said to be 1-homogeneous
if ∀(u, α) ∈ Rn×]0,+∞[, f(αu) = αf(u), and it is said to be 1-coercive if f(u)

‖u‖ → +∞ as
‖u‖ → ∞. Let f be proper. The sub-differential of f is defined by

∂f(u) := {s∗ ∈ Rn : f(v) ≥ f(u) + 〈s∗,v − u〉 ,∀v ∈ Rn}.

Any element s ∈ ∂f(u) is called a sub-gradient of f at u. We say that f is directionally differentiable
if for all (u,v) ∈ dom f × Rn the limit limt↓0

f(u+tv)−f(u)
t exists in [−∞,+∞]. In this case, we

denote the limit by f ′(u;v). When f is convex, it is directionally differentiable [11]. Let f be proper
and directionally differentiable. The divergence generated by f is the map Df : Rn × dom f →
[0,+∞] defined by

Df (v,u) :=

{
f(v)− f(u)− f ′(u;v − u), if v ∈ dom f ;
+∞, otherwise.

For l ⊂ [n] and fl := f◦ΠT
l , it is easy to verify that f ′l (Πlp; Πlq−Πlp) = f ′(p; q−p),∀(p, q) ∈ ∆l.

In this case, it holds thatDf (q,p) = Dfl(Πlq,Πlp). If f is differentiable [resp. twice differentiable]
at u ∈ int dom f , we denote∇f(u) ∈ Rn [resp. Hf(u) ∈ Rn×n] its gradient vector [resp. Hessian
matrix] at u. A vector-valued function g : Rn → Rm is differentiable at u if for all i ∈ [m], gi is
differentiable at u. In this case, the differential of g at u is the linear operator Dg(u) : Rn → Rm
defined by Dg(u) := [∇gi(u)]T1≤i≤m. If f has k continuous derivatives on a set Ω ⊂ Rk, we write
f ∈ Ck(Ω).
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We define f̃ : Rñ → R ∪ {+∞} by f̃ := f ◦ qn + ι∆̃n
. That is,

f̃(ũ) :=

{
f(Jnũ+ en), for ũ ∈ ∆̃n;
+∞, for ũ ∈ Rn−1 \ ∆̃n.

(1)

If f̃ is directionally differentiable, then f ′(p, q − p) = f̃ ′(p̃, q̃ − p̃), for p, q ∈ ∆n. If f̃ is
differentiable at p̃ = Πn(p), then f̃ ′(p̃, q̃− p̃) = 〈∇f̃(p̃), q̃− p̃〉. If, additionally, f is differentiable
at p ∈ ri ∆k, the chain rule yields∇f̃(p̃) = JT

n∇f(p). Since Jn(p̃− q̃) = qn(p̃− q̃) = p− q, it
also follows that 〈p̃− q̃,∇f̃(p̃)〉 = 〈p− q,∇f(p)〉.
The Fenchel dual of a (proper) function f is defined by f∗(v) := supu∈dom f 〈u,v〉 − f(u), and it
is a closed, convex function on Rn [7]. The following proposition gives some useful properties of the
Fenchel dual which will be used in several proofs.
Proposition 1 ([7]). Let f, h : Rn → R∪{+∞}. If f and h are proper and there are affine functions
minorizing them on Rn, then for all v0 ∈ Rn

(i) g(u) = f(u) + r, ∀u =⇒ g∗(v) = f∗(v)− r, ∀v
(ii) g(u) = f(u) + 〈v0,u〉, ∀u =⇒ g∗(v) = f∗(v − v0), ∀v
(iii) f ≤ h =⇒ f∗ ≥ h∗,
(iv) s ∈ ∂f∗(v),v ∈ Rn =⇒ f∗(v) = 〈v, s〉 − f(s),
(v) g(u) = f(tu), t > 0,∀u =⇒ g∗(v) = f∗(v/t),

A function Φ: Rk → R ∪ {+∞} is an entropy if it is closed, convex, and ∆k ⊆ dom Φ. Its entropic
dual Φ? : Rk → R ∪ {+∞} is defined by Φ?(z) := supq∈∆k

〈q, z〉 − Φ(q), z ∈ Rk. For the
remainder of this paper, we consider entropies defined on Rk, where k ≥ 2.

Let Φ: Rk → R ∪ {+∞} be an entropy and Φ∆ := Φ + ι∆k
. In this case, Φ? = Φ∗∆. It is clear that

Φ∆ is 1-coercive, and therefore, dom Φ? = dom Φ∗∆ = Rk [7, Prop. E.1.3.8]. The entropic dual
of Φ can also be expressed using the Fenchel dual of Φ̃ : Rk−1 → R ∪ {+∞} defined by (1) after
substituting f by Φ and n by k. In fact,

Φ?(z) = sup
q̃∈∆̃k

〈Jkq̃ + ek, z〉 − Φ(Jkq̃ + ek),

= 〈ek, z〉+ sup
q̃∈∆̃k

〈
q̃, JT

k z
〉
− Φ̃(q̃),

= 〈ek, z〉+ Φ̃∗(JT
k z), (2)

where (2) follows from the fact that dom Φ̃ = ∆̃k. Note that when Φ is an entropy, Φ̃ is a closed
convex function on Rk−1. Hence, it holds that Φ̃∗∗ = Φ̃ [11].

The Shannon entropy by S(q) :=
∑
i∈[k]:qi 6=0 qi log qi,1 if q ∈ [0,+∞[k; and +∞ otherwise.

We will also make use of the following lemma.
Lemma 2 ([3]). ∀m ≥ 1,∀A,B ∈ Rm×m, λmax(AB) = λmax(BA) and λmin(AB) = λmin(BA).

B Technical Lemmas

This appendix presents technical lemmas which will be needed in various proofs of results from the
main body of the paper.

For an open convex set Ω in Rn and α > 0, a function φ : Ω→ R is said to be α-strongly convex if
u 7→ φ(u)− α ‖u‖2 is convex on Ω [8]. The next lemma is a characterization of a generalization of
α-strong convexity, where u 7→ ‖u‖2 is replaced by any strictly convex function.
Lemma 3. Let Ω ⊆ Rn be an open convex set. Let φ, ψ : Ω→ R be twice differentiable.

If ψ is strictly convex, then ∀u ∈ Ω, Hψ(u) is invertible, and for any α > 0

∀u ∈ Ω, λmin(Hφ(u)(Hψ(u))−1) ≥ α ⇐⇒ φ− αψ is convex, (3)
Furthermore, if α > 1, then the left hand side of (3) implies that φ− ψ is strictly convex.

1The Shannon entropy is usually defined with a minus sign. However, it will be more convenient for us to
work without it.
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Proof. Suppose that infu∈Ω λmin(Hφ(u)(Hψ(u))−1) ≥ α. Since g is strictly convex and twice
differentiable on Ω, Hψ(u) is symmetric positive definite, and thus invertible. Therefore, there exists
a symmetric positive definite matrix G ∈ Rn×n such that GG = Hψ(u). Lemma 2 implies

infu∈Ω λmin(Hφ(u)(Hψ(u))−1) ≥ α,
⇐⇒ infu∈Ω λmin(G−1Hφ(u)G−1) ≥ α,

⇐⇒ ∀u ∈ Ω,∀v ∈ Rn \ {0}, v
TG−1(Hφ(u))G−1v

vTv
≥ α,

⇐⇒ ∀u ∈ Ω,∀w ∈ Rn \ {0},wT(Hφ(u))w ≥ αwTGGw = wT(αHψ(u))w,

⇐⇒ ∀u ∈ Ω,Hφ(u) � αHψ(u),

⇐⇒ ∀u ∈ Ω,H(φ− αψ)(u) � 0,

where in the third and fifth lines we used the definition of minimum eigenvalue and performed the
change of variable w = G−1v, respectively. To conclude the proof of (3), note that the positive
semi-definiteness of H(φ− αψ) is equivalent to the convexity of φ− αψ [7, Thm B.4.3.1].

Finally, note that the equivalences established above still hold if we replace α, “≥”, and “� ” by 1,
“>”, and “�” , respectively. The strict convexity of φ− ψ then follows from the positive definiteness
of H(φ− ψ) (ibid.).

The following result due to [5] will be crucial to prove the convexity of the superprediction set
(Theorem 29).
Lemma 4 ([5]). Let ∆(Ω) be the set of distributions over some set Ω ⊆ R. Let a function Q :
∆(Ω)× Ω→ R be such that Q(·, ω) is continuous for all ω ∈ Ω. If for all π ∈ ∆(Ω) it holds that
Eω∼πQ(π, ω) ≤ r, where r ∈ R is some constant, then

∃π ∈ ∆(Ω),∀ω ∈ Ω, Q(π, ω) ≤ r.

Note that when Ω in the lemma above is [n], ∆([n]) ≡ ∆n.

The next crucial lemma is a slight modification of a result due to [5].
Lemma 5. Let f : ri ∆n × [n] → R be a continuous function in the first argument and such that
∀(q, x) ∈ ri ∆n × [n],−∞ < f(q, x). Suppose that ∀p ∈ ri ∆n,Ex∼p[f(p, x)] ≤ 0, then

∀ε > 0,∃pε ∈ ri ∆n,∀x ∈ [n], f(pε, x) ≤ ε.

Proof. Pick any δ > 0 such that δ(n − 1) < 1, and c0 < 0 such that ∀(q, x) ∈ ri ∆n × [n], c0 ≤
f(q, x). We define ∆δ

n := {p ∈ ∆n : ∀x ∈ [n], px ≥ δ} and g(q,p) := Ex∼q[f(p, x)]. For a fixed
q, p 7→ g(q,p) is continuous, since f is continuous in the first argument. For a fixed p, q 7→ g(q,p)
is linear, and thus concave. Since ∆δ

n is convex and compact, g satisfies Ky Fan’s minimax Theorem
[1, Thm. 11.4], and therefore, there exists pδ ∈ ∆δ

n such that

∀q ∈ ∆δ
n, Ex∼q[f(pδ, x)] = g(q,pδ) ≤ sup

µ∈∆δ
n

g(µ,µ) = sup
µ∈∆δ

n

Ex∼µ[f(µ, x)] ≤ 0. (4)

For x0 ∈ [n], let q̂ ∈ ∆δ
n be such that q̂x0

= 1− δ(n− 1) and q̂x = δ for x 6= x0 (this is a legitimate
distribution since δ(n− 1) < 1 by construction). Substituting q̂ for q in (4) gives

(1− δ(n− 1))f(pδ, x0) + δ
∑
x 6=x0

f(pδ, x) ≤ 0,

=⇒ (1− δ(n− 1))f(pδ, x0) ≤ −c0δ(n− 1),
=⇒ f(pδ, x0) ≤ [−c0δ(n− 1)]/[1− δ(n− 1)].

Choosing δ∗ := ε/[(−c0 + ε)(n− 1)], and pε := pδ
∗

gives the desired result.

Lemma 6. Let f, g : I → Rn, where I ⊆ R is an open interval containing 0. Suppose g [resp. f]
is continuous [resp. differentiable] at 0. Then t 7→ 〈f(t), g(t)〉 is differentiable at 0 if and only if
t 7→ 〈f(0), g(t)〉 is differentiable at 0, and we have

d

dt
〈f(t), g(t)〉

∣∣∣∣
t=0

=

〈
d

dt
f(t)

∣∣∣∣
t=0

, g(0)

〉
+

d

dt
〈f(0), g(t)〉

∣∣∣∣
t=0

.
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Proof. We have

〈f(t), g(t)〉 − 〈f(0), g(0)〉
t

=
〈f(t), g(t)〉 − 〈f(0), g(t)〉

t
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t
,

=

〈
f(t)− f(0)

t
, g(t)

〉
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t
.

But since g [resp. f ] is continuous [resp. differentiable] at 0, the first term on the right hand side of the
above equation converges to 〈 ddtf(t)

∣∣
t=0

, g(0)〉 as t→ 0. Therefore, 1
t (〈f(0), g(t)〉 − 〈f(0), g(0)〉)

admits a limit when t→ 0 if and only if 1
t (〈f(t), g(t)〉 − 〈f(0), g(0)〉) admits a limit when t→ 0.

This shows that t 7→ 〈f(0), g(t)〉 is differentiable at 0 if an only if t 7→ 〈f(t), g(t)〉 is differentiable
at 0, and in this case the above equation yields

d

dt
〈f(t), g(t)〉

∣∣∣∣
t=0

= lim
t→0

〈f(t), g(t)〉 − 〈f(0), g(0)〉
t

,

= lim
t→0

(〈
f(t)− f(0)

t
, g(t)

〉
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t

)
,

=

〈
d

dt
f(t)

∣∣∣∣
t=0

, g(0)

〉
+

d

dt
〈f(0), g(t)〉

∣∣∣∣
t=0

.

Note that the differentiability of t 7→ 〈f(0), g(t)〉 at 0 does not necessarily imply the differentiability
of g at 0. Take for example n = 3, f(t) = 1/3 for t ∈]− 1, 1[, and

g(t) =

{
−te1 + t13 , if t ∈]− 1, 0[;
−t13 + te2, if t ∈ [0, 1[.

Thus, the function t 7→ 〈f(0), g(t)〉 = 0 is differentiable at 0 but g is not. The preceding Lemma
will be particularly useful in settings where it is desired to compute the derivative d

dt 〈f(0), g(t)〉|t=0

without any explicit assumptions on the differentiability of g(t) at 0. For example, this will come
up when computing d

dt 〈p, D ˜̀(α̃t)v〉|t=0, where v ∈ Rn−1 and t 7→ α̃t is smooth curve on int ∆̃n,
with the only assumption that L̃` is twice differentiable at α̃0 ∈ int ∆̃n.
Lemma 7. Let ` : ∆n → [0,+∞]n be a proper loss. For any p ∈ ri ∆n, it holds that

` is continuous at p
(i)⇐⇒ L` is differentiable at p

(ii)⇐⇒ ∂[−L`](p) = {∇L`(p)} = {`(p)}.

(i)⇐⇒ . This equivalence has been shown before by [16].

[
(ii)⇐⇒ ] Since L`(p) = −σS`

(−p), for all p ∈ ri ∆n, it follows that L` is differentiable at p if and
only if ∂[−L`](p) = ∂σS`

(−p) = {−∇σS`
(−p)} = {∇L`(p)} [7, Cor. D.2.1.4]. It remains to

show that ∇L`(r) = `(r) when L` is differentiable at r ∈ ri ∆n. Let αtx = r + tex and α̃tx =
Πn(αtx), where (ex)x∈[n] is the standard basis of Rn. For x ∈ [n], the functions fx(t) := αtx and
gx(t) := ˜̀(α̃tx) satisfy the conditions of Lemma 6. Therefore, hx(t) := 〈fx(0), gx(t)〉 = 〈r, ˜̀(α̃tx)〉
is differentiable at 0 and

∇L̃(r)ex =
d

dt
L̃(αtx)

∣∣∣∣
t=0

=
d

dt
〈fx(t), gx(t)〉

∣∣∣∣
t=0

,

=
〈
ex, ˜̀(r̃)

〉
+

d

dt
hx(t)

∣∣∣∣
t=0

,

= ˜̀
x(r̃),

where the last equality holds because hx attains a minimum at 0 due to the properness of `. The result
being true for all x ∈ [n] implies that∇L̃(r̃) = ˜̀(r̃) = `(r).

The next Lemma is a restatement of earlier results due to [14]. Our proof is more concise due to our
definition of the Bayes risk in terms of the support function of the superprediction set.
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Lemma 8 ([14]). Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk is twice differentiable
on ]0,+∞[n and let Xp = Iñ − 1ñp̃

T. The following holds

(i) ∀p ∈ ri ∆n, 〈p,D˜̀(p̃)〉 = 0T
ñ.

(ii) ∀p̃ ∈ int ∆̃n, D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃).

(iii) ∀p̃ ∈ int ∆̃n, HL̃log(p̃) = −(Xp)−1(diag (p̃))−1.

We show (i) and (ii). Let p ∈ ri ∆n and f(q̃) := 〈p, ˜̀(q̃)〉 = 〈p,∇L`(q)〉, where the equality
is due to Lemma 7. Since L` is twice differentiable ]0,+∞[n, f is differentiable on int ∆̃n and
we have Df(q̃) = 〈p,D˜̀(p̃)〉. Since ` is proper, f reaches a minimum at p̃ ∈ int ∆n, and thus
〈p,D˜̀(p̃)〉 = 0T

ñ (this shows (i)). On the other hand, we have∇L̃`(p̃) = JT
n∇L`(p) = JT

n
˜̀(p̃). By

differentiating and using the chain the rule, we get HL̃`(p̃) = [D˜̀(p̃)]TJn. This means that ∀i ∈ [ñ],

[HL̃`(p̃)]•,i = ∇˜̀
i(p̃)−∇˜̀

n(p̃), and thus
∑ñ
i=1 pi[HL̃`(p̃)]•,i =

∑ñ
i=1 pi∇˜̀

i(p̃)−(1−pn)∇˜̀
n(p̃).

On the other hand, it follows from point (i) of the lemma that
∑n
i=1 pi∇˜̀

i(p̃) = 0ñ. Therefore,
[HL̃`(p̃)]p̃ = −∇˜̀

n(p̃) and, as a result, ∀i ∈ [ñ], [HL̃`(p̃)]•,i − [HL̃`(p̃)]p̃ = ∇˜̀
i(p̃). The last two

equations can be combined as D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃).

[We show (iii)] It follows from (ii), since ∀i ∈ [ñ],∇[˜̀log]i(p̃) = 1
pi
ei, for p̃ ∈ int ∆̃n.

In the next lemma we state a new result for proper losses which will be crucial to prove a necessary
condition for Φ-mixability (Theorem 14) — one of the main results of the paper.
Lemma 9. Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk is twice differentiable on
]0,+∞[n. For v ∈ Rn−1 and p̃ ∈ int ∆̃n,〈

p, (D˜̀(p̃)v)� (D˜̀(p̃)v)
〉

= −vTHL̃`(p̃)[HL̃log(p̃)]−1HL̃`(p̃)v, (5)

where p = qn(p̃) and Llog is the Bayes risk of the log loss.

Furthermore, if t 7→ α̃t is a smooth curve in int ∆̃n and satisfies α̃0 = p̃ and d
dt α̃

t
∣∣
t=0

= v, then
t 7→ 〈p,D˜̀(α̃t)v〉 is differentiable at 0 and we have

d

dt

〈
p,D˜̀(α̃t)v

〉∣∣∣∣
t=0

= −vTHL̃`(p̃)v. (6)

Proof. We know from Lemma 8 that for p̃ ∈ int ∆̃n, we have D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃), where

Xp = In−1 − 1n−1p̃
T. Thus, we can write〈

p,D˜̀(p̃)v � D˜̀(p̃)v
〉

= vT(D˜̀(p̃))T diag (p)D˜̀(p̃)v,

= vT(HL̃`(p̃))T[XT
p , −p̃] diag (p)

[
Xp

−p̃T

]
HL̃`(p̃)v. (7)

Observe that [XT
p ,−p̃] diag (p) = [In−1 − p̃1T

n−1,−p̃] diag (p) = [diag (p̃)− p̃p̃T, −p̃pn]. Thus,

[XT
p ,−p̃] diag (p)

[
Xp

−p̃T

]
= [diag (p̃)− p̃p̃T,−p̃pn]

[
In−1−1n−1p̃

T

−p̃T

]
,

= diag (p̃)− p̃p̃T − p̃p̃T + p̃p̃T(1− pn) + pnp̃p̃
T,

= diag (p̃)− p̃p̃T,
= diag (p̃)Xp,

= −(HL̃log(p̃))−1, (8)

where the last equality is due to Lemma 8. The desired result follows by combining (7) and (8).
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[We show (6)] Let p̃ ∈ int ∆̃n, we define α̃t := p̃ + tv, αt := qn(α̃t) = p + tJnv, and
r(t) := αt/ ‖αt‖, where t ∈ {s : p̃ + sv ∈ int ∆̃n}. Since t 7→ r(t) is differentiable at 0 and
t 7→ D˜̀(α̃t)v is continuous at 0, it follows from Lemma 3 that

d

dt

〈
r(0),D˜̀(α̃t)v

〉∣∣∣∣
t=0

=
d

dt

〈
r(t),D˜̀(α̃t)v

〉∣∣∣∣
t=0

−
〈
ṙ(0),D˜̀(p̃)v

〉
,

= −
〈
ṙ(0),D˜̀(p̃)v

〉
,

where the second equality holds since, according to Lemma 8, we have 〈αt,D˜̀(α̃t)v〉 = 0. Since
r(0) = p/ ‖p‖, ṙ(0) = ‖p‖−1

(In − r(0)[r(0)]T)Jnv, and Jn =
[
In−1

−1T
n−1

]
, we get

‖p̃‖ d

dt

〈
r(0),D˜̀(α̃t)v

〉∣∣∣∣
t=0

= −
〈(
In − r(0)[r(0)]T

)
Jnv,D˜̀(p̃)v

〉
,

= −
〈
Jnv,D˜̀(p̃)v

〉
, (9)

= −
〈
Jnv,

[
Xp

−p̃T

]
HL̃`(p̃)v

〉
,

= −vTHL̃`(p̃)v,

where the passage to (9) is due to r(0) = p/ ‖p‖ ⊥ D˜̀(p̃). In the last equality we used the fact that
JT
n

[
Xp

−p̃T

]
= [In−1,−1n−1]

[
In−1−1n−1p̃

−p̃T

]
= In−1.

Proposition 10. Let Φ: Rk → R∪{+∞} be an entropy and ` : A → [0,+∞]n a closed admissible
loss. If ` is Φ-mixable, then ∀l ⊆ [k] with |l| > 1, ` is Φl-mixable and

∀q ∈ rbd ∆l,∀q̂ ∈ ri ∆l, Φ′(q; q̂ − q) = −∞. (10)

Given an entropy Φ: Rk → R ∪ {+∞} and a loss ` : A → [0,+∞], we define

mΦ(x,A,a, q̂,µ) := 〈µ, `x(A)〉+DΦ(µ, q̂)− `x(a),

where x ∈ [n], A ∈ Ak, a ∈ A, and q, q̂ ∈ ∆k. Reid et al. [9] showed that ` is Φ mixable if and
only if

m̂Φ := inf
A∈Ak,q̂∈∆k

sup
a∗∈A

inf
µ∈∆k,x∈[n]

mΦ(x,A,a, q̂,µ) ≥ 0.

Proof of Proposition 10. [We show that ` is Φl-mixable] Let l ⊆ [k], with |l| > 1, A ∈ Ak, and
q ∈ ∆l. Since ` is Φ-mixable, the following holds

∃a∗ ∈ ∆n,∀x ∈ [n], `x(a∗) ≤ inf
q̂∈∆k

〈q̂, `x(A)〉+DΦ(q̂, q), (11)

≤ inf
q̂∈∆l

〈q̂, `x(A)〉+DΦ(q̂, q), (12)

= inf
q̂∈∆l

〈Πlq̂,Πl`x(A)〉+DΦl
(Πlq̂,Πlq),

= inf
µ̂∈∆|l|

〈
µ̂, `x(AΠT

l )
〉

+DΦl
(µ̂,Πlq), (13)

where in (11) we used the fact that Φl(Πlq) = Φ(q),∀q ∈ ∆l. Given that A 7→ AΠT
l [resp.

q 7→ Πlq] is onto from Ak to A|l| [resp. from ∆l to ∆|l|], (13) implies that ` is Φl-mixable.

[We show (10)] Suppose that there exists q̂ ∈ rbd ∆k and q ∈ ri ∆k such that |Φ′(q̂; q− q̂)| < +∞.
Let f : [0, ε]→ R be defined by f(λ) := Φ(q̂ + λ(q − q̂)), where ε > 0 is such that q̂ + ε(q − q̂) ∈
ri ∆k. The function f is closed and convex on dom f = [0, ε] and limλ↓0

f(λ)−f(0)
λ = f ′(0; 1) =

Φ′(q̂; q − q̂) which is finite by assumption. Using this and the fact that λf ′(0; 1) = f ′(0;λ), we
have limλ↓0 λ

−1(f(λ)− f(0)− f ′(0;λ)) = 0. Substituting f by its expression in terms of Φ in the
latter equality gives

lim
λ↓0

λ−1DΦ(q̂ + λ(q − q̂), q̂) = 0. (14)
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Let η > 0 and θ∗ ∈ [k] be such that q̂θ∗ = 0. Suppose that ` is an admissible, Φ-mixable loss. The
fact that ` is admissible implies that there exists (x0, x1,a0,a1) ∈ [n]× [n]×A×A such that [9]

a1 ∈ argmin{`x0
(a) : `x1

(a) = inf
â∈A

`x1
(â)} and inf

a∈A
`x0

(a) = `x0
(a0) < `x0

(a1). (15)

In particular, it holds that `x0(a0) < `x0(a1). Fix A ∈ Ak, such that A•,θ∗ = a0 and A•,θ = a1 for
θ ∈ [k] \ {θ∗}. Let

a∗ := argmax
a∈∆n

inf
µ∈∆k,x∈[n]

mΦ(x,A,a, q̂,µ),

with q̂ ∈ rbd ∆k as in (14). Note that a∗ exists since ` is closed.

If a∗ is such that `x1(a∗) > `x1(a1), then taking µ = q̂ puts all weights on experts predicting a1,
while DΦ(µ, q̂) = 0. Therefore,

m̂Φ ≤ inf
µ∈∆k,x∈[n]

mΦ(x,A,a∗, q̂,µ) ≤ mΦ(x1, A,a, q̂, q̂) < 0.

This contradicts the Φ-mixability of `. Therefore, `x1(a∗) = `x1(a1), which by (15) implies
`x0

(a∗) ≥ `x0
(a1). For qλ = q̂ + λ(q − q̂), with q ∈ ri ∆k as in (11) and λ ∈ [0, ε],

m̂Φ ≤ inf
µ∈∆k,x∈[n]

mΦ(x,A,a∗, q̂,µ),

≤ mΦ(x0, A,a, q̂, q
λ),

= 〈qλ, `x0
(A)〉+DΦ(qλ, q̂)− `x0

(a∗),

= (1− λqθ∗)`x0
(a1) + λqθ∗`x0

(a0) +DΦ(qλ, q̂)− `x0
(a∗),

≤ (1− λqθ∗)`x0
(a∗) + λqθ∗`x0

(a0) +DΦ(qλ, q̂)− `x0
(a∗),

= λqθ∗(`x0
(a0)− `x0

(a∗)) +DΦ(q̂ + λ(q − q̂), q̂).

Since qθ∗ > 0 (q ∈ ri ∆k) and `x0
(a0) < `x0

(a1) ≤ `x0
(a∗), (11) implies that there exists λ∗ > 0

small enough such that λ∗qθ∗(`x0
(a0)− `x0

(a∗)) +DΦ(q̂ + λ∗(q − q̂), q̂) < 0. But this implies
that m̂Φ < 0 which contradicts the Φ-mixability of `. Therefore, Φ′(q̂; q − q̂) is either equal to +∞
or −∞. The former case is not possible. In fact, since Φ is convex, it must have non-decreasing
slopes; in particular, it holds that Φ′(q̂; q − q̂) ≤ Φ(q − q̂) − Φ(q̂). Since Φ is finite on ∆k (by
definition of an entropy), we have Φ′(q̂; q − q̂) < +∞. Therefore, we have just shown that

∀q̂ ∈ rbd ∆k,∀q ∈ ri ∆k, Φ′(q̂; q − q̂) = −∞. (16)

Now suppose that (q̂, q) ∈ rbd ∆l × ri ∆l for l ⊆ [k], with |l| > 1. Note that in this case, we
have (Φl)

′(Πlq̂; Πl(q − q̂)) = Φ′(q̂; q − q̂). We showed in the first step of this proof that under
the assumptions of the proposition, ` must be Φl-mixable. Therefore, repeating the steps above
that lead to (16) for Φ, q̂, and q substituted by Φl, Πlq ∈ rbd ∆|l|, and Πlq ∈ ri ∆|l|, we obtain
Φ′(q̂; q − q̂) = Φ′l(Πlq̂; Πl(q − q̂)) = −∞. This shows (10).

Lemma 11. For η > 0, Sη := η−1 S satisfies (10) for all l ⊆ [k] such that |l| > 1, where S is the
Shannon entropy.

Proof. Let l ⊆ [k] such that |l| > 1. Let (q̂, q) ∈ rbd ∆l × ri ∆l and qλ := q̂ + λ(q − q̂), for
λ ∈]0, 1[. Let I := {j ∈ l : q̂j 6= 0} and K := l \ I. We have

S(q̂; q − q̂) = lim
λ↓0

λ−1
[∑

θ∈l
qλθ log qλθ −

∑
θ′∈I

q̂θ′ log q̂θ′
]
,

= lim
λ↓0

λ−1
[∑

θ∈I
(qλθ log qλθ − q̂θ log q̂θ) +

∑
θ′∈K

qλθ′ log qλθ′
]
. (17)

Observe that the limit of either summation term inside the bracket in (17) is equal to zero. Thus,
using l’Hopital’s rule we get

S(q̂; q − q̂) = lim
λ↓0

[∑
θ∈I

[(qθ − q̂θ) log qλθ + (qθ − q̂θ)] +
∑

θ′∈K
[qθ′ log qλθ′ + qθ′ ]

]
,

=
∑

θ∈I
(qθ − q̂θ) log q̂θ +

∑
θ′∈K

qθ′

[
lim
λ↓0

log qλθ′

]
, (18)
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where in (18) we used the fact that
∑
θ∈I(qθ − q̂θ) +

∑
θ′∈K qθ′ = 0. Since for all θ′ ∈ K,

limλ↓0 q
λ
θ′ = 0, the right hand side of (6) is equal to −∞. Therefore S satisfies (10). Since

Sη = η−1 S, it is clear that Sη also satisfies (10).

Lemma 12. Let Φ : Rk → R ∪ {+∞} be an entropy satisfying (10) for all l ⊆ [k] such that |l| > 1.
Then for all such l, it holds that

∀q ∈ ∆l,∀µ ∈ ∆k \∆l, DΦ(µ, q) = +∞.

Proof. Let µ ∈ ∆k \∆l and I := {θ ∈ [k] : µθ 6= 0} ∪ l. In this case, we have q ∈ rbd ∆I and
q+2−1(µ−q) ∈ ri ∆I. Thus, since Φ satisfies (10) and Φ′(q; ·) is 1-homogeneous [7, Prop. D.1.1.2],
it follows that 2−1Φ′(q;µ− q) = Φ′(q; 2−1(µ− q)) = −∞. Hence DΦ(µ, q) = +∞.

Lemma 13. Let Φ: Rk → R ∪ {+∞} be an entropy satisfying (10) for all l ⊆ [k] such that |l| > 1.
If Φ satisfies (10), then ∂Φ̃(q̃) = ∅,∀q̃ ∈ bd ∆̃k. Furthermore, ∀l ⊆ [k] such that |l| > 1,

∀d ∈ Rk,∀q ∈ ri ∆l, MixΦ(d, q) = MixΦl
(Πld,Πlq).

Proof. Let µ ∈ rbd ∆k. Since Φ satisfies (10), it follows that ∀q ∈ ri ∆k, Φ̃(µ̃; q̃− µ̃) = Φ′(µ; q−
µ) = −∞. Therefore, ∂Φ̃′(µ̃) = ∅ [11, Thm. 23.4].

Let d ∈ Rn, l ⊆ [k], with |l| > 1, and q ∈ ri ∆l. Then

MixΦl
(Πld,Πlq) = inf

π∈∆|l|
〈π,Πld〉+DΦl

(π,Πlq),

= inf
µ∈∆l

〈µ,d〉+DΦ(µ, q),

≤ inf
µ∈∆k

〈µ,d〉+DΦ(µ, q), (19)

= MixΦ(d, q).

To complete the proof, we need to show that (19) holds with equality. For this, it suffices to prove
that ∀µ ∈ ∆k \∆l, DΦ(µ, q) = +∞. This follows from Corollary 12.

Lemma 14. Let Φ: Rk → R ∪ {+∞} be an entropy satisfying (10) for all l ⊆ [k] such that |l| > 1.
Let x ∈ [n],d ∈ Rk, and q ∈ ∆k. The infimum in

MixΦ(d, q) = inf
µ∈∆k

〈µ,d〉+DΦ(µ, q) (20)

is attained at some q∗ ∈ ∆k. Furthermore, if q ∈ ri ∆k and q∗ is the infimum of (20) then for any
s∗q ∈ argmax{〈s, q̃∗ − q̃〉 : s ∈ ∂Φ̃(q̃)}, we have

q̃∗ ∈ ∂Φ̃∗(s∗q − JT
k d), (21)

MixΦ(d, q) = dk + Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k d). (22)

Proof. Let q ∈ ri ∆k. Since q̃ ∈ int dom Φ̃ = int ∆̃k, the function µ̃ 7→ −Φ̃′(q̃; µ̃ − q̃) is lower
semicontinuous [11, Cor. 24.5.1]. Given that µ̃ 7→ 〈qk(µ̃),d〉+ Φ̃(µ̃)− Φ̃(q̃) is a closed convex
function, it is also lower semi-continuous. Therefore, the function

µ̃ 7→ 〈qk(µ̃),d〉+ Φ̃(µ̃)− Φ̃(q̃)− Φ̃′(q̃; µ̃− q̃)

is lower semicontinuous, and thus attains its minimum on the compact set ∆̃k at some point q̃∗.
Using the fact that DΦ(µ, q) = DΦ̃(µ̃, q̃), we get that

q∗ := qk(q̃∗) = argmin
µ∈∆k

〈µ,d〉+DΦ(µ, q). (23)

If q ∈ rbd ∆k, then either q is a vertex of ∆k or there exists l ( [k] such that q ∈ ri ∆l. In the
former case, it follows from (10) that DΦ(µ, q) = +∞ for all µ ∈ ∆k \ {q}, and thus the infimum
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of (20) is trivially attained at µ = q. Now consider the alternative — q ∈ ∆l with |l| > 1. Using
Corollary 12, we have DΦ(µ, q) = +∞ for all µ ∈ ∆k \∆l. Therefore,

MixΦ(d, q) = inf
µ∈∆l

〈µ,d〉+DΦ(µ, q),

= inf
µ̂∈∆|l|

〈µ̂,Πld〉+DΦl
(µ̂,Πlq), (24)

where Φl := Φ ◦Πl. Since Πlq ∈ ri ∆|l|, we can use the same argument as the previous paragraph
with Φ and q replaced by Φl and Πlq, respectively, to show that the infimum in (24) is attained at
some q̂∗ ∈ ∆|l|. Thus, q∗ := ΠT

l q̂ ∈ ∆k attains the infimum in (20).

Now we show the second part of the lemma. Let q ∈ ri ∆k and q∗ be the infimum of (20). Since Φ̃
is convex and q̃ = Πk(q) ∈ int ∆̃k = int dom Φ̃, we have ∂Φ̃(q̃) 6= ∅ [11, Thm. 23.4]. This means
that there exists s∗q ∈ ∂Φ̃(q̃) such that 〈s∗q, q̃∗ − q̃〉 = Φ̃′(q̃; q̃∗ − q̃) [7, p.166]. We will now show
that s∗q − JT

k d ∈ ∂Φ̃(q̃∗), which will imply that q̃∗ ∈ ∂Φ̃∗(s∗q − JT
k d) (ibid., Cor. D.1.4.4). Let

q∗ = argminµ∈∆k
〈µ,d〉+DΦ(µ, q). Thus, for all µ ∈ ∆k,

〈µ,d〉+ Φ̃(µ̃)− Φ̃(q̃)− Φ̃′(q̃; µ̃− q̃) ≥ 〈q∗,d〉+ Φ̃(q̃∗)− Φ̃(q̃)− 〈s∗q, q̃∗ − q̃〉,
=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗)− 〈µ̃− q̃∗, JT

k d〉+ 〈s∗q, q̃ − q̃∗〉+ Φ′(q̃; µ̃− q̃),

=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗)− 〈µ̃− q̃∗, JT
k d〉+ 〈s∗q, q̃ − q̃∗〉+ 〈s∗q, µ̃− q̃〉,

=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗) + 〈µ̃− q̃∗, s∗q − JT
k d〉,

where in the second line we used the fact that ∀q ∈ ∆k, 〈q,d〉 = 〈q̃, JT
k d〉 + dk, and in third

line we used the fact that ∀s ∈ ∂Φ̃(q̃), 〈s, µ̃ − q̃〉 ≤ Φ̃′(q̃; µ̃ − q̃) (ibid.). This shows that
s∗q − JT

k d ∈ ∂Φ̃(q̃∗).

Substituting Φ̃′(q̃; q̃∗ − q̃) by 〈s∗q, q∗ − q〉 in the expression for MixΦ(d, q), we get

MixΦ(d, q) = dk + 〈q̃∗, JT
k d〉+ Φ̃(q̃∗)− Φ̃(q̃)− 〈s∗q, q̃∗ − q̃〉,

= dk + 〈s∗q, q̃〉 − Φ̃(q̃)− [〈s∗q − JT
k d, q̃∗〉 − Φ̃(q̃∗)],

= dk + Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k d),

where in the last line we used the fact that Φ̃ is a closed convex function, and thus ∀q̃ ∈ ∆̃k,
s ∈ ∂Φ̃(q̃) =⇒ Φ̃∗(s) = 〈s, q̃〉 − Φ̃(q̃) (ibid., Cor. E.1.4.4).

Lemma 15. Let q ∈ ∆k. For any sequence (dm) in [0,+∞[k converging to d ∈ [0,+∞]k

coordinate-wise and any entropy Φ: Rk → R ∪ {+∞} satisfying (10) for l ⊆ [k] such that |l| > 1,

lim
m→∞

MixΦ(dm, q) = MixΦ(d, q). (25)

Proof of Lemma 15. Let q ∈ ∆k and Φ: Rk → R ∪ {+∞} be an entropy as in the statement of the
Lemma. Let (dm) ⊂ Rk such that dm

m→∞→ d ∈ Rk. in [0,+∞[k. Let l := {θ ∈ [k] : dθ < +∞}.
If l = ∅ then the result holds trivially since, on the one hand, MixΦ(d, q) = +∞ and on the other
hand MixΦ(dm, q) ≥ minθ∈[k] dm,θ

m→∞→ +∞.

Assume now that l 6= ∅. Then

MixΦ(dm, q) = inf
µ∈∆k

〈µ,dm〉+DΦ(µ, q), (26)

≤ inf
µ̂∈∆l

〈µ̂,d〉+DΦ(µ̂, q), (27)

< +∞, (28)

where the last inequality stems from the fact that Πldm is a finite vector in R|l|. Therefore, (28)
implies that the sequence αm := MixΦ(dm, q) is bounded. We will show that (αm) converges in R
and that its limit is exactly MixΦ(d, q). Let (α̂m) be any convergent subsequence of (αm), and let
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(d̂m) be the corresponding subsequence of (dm). Consider the infimum in (100) with dm is replaced
by d̂m. From Lemma 14, this infimum is attained at some qm ∈ ∆k. Since ∆k is compact, we may
assume without loss of generality that qm converges to some q̄ ∈ ∆k. Observe that q̄ must be ∆l;
suppose that ∃θ∗ ∈ l̄ such that q̄θ∗ > 0. Then

α̂m ≥ 〈qm, d̂m〉,
≥ qm,θ∗ d̂m,θ∗

m→∞→ +∞.
This would contradict the fact that αm is bounded, and thus q̄ ∈ ∆l. Using this, we get

MixΦ(d̂m, q) = 〈qm, d̂m〉+DΦ(qm, q),

≥ 〈Πlqm,Πld̂m〉+DΦ(qm, q),
m→∞→ 〈Πlq̄,Πld〉+DΦ(q̄, q),

= 〈q̄,d〉+DΦ(q̄, q), (29)
≥ inf
µ̂∈∆l

〈µ̂,d〉+DΦ(µ̂, q). (30)

where in (29) we use the fact that q̄ ∈ ∆l. Combining (30) with (27) shows that α̂m converges to
MixΦ(d, q) = infµ̂∈∆l

〈µ̂,d〉 + DΦ(µ̂, q). Since (α̂m) was any convergent subsequence of (αm)
(which is bounded), the result follows.

C Proofs of Results in the Main Body

C.1 Proof of Theorem 4

Theorem 4 Any loss ` : A → [0,+∞]n such that dom ` 6= ∅, has a proper support loss ` with the
same Bayes risk, L`, as `.

Proof. We will construct a proper support loss ` of `.

Let p ∈ ri ∆n (−p ∈ int domσS`
). Since the support function of a non-empty set is closed and

convex, we have σ∗∗S`
= σS`

[7, Prop. C.2.1.2]. Pick any v ∈ ∂σS`
(−p) = ∂σ∗∗S`

(−p) 6= ∅.
Since σ∗S`

= ιS`
[11], we can apply Proposition 1-(iv) with f replaced by σ∗S`

to obtain 〈−p,v〉 =
σS`

(−p) + ιS`
(v). The fact that 〈−p,v〉 and σS`

(−p) are both finite implies that ιS`
(v) = 0.

Therefore, v ∈ S` and 〈p,v〉 = −σS`
(−p) = L`(p). Define `(p) := v ∈ S`.

Now let p ∈ rbd ∆n and q := 1n/n. Since theL` is a closed concave function and q ∈ int domL`, it
follows that L`(p+m−1(q−p))

m→∞→ L`(p) [7, Prop. B.1.2.5]. Note that qm := p+m−1(q−p) ∈
ri ∆n,∀m ∈ N. Now let vx,m := `x(qm), where `(qm) is as constructed in the previous paragraph.
If (v1,m) is bounded [resp. unbounded], we can extract a subsequence (v1,ϕ1(m)) which converges
[resp. diverges to +∞], where ϕ1 : N → N is an increasing function. By repeating this process
for (v2,ϕ1(m)) and so on, we can construct an increasing function ϕ := ϕn ◦ · · · ◦ ϕ1 : N → N,
such that vm := [vx,ϕ(m)]

T
x∈[n] has a well defined (coordinate-wise) limit in [0,+∞]n. Define

`(p) := limm→∞ vm. By continuity of the inner product, we have

〈p, `(p)〉 = lim
m→∞

〈qϕ(m),vm〉 = lim
m→∞

〈qϕ(m), `(qϕ(m))〉,

= lim
m→∞

L`(qϕ(m)) = L`(p).

By construction, ∀m ∈ N,pm := qϕ(m) ∈ ri ∆n and `(pm) = vm
m→∞→ `(p). Therefore, ` is

support loss of `.

It remains to show that it is proper; that is ∀p ∈ ∆n,∀q ∈ ∆n, 〈p, `(p)〉 ≤ 〈p, `(q)〉. Let
q ∈ ri ∆n. We just showed that ∀p ∈ ∆n, 〈p, `(p)〉 = L`(p) and that `(q) ∈ S`. Using the fact
that L`(p) = infz∈S`

〈p, z〉, we obtain 〈p, `(p)〉 ≤ 〈p, `(q)〉.
Now let q ∈ rbd ∆k. Since ` is a support loss, we know that there exists a sequence (qm) ⊂ ri ∆n

such that `(qm)
m→∞→ `(q). But as we established in the previous paragraph, 〈p, `(p)〉 ≤ 〈p, `(qm)〉.

By passing to the limit m→∞, we obtain 〈p, `(p)〉 ≤ 〈p, `(q)〉. Therefore ` is a proper loss with
Bayes risk L`.
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C.2 Proofs of Theorem 5 and Proposition 12

For a set C, we denote co C and coC its convex hull and closed convex hull, respectively.
Definition 16 ([7]). Let C be non-empty convex set in Rn. We say that u ∈ C is an extreme point of
C if there are no two different points u1 and u2 in C and λ ∈]0, 1[ such that u = λu1 + (1− λ)u2.

We denote the set of extreme points of a set C by ext C.
Lemma 17. Let ` : A → [0,+∞]n be a closed loss. Then ext coS` ⊆ S`.

Proof. Since co S` ⊆ Rn is connected, co S` = {v +
∑n
k=1 αk`(ak): (ak∈[n],α,v) ∈ An ×

∆n × [0,+∞[n} [7, Prop. A.1.3.7].

We claim that coS` = co S`. Let (zm) := (vm +
∑n
k=1 αm,k`(am,k)) be a convergent sequence

in [0,+∞[n, where (αm), ([am,k]k∈[n]) and (vm) are sequences in ∆n, An, and [0,+∞[n, re-
spectively. Since ∆n is compact, we may assume, by extracting a subsequence if necessary, that
αm

m→∞→ α∗ ∈ ∆n. Let K := {k ∈ [n] : α∗k 6= 0}. Since zm converges, ([[`(am,k)]k∈K,vm]) is a
bounded sequence in [0,+∞[n|K|+n. Since ` is closed, we may assume, by extraction a subsequence
if necessary, that ∀k ∈ K, `(am,k)

m→∞→ `(a∗k) and vm
m→∞→ v∗, where [a∗k]k∈K ∈ A|K| and

v∗ ∈ [0,+∞[n. Consequently,

v∗ +

n∑
k=1

α∗k`(a
∗
k) = lim

m→∞

[
vm,k +

∑
k∈K

αm,k`(am,k)

]
,

≤ lim
m→∞

zm,

where the last inequality is coordinate-wise. Therefore, there exists v′ ∈ [0,+∞[n such that
limm→∞ zm = v′ + v∗ +

∑n
k=1 α

∗
k`(a

∗
k) ∈ co S`. This shows that coS` ⊂ co S`, and thus

coS` = co S` which proves our first claim.

By definition of an extreme point, ext coS` ⊆ coS`. Let e ∈ ext coS` and (ak∈[n],α,v) ∈
An×∆n× [0,+∞[n such that e =

∑n
k=1 αk`(ak)+v. If there exists i, j ∈ [n] such that αiαj 6= 0

or αivj 6= 0 then e would violate the definition of an extreme point. Therefore, the only possible
extreme points are of the form {`(a) : a ∈ dom `)} = S`.

Theorem 5 Let ` : A → [0,+∞]n be a loss and ` be a proper support loss of `. If the Bayes risk L`
is differentiable on ]0,+∞[n, then ` is uniquely defined on ri ∆n and

∀p ∈ dom `, ∃a∗ ∈ dom `, `(a∗) = `(p),

∀a ∈ dom `, ∃(pm) ⊂ ri ∆n, `(pm)
m→∞→ `(a) coordinate-wise.

Proof. Let p ∈ ri ∆n and suppose that L` is differentiable at p. In this case, σS`
is differentiable at

−p, which implies [7, Cor. D.2.1.4]

F(p) := ∂σS`
(−p) = {∇σS`

(−p)}. (31)

On the other hand, the fact that σS`
= σcoS`

[7, Prop. C.2.2.1], implies F(p) = ∂σS`
(−p) =

∂σcoS`
(−p). The latter being an exposed face of coS` implies that every extreme point of F(p)

is also an extreme point of coS` [7, Prop. A.2.3.7, Prop. A.2.4.3]. Therefore, from (31), `(p) =
∇σS`

(−p) is the only extreme point of F(p) ⊂ coS`. From Lemma 17, there exists a∗ ∈ A such
that `(a∗) = `(p). In this paragraph, we showed the following

∀p ∈ ri ∆n,∃a∗ ∈ dom `, `(a∗) = `(p). (32)

For the rest of this proof we will assume that L` is differentiable on ]0,+∞[n. Let p ∈ rbd ∆n ∩
dom `. Since ` is a support loss, there exists (pm) in ri ∆n such that (`(pm))m converges to `(p).
From (32) it holds that ∀pm ∈ ri ∆n,∃am ∈ A, `(am) = `(pm). Since (`(am))m converges and `
is closed, there exists a∗ ∈ A such that `(a∗) = limm→∞ `(am) = `(p).

Now let a ∈ dom ` and f(p, x) := `x(p)− `x(a). Since `(a) ∈ S` and ` is proper, we have for all
p ∈ ri ∆n,Ex∼p[f(p, x)] ≤ 0 and −∞ < f(p, x),∀x ∈ [n]. Therefore, Lemma 5 implies that for
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all m ∈ N \ {0} there exists pm ∈ ri ∆n, such that ∀x ∈ [n], `x(pm) ≤ `x(a) + 1/m. On one hand,
since (`(pm)) is bounded (from the previous inequality), we may assume by extracting a subsequence
if necessary, that (`(pm))m converges. On the other hand, since pm ∈ ri ∆n, (32) implies that
there exists am ∈ dom ` such that `(pm) = `(am). Since ` is closed and (`(am))m converges,
there exists a∗ ∈ A, such that `(a∗) = limm→∞ `(am) = limm→∞ `(pm) ≤ `(a). But since ` is
admissible, the latter component-wise inequality implies that `(a∗) = `(a) = limm→∞ `(p).

Lemma 18. Let ` : A → [0,+∞]n be a loss satisfying Assumption 1. If L` is not differentiable at p
then there exist a0,a1 ∈ dom `, such that `(a0) 6= `(a1) and L`(p) = 〈p, `(a0)〉 = 〈p, `(a1)〉.

Proof. Suppose L` is not differentiable at p ∈ ri ∆n. Then from the definition of the Bayes risk,
σS`

is not differentiable at −p. This implies that F(p) := ∂σS`
(−p) has more than one element

[7, Cor. D.2.1.4]. Since σS`
= σcoS`

(ibid.. Prop. C.2.2.1), F(p) = ∂σcoS`
(−p) is a subset

of coS` and every extreme point of F(p) is also an extreme point of coS` (ibid., Prop. A.2.3.7).
Thus, from Lemma 17, we have extF(p) ⊂ S`. On the other hand, since −p ∈ int domσS`

,
F(p) is a compact, convex set [11, Thm. 23.4], and thus F(p) = co(extF(p)) [7, Thm. A.2.3.4].
Hence, the fact that F(p) has more than one element implies there exists a0,a1 ∈ A such that
`(a0), `(a1) ∈ extF(p) ⊆ F(p) and `(a0) 6= `(a1). Since F(p) = ∂σS`

(−p), Proposition 1-(iv)
and the fact that σ∗S`

= ιS`
imply that L`(p) = 〈p, `(a0)〉 = 〈p, `(a1)〉.

Proposition 12 Let Φ: Rk → R ∪ {+∞} be an entropy and ` : A → [0,+∞]n. If ` is Φ-mixable,
then the Bayes risk satisfies L` ∈ C1(]0,+∞[n). If, additionally, L` is twice differentiable on
]0,+∞[n, then Φ must be strictly convex on ∆k.

Proof. Let l = {1, 2}. Since ` is Φ-mixable, it must be Φl-mixable, where Φl := Φl ◦ ΠT
l : R2 →

R ∪ {+∞} (Proposition 10). Let Ψ := Φl.

For w ∈]0,+∞[ and z ∈ int dom Ψ̃∗ = R (see appendix E), we define (Ψ̃∗)′∞(w) :=

limt→+∞[Ψ̃∗(z + tw) − Ψ̃∗(z)]/t. The value of (Ψ̃∗)′∞(w) does not depend on the choice of
z, and it holds that (Ψ̃∗)′∞(w) = σdom Ψ̃(w) and (Ψ̃∗)′∞(−w) = σdom Ψ̃(−w) [7, Prop. C.1.2.2].
In our case, we have dom Ψ̃ = [0, 1] (by definition of Ψ̃), which implies that σdom Ψ̃(1) = 1 and
σdom Ψ̃(−1) = 0. Therefore, (Ψ̃∗)′∞(1) + (Ψ̃∗)′∞(−1) = 1. As a result Ψ̃∗ cannot be affine. For all
δ > 0, let gδ : R× {−1, 0,+1} → R be defined by

gδ(s, u) := [Ψ̃∗(s+ δ(u+ 1)/2)− Ψ̃∗(s+ δ(u− 1)/2)]/δ.

Since Ψ̃∗ is convex it must have non-decreasing slopes (ibid., p.13). Combining this with the fact
that Ψ̃∗ is not affine implies that

∃s∗δ ∈ R, gδ(s∗δ ,−1) < gδ(s
∗
δ ,+1). (33)

The fact that Ψ̃∗ has non-decreasing slopes also implies that

gδ(s
∗
δ ,+1) = [Ψ̃∗(s∗δ + δ)− Ψ̃∗(s∗δ)]/δ ≤ lim

t→∞
[Ψ̃∗(s∗δ + t)− Ψ̃∗(s∗δ)]/t = (Ψ̃∗)′∞(1) = 1.

Similarly, we have 0 = −(Ψ̃∗)′∞(−1) ≤ gδ(s∗δ ,−1). Let µ̃ ∈ ∂Ψ̃∗(s∗δ). Since Ψ̃ is a closed convex
function the following equivalence holds µ̃ ∈ ∂Ψ̃∗(s∗δ) ⇐⇒ s∗δ ∈ ∂Ψ̃(µ̃) (ibid., Cor. D.1.4.4).
Thus, if µ̃ ∈ {0, 1} = bd ∆̃2, then ∂Ψ̃(µ̃) 6= ∅, which is not possible since ` is Ψ-mixable (Lemma
13).

[We showL` ∈ C1(]0,+∞[n)] We will now show thatL` is continuously differentiable on ]0,+∞[n.
Since L` is 1-homogeneous, it suffices to check the differentiability on ri ∆n. Suppose L` is not
differentiable at p ∈ ri ∆n. From Lemma 18, there exists a0,a1 ∈ A such that `(a0), `(a1) ∈
∂σS`

(−p) and `(a0) 6= `(a1). Let A := [a0,a1] ∈ Rn×2, δ := min{|`x(a0) − `x(a1)| : x ∈
[n], |`x(a0) − `x(a1)| > 0}, and s∗δ ∈ R as in (33). We denote g− := gδ(s

∗
δ ,−1) and g+ :=

gδ(s
∗
δ ,+1) ∈]0, 1]. Let µ̃ ∈ ∂Ψ̃∗(s∗δ) ∈ int ∆̃2 and µ = q2(µ̃) ∈ ri ∆2. From the fact that ` is

Ψ-mixable, JT
2 `x(A) = `x(a0)− `x(a1), and (8), there must exist a∗ ∈ A such that for all x ∈ [n],

`x(a∗) ≤ MixΨ(`x(A),µ),

= `x(a1) + Ψ̃∗(s∗δ)− Ψ̃∗(s∗δ − `x(a0) + `x(a1)),
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and by letting sgn be the sign function

≤ `x(a1) + gδ(s
∗
δ ,− sgn[`x(a0)− `x(a1)])[`x(a0)− `x(a1)], (34)

where in (34) we used the fact that Ψ̃∗ has non-decreasing slopes and the definition of δ. When
`x(a0) ≤ `x(a1), (34) becomes `x(a∗) ≤ (1 − g+)`x(a1) + g+`x(a0). Otherwise, we have
`x(a∗) ≤ (1 − g−)`x(a1) + g−`x(a0) < (1 − g+)`x(a1) + g+`x(a0). Since ` is admissible,
there must exist at least one x ∈ [n] such that `x(a0) > `x(a1). Combining this with the fact that
px > 0,∀x ∈ [n] (p ∈ ri ∆n), implies that 〈p, `(a∗)〉 < 〈p, (1 − g+)`(a1) + g+`(a0)〉 = L`(p).
This contradicts the fact that `(a∗) ∈ S`. Therefore, L` must be differentiable at p. As argued
earlier, this implies that L` must be differentiable on ]0,+∞[n. Combining this with the fact that
L` is concave on ]0,+∞[n, implies that L` is continuously differentiable on ]0,+∞[n (ibid., Rmk.
D.6.2.6).

[We show Φ̃∗ ∈ C1(Rk−1)] Suppose that Φ̃∗ is not differentiable at some s∗ ∈ Rk−1. Then
there exists d ∈ Rk−1 \ {0k̃} such that −(Φ̃∗)′(s∗;−d) < (Φ̃∗)′(s∗;d). Since s∗ ∈ int dom Φ̃∗,
(Φ̃∗)′(s∗, ·) is finite and convex [7, Prop. D.1.1.2], and thus it is continuous on dom Φ̃∗ = Rk−1

(ibid., Rmk. B.3.1.3). Consequently, there exists δ∗ > 0 such that

∀d̂ ∈ Rk−1, ‖d̂− d‖ ≤ δ∗ =⇒ −(Φ̃∗)′(s∗;−d̂) < (Φ̃∗)′(s∗; d̂) (35)

Let g : {−1, 1} → R be such that

g(u) := sup
‖d̂−d‖≤δ∗

u · (Φ̃∗)′(s∗;ud̂).

Note that since Φ̃∗ has increasing slopes (Φ̃∗ is convex), g(1) ≤ sup‖d̂−d‖≤δ∗(Φ̃
∗)′∞(d̂) =

sup‖d̂−d‖≤δ∗ σdom Φ̃(d̂) ≤ 1, where the last inequality holds because ∆̃k ⊂ B(0k̃, 1), and thus

σdom Φ̃(d̂) = σ∆̃k
(d̂) ≤ σB(0k̃,1)(d̂) = 1. Let ∆g := g(1) − g(−1). From (35), it is clear that

∆g > 0.

Suppose that L` is twice differentiable on ]0,+∞[n and let ` be a support loss of `. By definition
of a support loss, ∀p ∈ ri ∆k, ˜̀(p̃) = `(p) = ∇L`(p) (where ˜̀ := ` ◦ qn). Thus, since L` is
twice differentiable on ]0,+∞[n, ˜̀ is differentiable on int ∆̃n. Furthermore, ` is continuous on
ri ∆k given that L` ∈ C1(]0,+∞[n) as shown in the first part of this proof. We may assume
without loss of generality that ` is not a constant function. Thus, from Theorem 5, ` is not a
constant function either. Consequently, the mean value theorem applied to ` (see e.g. [12, Thm.
5.10]) between any two points in ri ∆n with distinct images under `, implies that there exists
(p̃∗,v∗) ∈ int ∆̃n ×Rn−1, such that D˜̀(p̃∗)v∗ 6= 0ñ. For the rest of the proof let (p̃,v) := (p̃∗,v∗)

and define I := {x ∈ [n] : D˜̀
x(p̃)v 6= 0}. From Lemma 8, we have 〈p,D˜̀(p̃)〉 = 0T

ñ, which
implies that there exists x ∈ I,D˜̀

x(p̃)v > 0. Thus, the set

K :=
{
x ∈ I : D˜̀

x(p̃)v > 0
}

(36)

is non-empty. From this and the fact that p ∈ ri ∆n, it follows that∑
x′∈K

px′D˜̀
x′(p̃)v > 0. (37)

Let p̃t := p̃+ tv. From Taylor’s Theorem (see e.g. [? , §151]) applied to the function t 7→ ˜̀(p̃t),
there exists ε∗ > 0 and functions δx : [−ε∗, ε∗]→ Rn, x ∈ [n], such that limt→0 t

−1δx(t) = 0 and

∀|t| ≤ ε∗, `x(pt) = `x(p) + tD˜̀
x(p)v + δx(t). (38)
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For x ∈ [n], let dx ∈ Rk̃ and suppose that ‖dx − d‖ ≤ δ∗ (we will define dx explicitly later). By
shrinking ε∗ if necessary, we may assume that

∀x ∈ I,∀θ ∈ [k],∀|t| ≤ ε∗, dθt
−1δx(t) ≤ δ∗|D˜̀

x(p̃)v|√
n

, (39)

∀x 6∈ I, Φ̃∗(s∗)− Φ̃∗
(
s∗ −

[
δx

(
ε∗ dθ‖d‖

)]
θ∈[k̃]

)
≤ ε∗ ∆g

4‖d‖

∑
x′∈K

px′D˜̀
x′(p̃)v, (40)

∀x ∈ [n], Φ̃∗(s∗)− Φ̃∗
(
s∗ − ε∗ D

˜̀
x(p̃)v
‖d‖ dx

)
≤ −(Φ̃∗)′

(
s∗;−ε∗ D

˜̀
x(p̃)v
‖d‖ dx

)
+ ε∗ ∆g

4‖d‖

∑
x′∈K

px′D˜̀
x′(p̃)v, (41)

where (41) is satisfied for small enough ε∗ because of (37) and the fact that

1
ε

(
Φ̃∗(s∗)− Φ̃∗(s∗ − εD

˜̀
x(p̃)v
‖d‖ dx

)
→
ε→0
−(Φ̃∗)′

(
s∗;−D˜̀

x(p̃)v
‖d‖ dx

)
,

and (40) is also satisfied for small enough ε∗ because Φ̃∗(s∗) − Φ̃∗
(
s∗ −

[
δx

(
ε dθ‖d‖

)]
θ∈[k̃]

)
=

O
(

max{θ∈[k̃]}

∣∣∣δx (ε dθ‖d‖)∣∣∣) = o(ε), where the first equality is due to the fact that (λ, z) 7→
1
λ

(
Φ̃∗(s∗)− Φ̃∗(s∗ − λz

)
is uniformly bounded on compact subsets of R× Rk̃ (by continuity of

the directional derivative (Φ̃∗)′(s∗; ·)).

If D˜̀
x(p̃)v ≤ 0, then by the positive homogeneity of the directional derivative, the definition of the

function g, and (41), we get

Φ̃∗(s∗)− Φ̃∗
(
s∗ − ε∗ D

˜̀
x(p̃)v
‖d‖ dx

)
≤ ε∗ D

˜̀
x(p̃)v
‖d‖ g(1) + ε∗ ∆g

4‖d‖

∑
x′∈K

px′D˜̀
x′(p̃)v. (42)

On the other hand, if D˜̀
x(p̃)v > 0, then from the monotonicity of the slopes of Φ̃∗, the positive

homogeneity of the directional derivative, and the definition of the function g, it follows that

1
ε∗

(
Φ̃∗(s∗)− Φ̃∗(s∗ − ε∗ D

˜̀
x(p̃)v
‖d‖ dx

)
≤ −(Φ̃∗)′

(
s∗;−D˜̀

x(p̃)v
‖d‖ dx

)
,

= −D˜̀
x(p̃)v
‖d‖ (Φ̃∗)′ (s∗;−dx) ,

≤ D˜̀
x(p̃)v
‖d‖ g(−1),

=
D˜̀
x(p̃)v
‖d‖ (−∆g + g(1)) . (43)

Let λθ := ε∗ dθ‖d‖ , for θ ∈ [k̃]. From Theorem 5, there exists [aθ]θ∈[k] ∈ Ak, such that

`(ak) = `(p) and ∀θ ∈ [k̃], `(aθ) = `(pλθ ) = `(p) + ε∗ dθ‖d‖D
˜̀(p̃)v + δ

(
ε∗ dθ‖d‖

)
, (44)

where [δ(·)]x := δx(·) for x ∈ [n].

From the fact that ` is Φ-mixable, it follows that there exists a∗ ∈ A such that for all x ∈ [n],

`x(a∗) ≤ MixΦ(`x(a1:k),µ) = `x(ak) + Φ̃∗(s∗)− Φ̃∗
(
s∗ − JT

k `x(a1:k)
)
. (45)

For x ∈ [n], we now define dx ∈ Rk̃ explicitly as

∀θ ∈ [k̃], dx,θ :=

{
dθ + ‖d‖

ε∗[D˜̀
x(p̃)v]

δx

(
ε∗ dθ‖d‖

)
, if x ∈ I

dθ, otherwise.

From (39), we have ‖dx − d‖ ≤ δ∗,∀x ∈ [n]. Furthermore, from (44) and the fact that for all
x ∈ [n], JT

k `x(a1:k) = [`x(aθ)− `x(ak)]θ∈[k̃], we have

JT
k `x(a1:k) =

 ε∗
D˜̀
x(p̃)v
‖d‖ dx, if x ∈ I;[

δx

(
ε∗ dθ‖d‖

)]
θ∈[k̃]

, otherwise.
(46)
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Using this, together with (42) and (43), we get ∀x ∈ I,

Φ̃∗(s∗)− Φ̃∗
(
s∗ − JT

k `x(a1:k)
)

= Φ̃∗(s∗)− Φ̃∗
(
s∗ − ε∗ D

˜̀
x(p̃)v
‖d‖ dx

)
,

≤ ε∗ D
˜̀
x(p̃)v
‖d‖ g(1)− ε∗∆gD˜̀

x(p̃)v
‖d‖ 1{D˜̀

x(p̃)v>0}

+ ε∗ ∆g
4‖d‖1{D˜̀

x(p̃)v≤0}

∑
x′∈K

px′D˜̀
x′(p̃)v. (47)

Combining (45), (46), and (47) yields

〈p, `(a∗)〉 ≤ 〈p, `(ak)〉+ ε∗

‖d‖ 〈p,D˜̀(p̃)v〉g(1)− 3ε∗∆g
4‖d‖

∑
x′∈K

px′D˜̀
x′(p̃)v

+
∑
x6∈I

px

(
Φ̃∗(s∗)− Φ̃∗

(
s∗ −

[
δx

(
ε∗ dθ‖d‖

)]
θ∈[k̃]

))
,

using (40) and the fact that 〈p,D˜̀(p̃)〉 = 0T
ñ (see Lemma 8), we get

≤ 〈p, `(ak)〉 − ε∗∆g
2‖d‖

∑
x′∈K

px′D˜̀
x′(p̃)v, (48)

< 〈p, `(p)〉, (49)

where in (49) we used (37) and the fact that `(p) = `(ak) (see (45)). Equation 49 shows that
`(a∗) 6∈ S`, which is a contradiction.

C.3 Proof of Theorem 7

Theorem 7 Let η > 0, and let ` : A → [0,+∞]n a loss. Suppose that dom ` = A and that L` is
twice differentiable on ]0,+∞[n. If η` > 0 then ` is η`-mixable. In particular, η` ≥ η`.

Proof. Let η := η`. We will show that exp(−ηS`) is convex, which will imply that ` is η-mixable
[5].

Since η` = inf p̃∈int ∆̃n
(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1 > 0, ηL` − Llog is convex on ri ∆n [14,

Thm. 10]. Let p ∈ ri ∆n and define

Λ(r) := Llog(r) + 〈r, η`(p)− `log(p)〉, r ∈ ri ∆n.

Since Λ is equal to Llog plus an affine function, it follows that ηL`−Λ is also convex on ri ∆n. On the
one hand, since ` and `log are proper losses, we have 〈p, `(p)〉 = L`(p) and 〈p, `log(p)〉 = Llog(p)
which implies that

ηL`(p)− Λ(p) = 0. (50)

On the other hand, since L` and Llog are differentiable we have `(p) = ∇L`(p) and ∇Llog(p) =
`log(p), which yields η∇L`(p)−∇Λ(p) = 0n. This implies that ηL` − Λ attains a minimum at p
[7, Thm. D.2.2.1]. Combining this fact with (50) gives ηL`(r) ≥ Λ(r),∀r ∈ ri ∆n, or equivalently
−ηL` ≤ −Λ. By Proposition 1-(iii), this implies

[−ηL`]∗ ≥ [−Λ]∗. (51)

Using Proposition 1-(ii), we get [−Λ]∗(s) = [−Llog]∗(s − `log(p) + η`(p)) for s ∈ Rn. Since
−ηL`(u) = −L`(ηu) = σS`

(−ηu) and σ∗S`
= ιS`

, Proposition 1-(v) implies [−ηL`]∗(s) =
ιS`

(−s/η). Similarly, we have [−Llog]∗(s) = ιSlog
(−s). Therefore, (51) implies

∀s ∈ Rn, ιS`
(−s/η) ≥ ιSlog

(−s+ `log(p)− η`(p)).

This inequality implies that if s ∈ −ηS`, then s ∈ −Slog + `log(p) − η`(p). In particular, if
u ∈ e−ηS` then

u ∈ e−Slog+`log(p)−η`(p) ⊆ Hτ(p),1 = {v ∈ Rn : 〈v,p� eη`(p)〉 ≤ 1}. (52)
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To see the set inclusion in (52), consider s ∈ −Slog + `log(p) − η`(p), then by definition of the
superprediction set Slog there exists r ∈ ∆n and v ∈ [0,+∞[n, such that s = log r − log p −
η`(p)− v. Thus,

〈es,p� eη`(p)〉 = 〈r, e−v〉 ≤ 1, (53)

where the inequality is true because r ∈ ∆n and v ∈ [0,+∞[n. The above argument shows that
e−ηS` ⊆ Hτ(p),1, where τ(p) := p � eη`(p). Furthermore, e−ηS` ⊆ Hτ(p),1∩]0,+∞[n, since
all elements of e−ηS` have non-negative, finite components. The latter set inclusion still holds
for p̂ ∈ rbd ∆n. In fact, from the definition of a support loss, there exists a sequence (pm) in
ri ∆n converging to p̂ such that `(pm)

m→∞→ `(p̂). Equation 53 implies that for u ∈ e−ηS` ,
〈u,pm � eη`(pm)〉 ≤ 1. Since the inner product is continuous, by passage to the limit, we obtain
〈u, p̂� eη`(p̂)〉 ≤ 1. Therefore,

e−ηS` ⊆
⋂
p∈∆n

Hτ(p),1∩]0,+∞[n. (54)

Now suppose u ∈
⋂
p∈∆n

Hτ(p),1∩]0,+∞[n; that is, for all p ∈ ∆n,

1 ≥
〈
u,p� eη`(p)

〉
=
〈
p,u� eη`(p)

〉
=
〈
p, eη`(p)+logu

〉
,

≥ e〈p,η`(p)〉+〈p,logu〉, (55)

where the first equality is obtained merely by expanding the expression of the inner product, and
the second inequality is simply Jensen’s Inequality. Since u 7→ eu is strictly convex, the Jensen’s
inequality in (55) is strict unless ∃(c,p) ∈ R×∆n, such that

η`(p) + logu = c1n. (56)

By substituting (56) into (55), we get 1 ≥ exp(c), and thus c ≤ 0. Furthermore, (56) together
with the fact that u ∈]0,+∞[n imply that p ∈ dom `, and thus there exists a ∈ dom ` such that
`(a) = `(p) (Theorem 5). Using this and rearranging (56), we get u = exp(−η`(a) + c1). Since
c ≤ 0, this means that u ∈ exp(−ηS`). Suppose now that (56) does not hold. In this case, (55) must
be a strict inequality for all p ∈ ∆n. By applying the log on both side of (55),

∀p ∈ ∆n, ηL`(p) + 〈p, logu〉 = 〈p, η`(p)〉+ 〈p, logu〉 < 0. (57)

Since p 7→ L`(p) = −σS`
(−p) is a closed concave function, the map g : p 7→ ηL`(p) + 〈p, logu〉

is also closed and concave, and thus upper semi-continuous. Since ∆n is compact, the function g
must attain its maximum in ∆n. Due to (57) this maximum is negative; there exists c1 > 0 such that

∀p ∈ ∆k, 〈p, η`(p)〉 − 〈p,− logu〉 ≤ −c1. (58)

Let f(p, x) := η`x(p) + log ux + c1, for x ∈ [n]. It follows from (58) that for all p ∈ ∆n,
Ex∼pf(p, x) ≤ 0 and ∀x ∈ [n],−∞ < f(p, x). Thus, Lemma 6 applied to f with ε = c1/2,
implies that there exists p∗ ∈ ri ∆n, such that η`(p∗) ≤ − logu − c1/2 ≤ − logu. From
this inequality, p∗ ∈ dom `, and therefore, there exists a∗ ∈ dom ` such that `(a∗) = `(p∗)
(Theorem 5). This shows that η`(a∗) ≤ − logu, which implies that u ∈ exp−ηS`. There-
fore,

⋂
p∈∆n

Hτ(p),1∩]0,+∞[n⊆ e−ηS` . Combining this with (54) shows that e−ηS` =⋂
p∈∆n

Hτ(p),1∩]0,+∞[n. Since e−ηS` is the intersection of convex set, it is a itself convex
set. Since dom ` = A by assumption, it follows that S` = S∞` , and thus e−ηS∞` is convex. This
last fact implies that ` is η-mixable [5].

C.4 Proof of Theorem 10

We start by the following characterization of ∆-differentiability (this was defined on page 5 of the
main body of the paper).

Lemma 19. Let Φ: Rk → R ∪ {+∞} be an entropy. Then Φ is ∆-differentiable if and only if
∀l ⊆ [k] such that |l| > 1, Φ̃l := Φ ◦ qk ◦ [Πk̃

l ]T is differentiable on int ∆̃|l|.
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Proof. This is a direct consequence of Proposition B.4.2.1 in [7], since 1) Φ̃l is convex; and 2)

Φ̃′l(ũ; ṽ − ũ) = Φ̃′([Πk̃
l ]Tũ; [Πk̃

l ]T(v − u)),

= Φ′(qk[Πk̃
l ]Tũ;qk[Πk̃

l ]T(v − u)),

for all ũ, ṽ ∈ int ∆̃|l| and Φ̃ := Φ ◦ qk.

Theorem 10 Let Φ : R → R ∪ {+∞} be a ∆-differentiable entropy. Let ` : A → [0,+∞]n be a
loss (not necessarily finite) such that L` is twice differentiable on ]0,+∞[n. If ` is (η,Φ)-mixable
then the GAA achieves a constant regret in the Gn` (A, k) game; for any sequence (xt,at1:k)Tt=1,

Loss`GAA(T )− min
θ∈[k]

Loss`θ(T ) ≤ RΦ
` := inf

q∈∆k

max
θ∈[k]

DΦ(eθ, q)/ηΦ
` ,

where eθ is the θth basis element of Rk.

Proof. For all l ⊆ [k] such that |l| > 1, let Φ̃ := Φ ◦ qk and Φ̃l := Φ̃ ◦ [Πk̃
l ]T. From Lemma 14 the

infimum involved in the definition of the expert distribution qt in Algorithm 2 is indeed attained. It
remains to verify that this minimum is unique. This will become clear in what follows.

Let l0 = [k] and It := {θ ∈ [k] : `xt(a
t
θ) < +∞}, t ∈ [T ]. For t ∈ [T ], we define the non-increasing

sequence of subsets (lt) of [k] defined by lt := It ∩ lt−1. We show by induction that qt ∈ ∆lt and

∇Φ̃lt(Π
k̃
lt q̃

t) = Πk̃
lt

(
∇Φ̃(q̃0)−

t∑
s=1

JT
k `xs(A

s)

)
, (59)

where As := [asθ] ∈ Ak, s ∈ N. Suppose that (59) holds true up to some t ≥ 1. We will now
show that it holds for t+ 1. To simplify expressions, we denote x̃l := Πk̃

l x̃ ∈ Rl for x̃ ∈ Rk̃, and
zt := `xt(A

t), t ∈ [T ]. From the definition of qt in Algorithm 2, we have

qt+1 ∈M := Argmin
µ∈∆k

〈µ, zt+1〉+DΦ(µ, qt).

Using the definition of It+1,
M = Argmin

µ∈∆lt+1

〈µ, zt+1〉+DΦ(µ, qt),

= Argmin
µ∈∆lt+1

〈µ, zt+1〉+ Φ̃lt(µ̃lt)− Φ̃lt(q̃
t
l )− Φ̃′lt(q̃

t
lt ; µ̃lt − q̃tlt).

Now using the facts that qt ∈ ∆lt , µ ∈ ∆lt+1 ⊆ ∆lt , Φ is ∆-differentiable, and Lemma 19, we have

M = Argmin
µ∈∆lt+1

〈µ, zt+1〉+ Φ̃lt+1(µ̃lt+1)− Φ̃lt(q̃
t
lt)− 〈µ̃lt − q̃tlt ,∇Φ̃lt(q̃

t
lt)〉.

Using the facts that 〈µ, zt+1〉 = zt+1
k + 〈µ̃lt+1 ,Πk̃

lt+1JT
k z

t+1〉, for µ̃ ∈ ∆̃lt+1 , and
〈µ̃lt ,∇Φ̃lt(q̃

t
lt)〉M = 〈µ̃lt+1 ,Πlt

lt+1∇Φ̃lt(q̃
t
lt)〉 (since µ ∈ ∆lt+1 )

M = Argmin
µ∈∆lt+1

〈µ̃lt+1 ,−Πlt

lt+1∇Φ̃lt(q̃
t
lt) + Πk̃

lt+1JT
k z

t+1〉+ Φ̃lt+1(µ̃lt+1)

+ 〈q̃tlt ,∇Φ̃lt(q̃
t
lt)〉 − Φ̃lt(q̃

t
lt),

and since the last two terms are independent of µ,

M = Argmin
µ∈∆lt+1

〈µ̃lt+1 ,−Πlt

lt+1∇Φ̃lt(q̃
t
lt) + Πk̃

lt+1JT
k z

t+1〉+ Φ̃lt+1(µ̃lt+1).

Now using Fenchel duality property in Proposition 1-(iv),

M = {µ ∈ ∆lt+1 : Πk̃
lt+1 ◦Πk(µ) = µ̃lt+1 ∈ ∂Φ̃∗lt+1(Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1)}.

Finally, due to Lemma 10 and Proposition 12, Φ̃∗lt+1 is differentiable on R|lt+1|−1, and thus

M = {qk ◦ [Πk̃
lt+1 ]T ◦ ∇Φ̃∗lt+1(Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1)}. (60)
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From (60), we obtain

∇Φ̃lt+1(Πk̃
lt+1 q̃t+1) = Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1. (61)

Thus using the induction assumption and the fact that Πlt

lt+1Πk̃
lt = Πk̃

lt+1 (since lt+1 ⊆ lt), the result
follows, i.e. (59) is true for all t ∈ [T ]. Furthermore, qt+1 ∈ ∆lt+1 , since Πk̃

lt+1 q̃t+1 ∈ dom Φ̃lt+1 ⊆
∆̃|lt+1|. Using the same arguments as above, one arrives at

MixΦ(qt, zt+1) = zt+1
k + inf

µ∈∆lt+1

〈µ̃lt+1 ,−Πlt

lt+1∇Φ̃lt(q̃
t
lt) + Πk̃

lt+1JT
k z

t+1〉+ Φ̃lt+1(µ̃lt+1)

+ 〈q̃tlt ,∇Φ̃lt(q̃
t
lt)〉 − Φ̃lt(q̃

t
lt).

Using the Fenchel duality property Proposition 1-(vi) and (60),

= zt+1
k + Φ̃∗lt(∇Φ̃lt(q̃

t
lt))− Φ̃∗lt+1(Πlt

lt+1∇Φ̃lt(q̃
t
lt)−Πk̃

lt+1JT
k z

t+1). (62)

On the other hand, Φ-mixability implies that there exists at∗ ∈ At, such that for all xt ∈ [n],

∀t ∈ [T ], `xt(a
t
∗) ≤ MixΦ(qt−1, zt),

Summing this inequality for t = 1, . . . , T yields,
T∑
t=1

`xt(a
t
∗) ≤

T∑
t=1

MixΦ(qt−1, zt),

and thus using (62) and (61) yields
T∑
t=1

`xt(a
t
∗) ≤

T∑
t=1

`xt(a
t
k) + Φ̃∗(∇Φ̃(q̃0))− Φ̃∗lT (ΠlT−1

lT ∇Φ̃lT−1(q̃T−1
lT−1)−Πk̃

lT J
T
k z

T ).

Finally, using (59) together with the fact that ΠlT−1

lT Πk̃
lT−1 = Πk̃

lT

T∑
t=1

`xt(a
t
∗) ≤

T∑
t=1

`xt(a
t
k) + Φ̃∗(∇Φ̃(q̃0))− Φ̃∗lT

(
Πk̃

lT

(
∇Φ̃(q̃0)−

T∑
t=1

JT
k `xt(A

t)

))
.

Using the definition of the Fenchel dual and Proposition 1-(vi) again, the above inequality becomes

T∑
t=1

`xt(a
t
∗) ≤

T∑
t=1

`xt(a
t
k) + 〈q̃0,∇Φ̃(q̃0))〉 − Φ̃(q̃0)

− sup
π∈∆|lT |

[〈
π̃,Πk̃

lT

(
∇Φ̃(q̃0)−

T∑
t=1

JT
k `xt(A

t)

)〉
− Φ̃lT (π̃)

]
,

=

T∑
t=1

`xt(a
t
k) + 〈q̃0,∇Φ̃(q̃0))〉 − Φ̃(q̃0)

+ inf
µ∈∆lT

[〈
µ̃,

T∑
t=1

JT
k `xt(A

t)−∇Φ̃(q̃0)

〉
+ Φ̃(µ̃)

]
. (63)

Using the fact that ∀θ ∈ [k] \ lT ,
∑T
t=1 `xt(a

t
θ) = +∞ (by definition of (lt)), the right hand side of

(63) becomes

T∑
t=1

`xt(a
t
k) + 〈q̃0,∇Φ̃(q̃0))〉 − Φ̃(q̃0) + inf

µ∈∆k

[〈
µ̃,

T∑
t=1

JT
k `xt(A

t)−∇Φ̃(q̃0)

〉
+ Φ̃(µ̃)

]
.

Thus, we get

∀µ ∈ ∆k,

T∑
t=1

`xt(a
t
∗) ≤

T∑
t=1

`xt(a
t
k) +

〈
µ̃,

T∑
t=1

JT
k `xt(A

t)

〉
+ Φ̃(µ̃)− Φ̃(q̃0)− 〈µ̃− q̃0,∇Φ̃(q̃0)〉.
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Using the facts that
∑T
t=1 `xt(a

t
k) +

〈
µ̃,
∑T
t=1 J

T
k `xt(A

t)
〉

=
〈
µ,
∑T
t=1 `xt(A

t)
〉

and the defini-
tion of the divergence,

∀µ ∈ ∆k,

T∑
t=1

`xt(a
t
∗) ≤

〈
µ,

T∑
t=1

`xt(A
t)

〉
+DΦ(µ, q0),

which for µ = eθ implies

∀θ ∈ [k],

T∑
t=1

`xt(a
t
∗) ≤

T∑
t=1

`xt(a
t
θ) +DΦ(eθ, q

0). (64)

When instead of Φ-mixability, we have (η,Φ)-mixability, the last term in (64) becomes DΦ(eθ,q
0)

η

and the desired result follows.

C.5 Proof of Theorem 11

We require the following result:

Proposition 20. For the Shannon entropy S, it holds that S̃
∗
(v) = log(〈exp(v),1k̃〉+1),∀v ∈ Rk−1,

and S?(z) = log〈exp(z),1k〉,∀z ∈ Rk.

Proof. Given v ∈ Rk−1, we first derive the expression of the Fenchel dual S̃
∗
(v) :=

supq̃∈∆̃k
〈q̃,v〉 − S̃(q̃). Setting the gradient of q̃ 7→ 〈q̃,v〉 − S̃(q̃) to 0k̃ gives v = ∇S̃(q̃). For

q ∈]0,+∞[k, we have∇ S(q) = log q+1k, and from appendix A we know that∇S̃(q̃) = JT
k∇ S(q).

Therefore,

v = ∇S̃(q̃) =⇒ v = JT
k∇ S(q) =⇒ v = log

q̃

qk
,

where the right most equality is equivalent to q̃/qk = exp(v). Since 〈q̃,1k̃〉 = 1 − qk, we get
qk = (〈exp(v),1k̃〉 + 1)−1. Therefore, the supremum in the definition of S̃

∗
(v) is attained at

q̃∗ = exp(v)(〈exp(v),1k̃〉+ 1)−1. Hence S̃
∗
(v) = 〈q̃∗,v〉− 〈q̃∗, log q̃∗〉 = log(〈exp(v),1k̃〉+ 1).

Finally, using (2) we get S?(z) = log〈exp(z),1k〉, for z ∈ Rk.

Theorem 11 Let η > 0. A loss ` : A → [0,+∞]n is η-mixable if and only if ` is (η,S)-mixable.

Proof.

Claim 1. For all q ∈ ∆k, A := a1:k ∈ Rk, and x ∈ [n]

−η−1 log 〈exp(−η`x(A)), q〉 = MixηS(`x(A), q). (65)

Let q ∈ ri ∆k. From Proposition 20, the Shannon entropy is such that S? is differentiable on Rk, and
thus it follows from Lemma 14 ((21)-(22)) that for any d ∈ [0,+∞[k

MixS(d, q) = S?(∇S(q))− S?(∇S(q)− d). (66)

By definition of S,∇S(q) = log q+1k, and due to Proposition 20, S?(z) = log〈exp z,1k〉, z ∈ Rk.
Therefore,

∇ S(q)− ηd = log(exp(−ηd)� q) + 1k. (67)

On the other hand, from [9] we also have

MixηS(d, q) = η−1 MixS(ηd, q), η > 0. (68)

Combining (66)-(68), yields

−η−1 log 〈exp(−ηd, q〉 = MixηS(d, q). (69)
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Suppose now that q ∈ ri ∆l for l ⊆ [k] such that |l| > 1. By repeating the argument above for
Sl := S ◦ΠT

l , we get

∀d ∈ [0,+∞[n, MixηSl
(Πld,Πlq) = −η−1 log〈exp(−ηΠld),Πlq〉,

= −η−1 log〈exp(−ηd), q〉. (70)

Fix x ∈ [n] and let d̂ := `x(A) ∈ [0,+∞]k. Let (d̂m) ⊂ [0,+∞[k be any sequence converging to d̂.
Lemma 15, MixηS(d̂m, q)

m→∞→ MixηS(d̂, q). Using this with (70) gives

−η−1 log 〈exp(−η`x(A)), q〉 = lim
m→∞

−η−1 log〈exp(−ηd̂m), q〉,

= lim
m→∞

MixηS(d̂m, q),

= MixηS(d̂, q) = MixηS(`x(A), q). (71)

It remains to check the case where q is a vertex; Without loss of generality assume that q = e1 and
let µ ∈ ∆k \ {e1}. Then there exists l∗ ⊂ [k], such that (e1,µ) ∈ (rbd ∆l∗) × (ri ∆l∗) and by
Lemma 11, S′(e1;µ− e1) = −∞. Therefore, ∀q ∈ ∆k \ {e1}, DSη (q, e1) = +∞, which implies

∀x ∈ [n],MixηS(`x(A), e1) = inf
q∈∆k

〈q, `x(A)〉+DSη (q, e1),

= 〈e1, `x(A)〉+DSη (e1, e1),

= 〈e1, `x(A)〉,
= `x(a1) = −η−1 log 〈exp(−η`x(A)), e1〉 . (72)

Combining (72) and (71) proves the claim in (65). The desired equivalence follows trivially from the
definitions of η-mixability and (η,S)-mixability.

C.6 Proof of Theorem 13

We need the following lemma to show Theorem 13.
Lemma 21. Let Φ be as in Theorem 13. Then η`Φ− S is convex on ∆k only if Φ satisfies (10).

Proof. Let q̂ ∈ rbd ∆k. Suppose that there exists q ∈ ri ∆k such that Φ′(q̂; q − q̂) > −∞. Since Φ
is convex, it must have non-decreasing slopes; in particular, it holds that Φ′(q̂; q− q̂) ≤ Φ(q)−Φ(q̂).
Therefore, since Φ is finite on ∆k (by definition of an entropy), we have Φ′(q̂; q − q̂) < +∞. Since
by assumption η`Φ− S is convex and finite on the simplex, we can use the same argument to show
that [η`Φ − S]′(q̂; q − q̂) = η`Φ

′(q̂; q − q̂) − S′(q̂; q − q̂) < +∞. This is a contradiction since
S′(q̂; q − q̂) = −∞ (Lemma 11). Therefore, it must hold that Φ′(q̂; q − q̂) = −∞.

Suppose now that (q̂, q) ∈ (rbd ∆l) × (ri ∆l) for l ⊆ [k], with |l| > 1. Let Φl := Φ ◦ ΠT
l and

Sl := S ◦ΠT
l . Since η`Φ − S is convex on ∆k and Πl is a linear function, η`Φl − Sl is convex

on ∆|l|. Repeating the steps above for Φ and S substituted by Φl and Sl, respectively, we get
that (Φl)

′(Πlq̂; Πlq − Πlq̂) = −∞. Since (Φl)
′(Πlq̂; Πlq − Πlq̂) = Φ′(q̂; q − q̂) the proof is

completed.

Theorem 13 Let η > 0, ` : A → [0,+∞]n a η-mixable loss, and Φ: Rk → R ∪ {+∞} an entropy.
If ηΦ− S is convex on ∆k, then ` is Φ-mixable.

Proof. Assume η`Φ− S is convex on ∆k. For this to hold, it is necessary that η` > 0 since −S is
strictly concave. Let η := η` and Sη := η−1 S. Then S̃η = η−1S̃ and Φ̃ − S̃η = (Φ − Sη) ◦ qk is
convex on ∆̃k, since Φ− Sη is convex on ∆k and qk is affine.

Let x ∈ [n], A := [aθ]θ∈[k], and q ∈ ∆k. Suppose that q ∈ ri ∆k and let s∗q ∈ ∂Φ̃(q̃) be
as in Proposition 14. Note that if `x(aθ) = +∞,∀θ ∈ [k], then the Φ-mixability condition
(8) is trivially satisfied. Suppose, without loss of generality, that `x(ak) < +∞. Let (dm) ⊂
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[0,+∞[k be any sequence such that dm
m→∞→ d := `x(A) ∈ [0,+∞]k. From Lemmas 11 and 15,

MixΨ(dm, q)
m→∞→ MixΨ(d, q) for Ψ ∈ {Φ,Sη}.

Let Υ̃q : Rk−1 → R ∪ {+∞} be defined by

Υ̃q(µ̃) := S̃η(µ̃) + 〈µ̃, s∗q −∇S̃η(q̃)〉 − Φ̃∗(s∗q) + S̃
∗
η(∇S̃η(q̃)),

and it’s Fenchel dual follows from Proposition 1 (i+ii):

Υ̃∗q(v) = S̃
∗
η(v − s∗q +∇S̃η(q̃)) + Φ̃∗(s∗q)− S̃

∗
η(∇S̃η(q̃)),

After substituting v by s∗q − JT
k d in the expression of Υ̃∗q and rearranging, we get

S̃
∗
η(∇S̃η(q̃))− S̃

∗
η(∇S̃η(q̃)− JT

k dm) = Φ̃∗(s∗q)− Υ̃∗q(s∗q − JT
k dm). (73)

Since s∗q ∈ ∂Φ̃(q̃) and Φ̃ is a closed convex function, combining Proposition 1-(iv) and the fact that
Φ̃∗∗ = Φ̃ [7, Cor. E.1.3.6] yields 〈q̃, s∗q〉 − Φ̃∗(s∗q) = Φ̃(q̃). Thus, after substituting µ̃ by q̃ in the
expression of Υ̃q , we get

Φ̃(q̃) = Υ̃q(q̃). (74)

On the other hand, Φ̃− Υ̃q is convex on ∆̃k, since Υ̃q is equal to S̃η plus an affine function. Thus,
∂[Φ̃ − Υ̃q](q̃) + ∂Υ̃q(q̃) = ∂Φ̃(q̃), since Φ̃ and Υ̃q are both convex (ibid., Thm. D.4.1.1). Since
Υ̃q is differentiable at q̃, we have ∂Υ̃q(q̃) = {∇Υ̃q(q̃)} = {s∗q}. Furthermore, since s∗q ∈ ∂Φ̃(q̃),
then 0k̃ ∈ ∂Φ̃(q)− ∂Υ̃q(q̃) = ∂[Φ̃− Υ̃q](q̃). Hence, Φ̃− Υ̃q attains a minimum at q̃ (ibid., Thm.
D.2.2.1). Due to this and (74), Φ̃ ≥ Υ̃q , which implies that Φ̃∗ ≤ Υ̃∗q (Proposition 1-(iii)). Using this
in (73) gives for all m ∈ N

S̃
∗
η(∇S̃η(q̃))− S̃

∗
η(∇S̃η(q̃)− JT

k dm) ≤ Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k dm),

=⇒ MixηS(dm, q) ≤ MixΦ(dm, q),

where the implication is obtained by adding [dm]k on both sides of the first inequality and using
Proposition 14.

Suppose now that q ∈ ri ∆l, with |l| > 1, and let Φl := Φ ◦ ΠT
l and Sl := S ◦ΠT

l . Note that since
η`Φ − S is convex on ∆k and Πl is a linear function, η`Φl − Sl is convex on ∆|l|. Repeating the
steps above for Φ, S, q, and A substituted by Φl, Sl, Πlq, and AΠT

l , respectively, yields

MixηSl
(Πldm,Πlq) ≤ MixΦl

(Πldm,Πlq),

=⇒ MixηS(dm, q) ≤ MixΦ(dm, q),

=⇒ MixηS(`x(A), q) ≤ MixΦ(`x(A), q), (75)

where the first implication follows from Lemma 13, since Sη and Φ both satisfy (10) (see Lemmas
11 and 21), and (75) is obtained by passage to the limit m→∞. Since η = η` > 0, ` is η-mixable,
which implies that ` is Sη-mixable (Theorem 11). Therefore, there exists a∗ ∈ A, such that

`x(a∗) ≤ MixηS(`x(A), q) ≤ MixΦ(`x(A), q). (76)

To complete the proof (that is, to show that ` is Φ-mixable), it remains to consider the case where q
is a vertex of ∆k. Without loss of generality assume that q = e1 and let µ ∈ ∆k \ {e1}. Thus, there
exists l∗ ⊆ [k], with |l∗| > 1, such that (e1,µ) ∈ (rbd ∆l∗)× (ri ∆l∗), and Lemma 21 implies that
Φ′(e1;µ− e1) = −∞. Therefore, ∀q ∈ ∆k \ {e1}, DΦ(q, e1) = +∞, which implies

∀x ∈ [n],MixΦ(`x(A), e1) = inf
q∈∆k

〈q, `x(A)〉+DΦ(q, e1),

= 〈e1, `x(A)〉+DΦ(e1, e1) = 〈e1, `x(A)〉,
= `x(a1). (77)

The Φ-mixability condition (8) is trivially satisfied in this case. Combining (76) and (77) shows that
` is Φ-mixable.
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C.7 Proof of Theorem 14

The following Lemma gives necessary regularity conditions on the entropy Φ under the assumptions
of Theorem 14.
Lemma 22. Let Φ and ` be as in Theorem 14. Then the following holds

(i) Φ̃ is strictly concave on int ∆̃k.

(ii) Φ̃∗ is be continuously differentiable on Rk−1.

(iii) Φ̃∗ is twice differentiable on Rk−1 and ∀q̃ ∈ int ∆̃k,HΦ̃∗(∇Φ̃(q̃)) = (HΦ̃(q̃))−1.

(iv) For the Shannon entropy, we have (HS̃(q̃))−1 = HS̃
∗
(∇S̃(q̃)) = diag q̃ − q̃q̃T.

Proof. Since ` is Φ-mixable and L` is twice differentiable on ]0,+∞[n, Φ̃∗ is continously differen-
tiable on Rn−1 (Proposition 12). Therefore, Φ̃ is strictly convex on ri ∆k [7, Thm. E.4.1.2].

The differentiability of Φ̃ and Φ̃∗ implies ∇Φ̃∗(∇Φ̃(q̃)) = q̃ (ibid.). Since Φ̃ is twice differentiable
on int ∆̃k (by assumption), the latter equation implies that Φ̃∗ is twice differentiable on∇Φ̃(int ∆̃k).
Using the chain rule, we get HΦ̃∗(∇Φ̃(u))HΦ̃(u) = Ik̃. Multiplying both sides of the equation by
(HΦ̃(u))−1 from the right gives the expression in (iii). Note that HΦ̃(·) is in fact invertible on int ∆̃k

since Φ̃ is strictly convex on int ∆̃k. It remains to show that∇Φ̃(int ∆̃k) = Rk−1. This set equality
follows from 1) [q̃ ∈ ∂Φ̃∗(s) ⇐⇒ s ∈ ∂Φ̃(q̃)] (ibid., Cor. E.1.4.4); 2) dom Φ̃∗ = Rk−1; and 3)
∀q̃ ∈ bd ∆̃k, ∂Φ̃(q̃) = ∅ (Lemma 13).

For the Shannon entropy, we have S̃
∗
(v) = log(〈exp(v),1k̃〉+ 1) (Proposition 20) and ∇S̃(q̃) =

log q̃
qk

, for (v, q̃) ∈ Rk−1 × ∆̃k. Thus (HS̃(q̃))−1 = HS̃
∗
(∇S̃(q̃)) = diag q̃ − q̃q̃T.

To show Theorem 14, we analyze a particular parameterized curve defined in the next lemma.
Lemma 23. Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk L` is twice differentiable on
]0,+∞[n, and let Φ be an entropy such that Φ̃ and Φ̃∗ are twice differentiable on int ∆̃k and Rk−1,
respectively. For (p̃, q̃, V ) ∈ int ∆̃n × int ∆̃k × Rñ×k̃, let β : R→ Rn be the curve defined by

∀x ∈ [n], βx(t) = ˜̀
x(p̃) + Φ̃∗(∇Φ̃(q̃))− Φ̃∗(∇Φ̃(q̃)− JT

k
˜̀
x(P̃ t)), (78)

where P̃ t = [p̃1T
k̃

+ tV, p̃] ∈ Rñ×k and t ∈ {s ∈ R : ∀j ∈ [k̃], p̃+ sV•,j ∈ int ∆̃n}. Then

β(0) = ˜̀(p̃),

β̇(0) = D˜̀(p̃)V q̃,

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T).

(79)

Proof. Since P̃ t = [p̃1T
k̃

+ tV, p̃] ∈ Rñ×k, P̃ 0 = p̃1T
k and ˜̀

x(P̃ 0) = ˜̀
x(p̃)1k. As a result,

JT
k

˜̀
x(P̃ 0) = 0k̃, and thus βx(0) = ˜̀

x(p̃) + Φ̃∗(∇Φ̃(q̃))− Φ̃∗(∇Φ̃(q̃)− 0k̃) = ˜̀
x(p̃). This shows

that β(0) = ˜̀(p̃). Let γx(t) := ∇Φ̃(q̃)− JT
k

˜̀
x(P̃ t). For j ∈ [k − 1],

d

dt
[γx(t)]j =

d

dt

(
[∇Φ̃(q̃)]j − [JT

k
˜̀
x(P̃ t)]j

)
,

= − d

dt

(
˜̀
x(P̃ t•,j)− ˜̀

x(P̃ t•,k)
)
,

= − d

dt

(
˜̀
x(p̃+ tV•,j)− ˜̀

x(p̃)
)
,

(
since

d

dt
`x(P̃ t•,k) =

d

dt
˜̀
x(p̃) = 0

)
= −D˜̀

x(P̃ t•,j)V•,j .
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From the definition of P̃ t, P̃ 0
•,j = p̃, ∀j ∈ [k̃], and therefore, γ̇x(0) = −(D˜̀

x(p̃)V )T. By differ-
entiating βx in (78) and using the chain rule, β̇x(t) = −(γ̇x(t))T∇Φ̃∗(γx(t)). By setting t = 0 ,
β̇x(0) = −(γ̇x(0))T∇Φ̃∗(∇Φ̃(q̃)) = D˜̀

x(p̃)V q̃. Thus, β̇(0) = D˜̀(p̃)V q̃. Furthermore,

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

=
d

dt

n∑
x=1

px

k−1∑
j=1

D˜̀
x(P̃ t•,j)V•,j [∇Φ̃∗(γx(t))]j

∣∣∣∣∣∣
t=0

,

=

k−1∑
j=1

d

dt

(
n∑
x=1

pxD˜̀
x(P̃ t•,j)V•,j [∇Φ̃∗(γx(t))]j

)∣∣∣∣∣
t=0

,

=

k−1∑
j=1

(
d

dt

〈
p,D˜̀(P̃ t•,j)V•,jqj

〉∣∣∣∣
t=0

+

n∑
x=1

pxD˜̀
x(p̃)V•,j

d

dt
[∇Φ̃∗(γx(t))]j

∣∣∣∣
t=0

)
,

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j −

n∑
x=1

k−1∑
i=1
j=1

pxD˜̀
x(p̃)V•,j [HΦ̃∗(∇Φ̃(q̃))]j,iD˜̀

x(p̃)V•,i,

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V HΦ̃∗(∇Φ̃(q̃))(D˜̀(p̃)V )T),

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T),

where in the third equality we used Lemma 6, in the fourth equality we used Lemma 9, and in the
sixth equality we used Lemma 22-(iii).

In next lemma, we state a necessary condition for Φ-mixability in terms of the parameterized curve β
defined in Lemma 23.

Lemma 24. Let `, Φ, and β be as in Lemma 23. If ∃(p̃, q̃, V ) ∈ int ∆̃n × int ∆̃k × Rñ×k̃ such that

the curve γ(t) := ˜̀(p̃ + tV q̃) satisfies d
dt 〈p, β̇(t)− γ̇(t)〉

∣∣∣
t=0

< 0, then ` is not Φ−mixable. In

particular, ∃P ∈ ri ∆k
n, such that [MixΦ(`x(P ), q)]Tx∈[n] lies outside S`.

Proof. First note that for any triplet (p̃, q̃, V ) ∈ int ∆̃n × int ∆̃k × Rñ×k̃, the map t 7→〈
p, β̇(t)− γ̇(t)

〉
is differentiable at 0. This follows from Lemmas 6 and 23. Let r(t) := qn(p̃+tV q̃)

and δ(t) := 〈r(t), β(t)− γ(t)〉. Then

δ̇(t) =
〈
r(t), β̇(t)− γ̇(t)

〉
+ 〈V q̃, β(t)− γ(t)〉 .

Since t 7→ 〈p, β̇(t) − γ̇(t)〉 is differentiable at 0, it follows from Lemma 6 that t 7→ δ̇(t) is also
differentiable at 0, and thus

δ̈(0) =
d

dt

〈
r(t), β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

+
〈
JnV q̃, β̇(0)− γ̇(0)

〉
,

=
〈
ṙ(0), β̇(0)− γ̇(0)

〉
+

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

, (80)

=
〈
JnV q̃, β̇(0)− γ̇(0)

〉
+

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

,

=
d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

< 0, (81)
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where (80) and (81) hold because β̇(0) = D˜̀(p̃)V q̃ = γ̇(0) (see Lemma 23). According to Taylor’s
theorem (see e.g. [? , §151]), there exists ε > 0 and h : [−ε, ε]→ R such that

∀|t| ≤ ε, δ(t) = δ(0) + tδ̇(0) +
t2

2
δ̈(0) + h(t)t2, (82)

and limt→0 h(t) = 0. From Lemma 23, β(0) = γ(0) = 0 and β̇(0) = γ̇(0). Therefore, δ(0) =

δ̇(0) = 0 and (82) becomes δ(t) = t2

2 δ̈(0) + h(t)t2. Due to (81) and the fact that limt→0 h(t) = 0,

we can choose ε∗ > 0 small enough such that δ(ε∗) =
ε2∗
2 δ̈(0) + h(ε∗)ε

2
∗ < 0. This means that

〈qn(p̃ + ε∗V q̃), β(ε∗)〉 < 〈qn(p̃ + ε∗V q̃), ˜̀(p̃ + ε∗V q̃)〉 = 〈qn(p̃ + ε∗V q̃), `(qn(p̃ + ε∗V q̃)〉.
Therefore, β(ε∗) must lie outside the superprediction set. Thus, the mixability condition (8) does not
hold for P ε∗ = qn[p̃1T

k̃
+ ε∗V, p̃] ∈ ri ∆k

n. This completes the proof.

Theorem 14 Let ` : A → [0,+∞]n be a loss such that L` is twice differentiable on ]0,+∞[n, and
Φ: Rk → R ∪ {+∞} an entropy such that Φ̃ := Φ ◦ qk is twice differentiable on int ∆̃k. Then ` is
Φ-mixable only if η`Φ− S is convex on ∆k.

Proof. We will prove the contrapositive; suppose that η`Φ − S is not convex on ∆k and we show
that ` cannot be Φ-mixable. Note first that from Lemma 22-(iii), Φ̃∗ is twice differentiable on Rk−1.
Thus Lemmas 23 and 24 apply. Let ` be a proper support loss of ` and suppose that η`Φ− S is not
convex on ∆k, This implies that η`Φ̃ − S̃ is not convex on int ∆̃k, and by Lemma 3 there exists
q̃∗ ∈ int ∆̃k, such that 1 > η`λmin(HΦ̃(q̃∗)(HS̃(q̃∗))

−1). From this and the definition of η`, there
exists p̃∗ ∈ int ∆̃n such that

1 >
λmin(HΦ̃(q̃∗)(HS̃(q̃∗))

−1)

λmax([HL̃log(p̃∗)]−1HL̃`(p̃∗))
=
λmin(HΦ̃(q̃∗)(diag (q̃∗)− q̃∗q̃T∗ ))

λmax([HL̃log(p̃∗)]−1HL̃`(p̃∗))
, (83)

where the equality is due to Lemma 22-(iv). For the rest of this proof let (p̃, q̃) = (p̃∗, q̃∗).
By assumption, L̃` twice differentiable and concave on int ∆̃n, and thus −HL̃`(p̃) is symmetric
positive semi-definite. Therefore, their exists a symmetric positive semi-definite matrix Λp such
that ΛpΛp = −HL̃`(p̃). From Lemma 22-(i), Φ̃ is strictly convex on int ∆̃k, and so there exists a
symmetric positive definite matrix Kq such that KqKq = HΦ̃(q̃). Let w ∈ Rn−1 be the unit norm
eigenvector of [HL̃log(p̃)]−1HL̃`(p̃) associated with λ`∗ := λmax([HL̃log(p̃)]−1HL̃`(p̃)). Suppose
that c` := wTHL̃`(p̃)w = 0. Since wTΛpΛpw = −c` = 0, it follows from the positive semi-
definiteness of Λp that Λpw = 0ñ, and thus HL̃`(p̃)w = −ΛpΛpw = 0ñ. This implies that
λ`∗ = 0, which is not possible due to (83). Therefore, HL̃`(p̃)w 6= 0ñ. Furthermore, the negative
semi-definiteness of HL̃`(p̃) implies that

c` = wTHL̃`(p̃)w < 0. (84)

Let v ∈ Rk−1 be the unit norm eigenvector of Kq(diag (q̃) − q̃q̃T)Kq associated with λΦ
∗ :=

λmin(Kq(diag (q̃) − q̃q̃T)Kq) = λmin(HΦ̃(q̃)(diag (q̃) − q̃q̃T)), where the equality is due to
Lemma 2. Let v̂ := Kqv.

We will show that for V = wv̂T, the parametrized curve β defined in Lemma 23 satisfies
d
dt 〈p, β̇(t)− γ̇(t)〉

∣∣∣
t=0

< 0, where γ(t) = ˜̀(p̃ + tV q̃). According to Lemma 24 this would

imply that there exists P ∈ ri ∆k
n, such that [MixΦ(`x(P ), q)]Tx∈[n] lies outside S`. From The-

orem 5, we know that there exists A∗ ∈ Ak, such that `x(A∗) = `x(P ),∀x ∈ [n]. Therefore,
[MixΦ(`x(A∗), q)]Tx∈[n] = [MixΦ(`x(P ), q)]Tx∈[n] /∈ S`, and thus ` is not Φ-mixable.

From Lemma 23 (Equation 79) and the fact that V•,j = v̂jw, for j ∈ [k̃], we can write

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

= −
k−1∑
j=1

qj v̂
2
jw

THL̃`(p̃)w − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T),

= −〈q̃, v̂ � v̂〉wTHL̃`(p̃)w − (v̂T(HΦ̃(q))−1v̂)〈p, [D˜̀(p̃)w]� [(D˜̀(p̃)w]〉,
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where the second equality is obtained by noting that 1) (v̂T(HΦ̃(q))−1v̂) is a scalar quantity and can
be factorized out; and 2) tr(diag(p)D˜̀(p̃)w(D˜̀(p̃)w)T) = 〈p, (D˜̀(p̃)w)� (D˜̀(p̃)w)〉.

On the other hand, from Lemma 9, d
dt 〈p, γ̇(t)〉

∣∣
t=0

= −〈q̃, v̂〉2wTHL̃`(q̃)w. Using (5) and the
definition of c`, we get

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

= [−〈q̃, v̂ � v̂〉+ 〈q̃, v̂〉2]c`+

(v̂T(HΦ̃(q))−1v̂)(wT(HL̃`(p̃))(HL̃log(p̃))−1HL̃`(p)w),

= −c`[〈q̃, v̂ � v̂〉 − 〈q̃, v̂〉2 − λ`∗(v̂T(HΦ̃(q))−1v̂)],

= −c`[v̂T(diag (q̃)− q̃q̃T)v̂ − λ`∗(v̂T(HΦ̃(q))−1v̂)],

= −c`[v̂T(diag (q̃)− q̃q̃T)v̂ − λ`∗(vTKq(KqKq)−1Kqv)],

= −c`[vTKq(diag (q̃)− q̃q̃T)Kqv − λ`∗], (85)

= −c`[λΦ
∗ − λ`∗],

= −c`[λmin(HΦ̃(q)(diag (q̃)− q̃q̃T))− λmax(HL̃`(p̃)(HL̃log(p̃))−1)],

where in (85) we used the fact that vTv = 1. The last equality combined with (83) and (84) shows
that d

dt 〈p, β̇(t)− γ̇(t)〉
∣∣∣
t=0

< 0, which completes the proof.

C.8 Proof of Lemma 15

Lemma 15 Let ` : A → [0,+∞]n be a loss. If dom ` = A, then either H` = ∅ or η` ∈ H`.

Proof. Suppose H` 6= ∅. Let q ∈ ∆k, A := a1:k ∈ Ak. By definition of η` there exists (ηm) ⊂
[0,+∞[ such that ` is ηm-mixable and ηm

m→∞→ η`. Therefore, ∀m ∈ N, ∃am ∈ A such that

∀x ∈ [n], `x(am) ≤ −η−1
m log〈q, exp(−ηm(`x(A))〉 < +∞, (86)

where the right-most inequality follows from the fact dom ` = A. Therefore, the sequence (`(am)) ⊂
[0,+∞[n is bounded, and thus admits a convergent subsequence. If we let s be the limit of this
subsequence, then from (86) it follows that

∀x ∈ [n], s ≤ −η−1
` log〈q, exp(−η`(`x(A))〉, (87)

On the other hand, since ` is closed (by Assumption 1), it follows that there exists a∗ ∈ A such that
`(a∗) = s. Combining this with (87) implies that ` is η`-mixable, and thus η` ∈ H`.

C.9 Proof of Theorem 17

Theorem 17 Let ` and Φ be as in Theorem 16. Then

ηΦ
` = η` inf

q̃∈int ∆̃k

λmin(HΦ̃(q̃)(HS̃(q̃))−1),

Proof. From Theorem 16, ` is Φη-mixable if and only if η`Φη − S = η−1η`Φ− S is convex on ∆k.
When this is the case, Lemma 3 implies that

1 ≤ η−1η`( inf
q̃∈int ∆̃k

λmin[HΦ̃(q̃)[HS̃(q̃)]−1]), (88)

where we used the facts that H(η−1η`Φ̃) = η−1η`HΦ̃, λmin(·) is linear, and η−1η` is independent
of q̃ ∈ int ∆̃k. Inequality 88 shows that the largest η such that ` is Φη-mixable is given by ηΦ

` in
(11).
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C.10 Proof of Theorem 18

Theorem 18 Let S,Φ: Rk → R ∪ {+∞}, where S is the Shannon entropy and Φ is an entropy
such that Φ̃ := Φ ◦ qk is twice differentiable on int ∆̃k. A loss ` : A → [0,+∞[n, with L` twice
differentiable on ]0,+∞[n, is Φ-mixable only if RS

` ≤ RΦ
` .

Proof. Suppose ` is Φ-mixable. Then from Theorem 16, η`Φ − S is convex on ∆k, and thus
η` = ηS

` > 0 (Corollary 17). Furthermore, η`Φ̃− S̃ = [η`Φ− S] ◦ qk is convex on int ∆̃k, since qk
is an affine function. It follows from Lemma 3 and Corollary 17 that

ηΦ
` = η` inf

q̃∈int ∆̃k

λmin(HΦ̃(q̃)(HS̃(q̃))−1) ≥ 1 > 0.

Let µ ∈ ri ∆k and θ∗ := argmaxθDS(eθ,µ). By definition of an entropy and the fact that
the directional derivatives Φ′(µ; ·) and S′(µ; ·) are finite on ∆k [7, Prop. D.1.1.2], it holds that
DΦ(eθ∗ ,µ), DS(eθ∗ ,µ) ∈]0,+∞[. Therefore, there exists α > 0 such that α−1DΦ(eθ∗ ,µ) =
DS(eθ∗ ,µ). If we let Ψ := α−1Φ, we get

DΨ(eθ∗ ,µ) = DS(eθ∗ ,µ). (89)

Let dΨ(q̃) := Ψ̃(q̃)− Ψ̃(µ̃)− 〈q̃ − µ̃,∇Ψ̃(µ̃)〉. Observe that

dΨ(q̃) = Ψ(q)−Ψ(µ)− 〈q − µ,∇Ψ(µ)〉 = DΨ(q,µ).

We define dS similarly. Suppose that ηΨ
` > ηS

` = η`. Then, from Corollary 17, ∀q̃ ∈ int ∆̃k,
λmin(HΨ̃(q̃)(HS̃(q̃))−1) > 1. This implies that ∀q̃ ∈ int ∆̃k, λmin(HdΨ(q̃)(HdS(q̃))−1) > 1, and
from Lemma 3, dΨ − dS must be strictly convex on int ∆̃k. We also have ∇dΨ(µ̃)−∇dS(µ̃) = 0
and dΨ(µ̃)− dS(µ̃) = 0. Therefore, dΨ − dS attains a strict minimum at µ̃ (ibid., Thm. D.2.2.1);
that is, dΨ(q̃) > dS(q̃), ∀q̃ ∈ ∆̃k \ {µ̃}. In particular, for q̃ = Πk(eθ∗), we get DΨ(eθ∗ ,µ) =
dΨ(q̃) > dS(q̃) = DS(eθ∗ ,µ), which contradicts (89). Therefore, ηΨ

` ≤ ηS
` , and thus

RS
` (µ) = maxθDS(eθ,µ)/ηS

` = DS(eθ∗ ,µ)/ηS
` ,

≤ DΨ(eθ∗ ,µ)/ηΨ
` , (90)

≤ maxθDΨ(eθ,µ)/ηΨ
` ,

= RΨ
` (µ), (91)

where (90) is due to DΨ(eθ∗ ,µ) = DS(eθ∗ ,µ) and ηΨ
` ≤ ηS

` . Equation 91, implies that RS
` (µ) ≤

RΦ
` (µ), since RΨ

` (µ) = RαΦ
` (µ) = RΦ

` (µ) [9]. Therefore,

∀µ ∈ ri ∆k, R
S
` (µ) ≤ RΦ

` (µ). (92)

It remains to consider the case where µ is in the relative boundary of ∆k. Let µ ∈ rbd ∆k. There
exists l0 ( [k] such that µ ∈ ∆l0 . Let θ∗ ∈ [k] \ l0 and l := l0 ∪ {θ∗}. It holds that µ ∈ rbd ∆l

and µ + 2−1(eθ∗ − µ) ∈ ri ∆l. Since ` is Φ-mixable, it follows from Proposition 10 and the
1-homogeneity of Φ′(µ; ·) [7, Prop. D.1.1.2] that

Φ′(µ; eθ∗ − µ) = 2Φ′(µ; [µ+ 2−1(eθ∗ − µ)]− µ) = −∞.

Hence,

RΦ
` (µ) = maxθ∈[k]DΦ(eθ,µ),

≥ DΦ(eθ∗ ,µ) = Φ(eθ∗)− Φ(µ)− Φ′(µ; eθ∗ − µ) = +∞. (93)

Inequality 93 also applies to S, since ` is (η`
−1 S)-mixable. From (93) and (92), we conclude that

∀µ ∈ ∆k, R
S
` (µ) ≤ RΦ

` (µ).
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C.11 Proof of Theorem 19

Theorem 19 Let Φ : Rk → R ∪ {+∞} be a ∆-differentiable entropy. Let ` : A → [0,+∞]n

be a loss such that L` is twice differentiable on ]0,+∞[n. Let βt = −η
∑t−1
s=1(`xs(A

s) + vs),
where vs ∈ Rk and As := as1:k ∈ Ak. If ` is (η,Φ)-mixable then for initial distribution q0 =
argminq∈∆k

maxθ∈[k]DΦ(eθ, q) and any sequence (xt,at1:k)Tt=1, the AGAA achieves the regret

∀θ ∈ [k], Loss`AGAA(T )− Loss`θ(T ) ≤ RΦ
` +

T−1∑
t=1

(vtθ − 〈vt, qt〉).

Proof. Recall that Φt(w) := Φ(w)− 〈w,βt − θt〉, where θt = −η
∑t−1
s=1 `xs(A

s). From Theorem
16 and since Φt is equal to Φ plus an affine function, it is clear that if ` is (η,Φ)-mixable then ` is
(η,Φt)-mixable. Thus, for all (At, qt−1) ∈ Ak ×∆k, there exists at∗ ∈ A such that for any outcome
xt ∈ [n]

`xt(a
t
∗) ≤ η−1[Φ?t (∇Φt(q

t−1))− Φ?t (∇Φt(q
t−1)− η`xt(At))].

Summing over t from 1 to T , we get
T∑
t=1

`xt(a
t
∗) ≤ η−1[Φ?1(∇Φ1(q0))− Φ?T (∇ΦT (qT−1)− η`xT (AT ))] (94)

+ η−1
T−1∑
t=1

[
Φ?t+1(∇Φt+1(qt))− Φ?t (∇Φt(q

t−1)− η`xt(At))
]
.

ODue to the properties of the entropic dual [9] and the definition of Φt, the following holds for all
t ∈ [T ] and z in Rk,

∇Φt(q
t−1) = −η

t−1∑
s=1

`xs(A
s), (95)

Φ?t (z) = Φ?(z +∇Φ(qt−1) + η

t−1∑
s=1

`xs(A
s)), (96)

∇Φ(qt) = ∇Φ(qt−1)− η`xt(At)− ηvt. (97)
Using (95)-(96), we get for all 0 ≤ t < T , Φ?t+1(∇Φt+1(qt)) = Φ?(∇Φ(qt)), and in particular
Φ?1(∇Φ1(q0)) = Φ?(∇Φ(q0)). Similarly, using (95)-(97), gives Φ?t (∇Φt(q

t−1) − η`xt(At)) =
Φ?(∇Φ(qt) + ηvt) for all 1 ≤ t ≤ T . Substituting back into (94) yields∑T

t=1
`xt(a

t
∗) ≤ η−1[Φ?(∇Φ(q0))− Φ?(∇Φ(qT ) + ηvT )]

+ η−1
T−1∑
t=1

[
Φ?(∇Φ(qt))− Φ?(∇Φ(qt) + ηvt)

]
, (98)

To conclude the proof, we note that since Φ is convex it holds that
Φ?(∇Φ(qt))− Φ?(∇Φ(qt) + ηvt) ≤ −η〈vt,∇Φ?(∇Φ(qt))〉 = −η〈vt, qt〉, (99)

which allows us to bound the sum on the right hand side of 98. To bound the rest of the terms, we use
the fact that∇Φ(qT ) = ∇Φ(q0)− η

∑T
t=1(`xt(A

t) + vt), and thus by letting Φη := η−1Φ,

η−1[Φ?(∇Φ(q0))− Φ?(∇Φ(qT ) + ηvT )] = Φ?η(∇Φη(q0))

− Φ?η

(
∇Φη(q0)−

T∑
t=1

`xt(A
t)−

T−1∑
t=1

vt

)
,

= inf
q∈∆k

〈
q,

T∑
t=1

`xt(A
t) +

T−1∑
t=1

vt

〉
+
DΦ(q, q0)

η
,

≤
T∑
t=1

`xt(a
t
θ) +

T−1∑
t=1

vtθ +
DΦ(eθ, q

0)

η
,∀θ ∈ [k].

Substituting this last inequality and (99) back into (98) yields the desired bound.
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D Defining the Bayes Risk Using the Superprediction Set

In this section, we argue that when a loss ` : A → [0,+∞]n is mixable, in the classical or generalized
sense, it does not matter whether we define the Bayes risk L` using the full superprediction set S∞`
or its finite part S`. Recall the definition of the Bayes risk;

Definition 2 Let ` : A → [0,+∞]n be a loss such that dom ` 6= ∅. The Bayes risk L` : Rn →
R ∪ {−∞} is defined by

∀u ∈ Rn, L`(u) := inf
z∈S`

〈u, z〉 . (100)

Note that the right hand side of (100) does not change if we substitute S` for its closure — S` —
with respect to [0,+∞]n. Thus, it suffices to show that S∞` ⊆ S` when the loss ` is mixable. We
show this in Theorem 26, but first we give a characterization of the (finite part) of the superprediction
set for a proper loss.

Proposition 25. Let ` : ∆n → [0,+∞]n be a proper loss. If L` is differentiable on ]0,+∞[n, then

S` ⊇ C` := {u ∈ [0,+∞]n : ∀p ∈ ∆n, L`(p) ≤ 〈p,u〉}. (101)

Proof. Let v ∈ C` ∩ [0,+∞[n. Let f : ri ∆n × [n] → R be defined by f(p, x) := `x(p) − vx.
By the choice of v, we have Ex∼pf(p, x) = 〈p, `(p)〉 − 〈p,v〉 ≤ 0 for all p ∈ ∆n. Since L` is
differentiable on ]0,+∞[n, by assumption, ` is continuous on ri ∆n, and thus f is continuous in the
first argument. Since v has finite components, the map f satisfies all the conditions of Lemma 5.
Therefore, there exists (pm) ⊂ ri ∆n such that

∀m ∈ N,∀x ∈ [n], `x(pm) ≤ vx +
1

m
. (102)

Without loss of generality, we can assume by extracting a subsequence if necessary that `(pm)

converges to s ∈ [0,+∞]n. By definition, we have s ∈ S`, and from (102) it follows that s ≤ v
coordinate-wise. Thus, v is in S`.

The above argument shows that C` ∩ [0,+∞[n⊆ S`, and since S` is closed in [0,+∞]n we have
C ⊆ S`, where C is the closure of C` ∩ [0,+∞[n in [0,+∞]n. Now it suffice to show that C` ⊆ C to
complete the proof.

Let u ∈ C` and l := {x ∈ [n] : ux < +∞}. Define (um) ⊂ [0,+∞[n by um,x = ux if x ∈ l; and
m otherwise. Let p ∈ ∆n. It follows that

〈p,um〉 =
∑
x′∈l

px′um,x′ +
∑
x/∈l

pxum,x,

=
∑
x′∈l

px′um,x′ +
∑
x/∈l

pxum,x, . (103)

Claim 2. ∀ε > 0,∃mε ≥ 1,∀p ∈ ∆k, L`(p) ≤ 〈p,umε〉 − ε.

Suppose that Claim 2 is false. This means that there exists δ > 0 such that

∀m ≥ 1,∃pm ∈ ∆n, 〈pm,um〉 − δ < L`(pm). (104)

We may assume, by extracting a subsequence if necessary (∆n is compact), that (pm) converges to
p∗ ∈ ∆n. Taking the limit m → ∞ in (104) would lead to the contradiction ‘〈p∗,u〉 < L`(p∗)’,
since from (103) we have limm→∞〈pm,um〉 = 〈p∗,u〉. Therefore, Claim 2 is true. For ε = 1

k let
mk := mε be as in Claim (2). The claim then implies that lim infk→∞〈p,umk〉 ≥ L`(p) uniformly
for p ∈ ∆k. By the claim we also have that umk ∈ C` ∩ [0,+∞[n for all k ∈ N, and by construction
of vm, we have limk→∞ umk = u. This shows that C` ⊆ C, which completes the proof.

Theorem 26. Let ` : A → [0,+∞]n be a loss. If S∞` 6⊆ S`, then ` is not mixable.
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Proof. Suppose that ` is mixable and let ` be a proper support loss of `. From Proposition 12, L`
is differentiable on ]0,+∞[n, and thus Theorem 5 implies that S` = S`. Therefore, Lemma 25
implies that S` ⊇ {u ∈ [0,+∞]n : ∀p ∈ ∆n, L`(p) ≤ 〈p,u〉}. Thus, if S∞` 6⊆ S`, there exists
ε > 0, pε ∈ ∆k, and s ∈ S∞` \S` such that

〈pε, s〉 < L`(pε)− 2ε. (105)

Note that pε cannot be in ri ∆n; otherwise, (105) would imply that s has all finite components, and
thus would be included in S`, which is a contradiction. Assume from now on that pε ∈ rbd ∆n.
From the definition of the support loss, there exists a sequence (pm) ⊆ ri ∆n such that pm

m→∞→ pε
and `(pm)

m→∞→ `(pε). Therefore, Theorem 5 implies that there exists aε ∈ A such that

〈pε, `(aε)〉 < 〈pε, `(pε)〉+ ε. (106)

To see this, note that since (pm) ⊂ ri ∆n ⊆ dom `, Theorem 5 guarantees the existence of a sequence
(am) ⊂ A such that `(am) = `(pm). On the other hand, for any x ∈ [n] such that `x(pε) = +∞,
we have pε,x = 0 — otherwise, L`(pε) would be infinite. It follows, by continuity of the inner
product that 〈pε, `(am)〉 m→∞→ 〈pε, `(pm)〉, and thus it suffices to pick aε equal to am for m large
enough.

Now since ` is η-mixable, there exists η > 0 and a∗ ∈ A such that

`(a∗) ≤ −η−1 log

(
1

2
e−ηs +

1

2
e−η`(aε)

)
,

and due to the convexity of − log,

≤ 1

2
s+

1

2
`(aε).

Using (105) and (106) yields
〈pε, `(a∗)〉 ≤ L`(pε)− ε/2. (107)

On the other hand, by definition of a proper support loss, 〈pε, `(pε)〉 ≤ 〈pε, `(a∗)〉. This combined
with (107), lead to the contradiction 〈pε, `(pε)〉 < L`(pε).

E The Update Step of the GAA and the Mirror Descent Algorithm

In this section, we demonstrate that the update steps of the GAA and the Mirror Descent Algorithm
are essentially the same (at least for finite losses) according to the definition of the MDA given by
Beck and Teboulle [2];

Let ` : A → [0,+∞[n be a loss and Φ: Rk → R ∪ {+∞} an entropy such that Φ̃ is differentiable
on int ∆̃k. Let qt be the update distribution of the GAA at round t and q̃t = Πk(qt). It follows from
the definition of qt (see Algorithm 2) that

q̃t = argmin
q̃∈∆̃k

〈
qk(q̃), `xt(A

t)
〉

+ η−1DΦ̃(q̃, q̃t−1),

= argmin
q̃∈∆̃k

〈
q̃, JT

k `xt(A
t)
〉

+ η−1DΦ̃(q̃, q̃t−1),

= argmin
q̃∈∆̃k

〈
q̃,∇lt(q̃t−1)

〉
+ η−1DΦ̃(q̃, q̃t−1), (108)

where lt(µ̃) := 〈qk(µ̃), `xt(A
t)〉 = 〈µ, `xt(At)〉. Update (108) is, by definition [2], the MDA with

the sequence of losses lt on int ∆̃k, ‘distance’ function DΦ̃(·, ·), and learning rate η. Therefore, the
MDA is exactly the update step of the GAA.

F The Generalized Aggregating Algorithm Using the Shannon Entropy S

The purpose of this appendix is to show that the GAA reduces to the AA when the former uses the
Shannon entropy. In this case, generalized and classical mixability are equivalent. In what follows,
we make use of the following proposition which is proved in C.5.
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Proposition 20 For the Shannon entropy S, it holds that S̃
∗
(v) = log(〈exp(v),1k̃〉+1),∀v ∈ Rk−1,

and S?(z) = log〈exp(z),1k〉,∀z ∈ Rk.

Let ` : A → [0,+∞[n be a loss and Φ be as in Proposition 14 and suppose that Φ and Φ̃∗ are
differentiable on ri ∆k and Rk−1, respectively. It was shown in [9] that

∇Φ?(∇Φ(q)− `x(A)) = argmin
µ∈∆k

〈µ, `x(A)〉+DΦ(µ, q), (109)

MixΦ(`x(A), q) = Φ?(∇Φ(q))− Φ?(∇Φ(q)− `x(A)). (110)

Let q ∈ ri ∆k. By definition of S, ∇S(q) = log q + 1k, and due to Proposition 20, S?(z) =
log〈exp z,1k〉, z ∈ Rk. Therefore, ∇ S(q) − η`x(A) = log(exp(−η`x(A)) � q) + 1k and
∇ S?(z) = exp z

〈exp z,1k〉 , ∀(x,A) ∈ [n]× (dom `)k. Thus,

∇S?(∇ S(q)− η`x(A)) =
exp(−η`x(A))� q
〈exp(−η`x(A)), q〉

. (111)

Let Sη := η−1 S. Then ∇ S = η∇ Sη and ∀z ∈ Rk,∇ S?η(z) = ∇ S?(ηz) [9].2 Then the left hand
side of (111) can be written as ∇ S?η(∇ Sη(q)− `x(A)). Using this fact, (109) and (111) show that
the update distribution qt of the GAA (Algorithm 2) coincides with that of the AA after substituting
q, x, and A by qt−1, xt, and At := [aθ]θ∈[k], respectively.

Now using the fact that MixηS(`x(A), q) = η−1 MixS(η`x(A), q) [9] and (110), we get

MixηS(`x(A), q) = η−1[S?(∇ S(q))− S?(∇S(q)− η`x(A))],

= −η−1 log〈exp(−η`x(A)), q〉. (112)

Equation 112 shows that the η-mixability condition is equivalent to the (η,S)-mixability condition
for a finite loss. This remains true for losses taking infinite values — see the proof of Theorem 11 in
Appendix C.5.

G Legendre Φ, but no Φ-mixable `

In this appendix, we construct a Legendre type entropy [11] for which there are no Φ-mixable losses
satisfying a weak condition (see below).

Let ` : A → [0,+∞]n be a loss satisfying condition 1. According to Alexandrov’s Theorem, a
concave function is twice differentiable almost everywhere (see e.g. [4, Thm. 6.7]). Now we give a
version of Theorem 14 which does not assume the twice differentiability of the Bayes risk. The proof
is almost identical to that of Theorem 14 with only minor modifications.

Theorem 27. Let Φ: Rk → R ∪ {+∞} be an entropy such that Φ̃ is twice differentiable on int ∆̃k,
and ` : A → [0,+∞]n a loss satisfying Condition 1 and such that ∃(p̃,v) ∈ D×Rñ,HL̃`(p̃)v 6= 0ñ,
where D ⊂ int ∆̃n is a set of Lebesgue measure 1 where L̃` is twice differentiable, and define

η`
∗ := inf

p̃∈D
(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1. (113)

Then ` is Φ-mixable only if η`∗Φ− S is convex on ∆k.

The new condition on the Bayes risk is much weaker than requiring L` to be twice differentiable on
]0,+∞[n. In the next example, we will show that there exists a Legendre type entropy for which
there are no Φ-mixable losses satisfying the condition of Theorem 27.

Example 1. Let Φ : R2 → R ∪ {+∞} be an entropy such that

∀q ∈]0, 1[, Φ(q, 1− q) = Φ̃(q) =

∫ q

1/2

log

(
log(1− t)

log t

)
dt.

2Reid et al. [9] showed the equality ∇Φ?η(u) = ∇Φ?(ηu),∀u ∈ dom Φ?, for any entropy differentiable
on ∆k - not just for the Shannon Entropy.
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Φ̃ is differentiable and strictly convex on the open set (0, 1). Furthermore, it satisfies (10) which
makes it a function of Legendre type [11, Lem. 26.2]. In fact, (10) is satisfied due to∣∣∣∣ ddq Φ̃(q)

∣∣∣∣ =

∣∣∣∣log

(
log(1− q)

log q

)∣∣∣∣ q→b→ +∞, where b ∈ {0, 1},

d2

dq2
Φ̃(q) =

−1

q log q
+

−1

(1− q) log(1− q)
> 0, ∀q ∈]0, 1[.

The Shannon entropy on ∆2 is defined by S(q, 1 − q) = S̃(q) = q log q + (1 − q) log(1 − q), for
q ∈]0, 1[. Thus, d2

dq2 S̃(q) = 1
q(1−q) .

Suppose now that there exists a Φ-mixable loss ` : A → [0,+∞]n satisfying condition 1 and such
that ∃(p̃,v) ∈ D × Rñ,HL̃`(p̃)v 6= 0ñ. Let η`∗ be as in (113). By definition, we have η`∗ < +∞,
and thus

η`
∗
[
d2

dq2
Φ̃(q)

] [
d2

dq2
S̃(q)

]−1

= η`
∗
(
q − 1

log q
+

−q
log(1− q)

)
q→b→ 0, (114)

where b ∈ {0, 1}. From Lemma 3, (114) implies that η`∗Φ − S is not convex on ∆k, which is a
contradiction according to Theorem 27.

H Loss Surface and Superprediction Set

In this appendix, we derive an expression for the curvature of the image of a proper loss function. We
will need the following lemma.

Lemma 28. Let σ : [0,+∞[n→ R be a 1-homogeneous, twice differentiable function on ]0,+∞[n.
Then σ is concave on ]0,+∞[n if and only if σ̃ = σ ◦ qn is concave on int ∆̃n.

Proof. The forward implication is immediate; if σ is concave on ]0,+∞[n, then σ ◦ qk is concave
on int ∆̃k, since qk is an affine function.

Now assume that σ̃ is concave on int ∆̃k. Let λ ∈ [0, 1] and (p, q) ∈ [0,+∞[n×[0,+∞[n. We need
to show that

λσ(p) + (1− λ)σ(q) ≤ σ(λp+ (1− λ)q). (115)

Note that if p = 0 or q = 0, (115) is trivially with equality due to the 1-homogeneity of σ. Now
assume that p and q are non-zero and let c := λ ‖p‖1 + (1 − λ) ‖q‖1. For convenience, we also
denote p1 = p/ ‖p‖1 and q1 = q/ ‖q‖1 which are both in ∆n. It follows that

λσ(p) + (1− λ)σ(q) = cM

(
λ
‖p‖1
c

σ(p1) + (1− λ)
‖q‖1
c

σ(q1)

)
,

= c

(
λ
‖p‖1
c

σ̃(p̃1) + (1− λ)
‖q‖1
c

σ̃(q̃1)

)
,

≤ cσ̃
(
λ
‖p‖1
c
p̃1 + (1− λ)

‖q‖1
c
q̃1

)
,

= cσ

(
λ
‖p‖1
c
p1 + (1− λ)

‖q‖1
c
q1

)
,

= σ(λp+ (1− λ)q),

where the first and last equalities are due the 1-homogeneity of σ and the inequality is due to σ̃ being
concave on the int ∆̃n.
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H.1 Convexity of the Superprediction Set

In the literature, many theoretical results involving loss functions relied on the fact that the superpre-
diction set of a proper loss is convex [16, 6]. An earlier proof of this result by [16] was incomplete3.
In the next theorem we restate this result.
Theorem 29. If ` : ∆n → [0,+∞[n is a continuous proper loss, then S` =

⋂
p∈∆n

H−p,−L`(p). In
particular, S` is convex.

S` ⊆
⋂
p∈∆n

H−p,−L`(p). : Let v ∈ S`, u ∈ [0,+∞[n, and q ∈ ∆n such that v = `(q) + u.
Since ` is proper then ∀p ∈ ∆n, L`(p) = 〈p, `(p)〉 ≤ 〈p, `(q)〉 ≤ 〈p, `(q)+u〉 = 〈p,v〉. Therefore,
v ∈

⋂
p∈∆n

H−p,−L`(p).

[
⋂
p∈∆n

H−p,−L`(p) ⊆ S`]: Let v ∈
⋂
p∈∆n

H−p,−L`(p). Let Ω = [n], ∆(Ω) = ∆n, and
Q(p, x) = `x(p) − vx for all (p, x) ∈ ∆n × [n]. Since v ∈

⋂
p∈∆n

H−p,−L`(p), Ex∼pQ(p, x) =

〈p, `(p)〉 − 〈p,v〉 ≤ 0 for all p ∈ ∆n. Lemma 4, implies that there exists p∗ ∈ ∆n such that
Q(p∗, x) = `x(p∗)− vx ≤ 0, for all x ∈ [n]. This shows that v ∈ S`.

H.2 Curvature of the Loss Surface

The normal curvature of a ñ-manifold S [13] at a point r ∈ S in the direction of w ∈ TrS, where
TrS is the tangent space of S at r ∈ S, is defined by

κ(r,w) =

〈
w,DNS(r)w

〉
〈w,w〉

, (116)

where NS(r) is the normal vector to the surface at r. The minimum principal curvature of S at r is
expressed as κ(r) := inf{κ(r,w) : w ∈ TrS ∩ B(r, 1)}.
In the next theorem, we establish a direct link between the curvature of a loss surface and the Hessian
of the loss’ Bayes risk.
Theorem 30. Let ` : ri ∆n → [0,+∞[n be a loss whose Bayes risk is twice differentiable and
strictly concave on ]0,+∞[n. Let p ∈ ri ∆n, Xp := Iñ − p̃1T

ñ, and w ∈ T˜̀(p̃)S`. Then

1. ∃v ∈ Rn−1 such that D˜̀(p̃)v = w.

2. S` is a ñ-manifold.

3. The normal curvature of S` at `(p) = ˜̀(p̃) in the direction w is given by

κ`(`(p),w) =

∥∥∥∥[ Xp−p̃T
]

(−HL̃`(p̃))
1
2u

∥∥∥∥−1

, (117)

where u = (−HL̃`(p̃))
1
2v/‖(−HL̃`(p̃))

1
2v‖.

It becomes clear from (117) that smaller eigenvalues of −HL̃`(p̃) will tend to make the loss surface
more curved at `(p), and vice versa.

Before proving Theorem 30, we first define parameterizations on manifolds.
Definition 31 (Local and Global Parameterization). Let S ⊆ Rn be a ñ-manifold and U an open
set in Rñ. The map ϕ : U → S is called a local parameterization of S if Dϕ(u) : Rñ → Tϕ(u)S is
injective for all u ∈ U , where Tϕ(u)S is the tangent space of S at ϕ(u) ∈ S. ϕ is called a global
parameterization of S if it is, additionally, onto.

Let ϕ be a global parameterization of S and Nϕ := NS ◦ ϕ. By a direct application of the chain rule,
(116) can be written as

κ(ϕ(u),w) =
〈w,DNϕ(u)v〉
〈w,w〉

, (118)

3It was claimed that if S` is non-convex, there exists a point s0 on the loss surface S` such that no hyperplane
supports S` at s0. The non-convexity of a set by itself is not sufficient to make such a claim; the continuity of
the loss ` is required.
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where v is such that Dϕ(u)v = w. The existence of such a v is guaranteed by the fact that Dϕ is
injective and dimRñ = dimTϕ(u)S = ñ.

Theorem 30. First we show that S` is a ñ-manifold. Consider the map ˜̀ : int ∆̃n → S` and note that
int ∆̃n is trivially a ñ-manifold. Due to the strict concavity of the Bayes risk, ˜̀ is injective [14] and
from Lemmas 8 and 28, D˜̀(p̃) : Rñ → T˜̀(p̃)S` is also injective. Therefore, ˜̀ is an immersion [10]. ˜̀

is also proper in the sense that the preimage of every compact subset of S` is compact. Therefore, ˜̀

is a proper injective immersion, and thus it is an embedding from the ñ-manifold int ∆̃n to S` (ibid.).
Hence, S` is a manifold.

Now we prove (117). The map ˜̀ is a global parameterization of S`. In fact, from Lemma 8, D˜̀(p̃)

has rank ñ, for all p̃ ∈ int ∆̃n, which implies that D˜̀(p̃) is onto from Rñ to T˜̀(p̃)S`. Therefore,

given w ∈ T˜̀(p̃)S`, there exists v ∈ Rñ such that w = D˜̀(p̃)v. Furthermore, Lemma 8 implies that

N
˜̀
(p̃) = p, since 〈p,D˜̀(p̃)〉 = 0T

ñ. Substituting N
˜̀ into (118) yields

κ`(˜̀(p̃),w) =

vT(D˜̀(p̃))T
[
Iñ,
1ñ

]
v〈

D˜̀(p̃)v,D˜̀(p̃)v
〉 ,

=

vTHL̃`(p̃)
[
XT
p , −p̃

] [Iñ
1ñ

]
v〈

D˜̀(p̃)v,D˜̀(p̃)v
〉 ,

=
vTHL̃`(p̃)v

vTHL̃`(p̃)
[
XT
p , −p̃

] [ Xp
−p̃T

]
HL̃`(p̃)v

. (119)

Setting u = (−HL̃`(p̃))
1
2v/‖(−HL̃`(p̃))

1
2v‖ in (119) gives the desired result.

I Classical Mixability Revisited

In this appendix, we provide a more concise proof of the necessary and sufficient conditions for the
convexity of the superprediction set [14].
Theorem 32. Let ` : ∆n → [0,+∞[n be a strictly proper loss whose Bayes risk is twice differentiable
on ]0,+∞[n. The following points are equivalent;

(i) ∀p̃ ∈ int ∆̃n, ηHL̃`(p̃) � HL̃log(p̃).

(ii) e−ηS` =
⋂
p∈∆n

Hτ(p),1 ∩ [0,+∞[n, where τ(p) := p� eη`(p).

(iii) e−ηS` is convex.

Proof. We already showed (i) =⇒ (ii) =⇒ (iii) in the proof of Theorem 7.

We now show (iii) =⇒ (i). Since e−ηS` is convex, any point s ∈ bd e−ηS` is supported by
a hyperplane [7, Lem. A.4.2.1]. Since u → e−ηu is a homeomorphism, it maps boundaries to
boundaries. From this and Lemma 17, bd e−ηS` = e−ηS` . Thus, for p ∈ ri ∆n, there exists a
unit-norm vector u ∈ Rn such that for all s ∈ S` it either holds that 〈u, e−η`(p)〉 ≤ 〈u, e−ηs〉;
or 〈u, e−η`(p)〉 ≥ 〈u, e−ηs〉. It is easy to see that it is the latter case that holds, since we can
choose s = `(r) + c1 ∈ S`, for r ∈ ∆n, and make 〈u, e−ηs〉 arbitrarily small by making c ∈ R
large. Therefore, ∀r ∈ ri ∆n, 〈u, e−η

˜̀(p̃)〉 = 〈u, e−η`(p)〉 ≥ 〈u, e−η`(r)〉 = 〈u, e−η ˜̀(r̃)〉 and p̃ is a
critical point of the function f(r̃) := 〈u, e−η ˜̀(r̃)〉 on int ∆̃n. This implies that ∇f(p̃) = 0ñ; that
is, −η〈u,diag(e−η

˜̀(p̃))D˜̀(p̃)〉 = −η〈diag(e−η
˜̀(p̃))u,D˜̀(p̃)〉 = 0T

ñ. From Lemma 8, there exists
λ ∈ R such that diag(e−η

˜̀(p̃))u = λp. Therefore, u = λp � eη ˜̀(p̃), where λ = ‖p � eη ˜̀(p̃)‖−1,
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since ‖u‖ = 1. For v ∈ Rn−1, let α̃t := p̃+ tv, where t ∈ {s : p̃+ sv ∈ int ∆̃n}. Since f is twice
differentiable and attains a maximum at p̃,

0 ≥ 1

λη

d2

dt2
f ◦ α̃t

∣∣∣∣
t=0

=
1

λ

d

dt

〈
u,diag e−η

˜̀(α̃t)D˜̀(α̃t)v
〉∣∣∣∣
t=0

,

=
d

dt

〈
p� eη ˜̀(p̃),diag e−η

˜̀(α̃t)D˜̀(p̃)v
〉∣∣∣∣
t=0

+
d

dt

〈
p,D˜̀(α̃t)v

〉∣∣∣∣
t=0

,

= ηvTHL̃`(p̃)(HL̃log(p̃))−1HL̃`(p̃)v − vTHL̃`(p̃)v, (120)

where in the second equality we substituted u by λp� eη ˜̀(p̃) and in (120) we used (5) and (6) from
Lemma 9. Note that by the assumptions on ` it follows that the Bayes risk L̃` is strictly concave [14,
Lemma 6] and −HL̃`(p̃) is symmetric negative-definite. In particular, HL̃`(p̃) is invertible. Setting
v̂ := HL̃`(p̃)v in (120) yields

0 ≥ ηv̂(HL̃log(p̃))−1v̂ − v̂(HL̃`(p̃))−1v̂.

Since v ∈ Rn−1 was chosen arbitrarily, (HL̃`(p̃))−1 � η(HL̃log(p̃))−1,∀p̃ ∈ int ∆̃n. This is
equivalent to the condition ∀p̃ ∈ int ∆̃n, ηHL̃`(p̃) � HL̃log(p̃).
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Figure 1: The figure corresponds to the 2005/2006, 2006/2007, 2007/2008, and 2008/2009 seasons.
The solid lines represent, at each round t, the difference between the cumulative losses of the experts
and that of the learner who uses either the AA (left) or the AGAA (right); that is, Loss`Brier

θ (t) −
Loss`Brier

M (t), for M ∈ {AA,AGAA}. The red dashed lines represent the negative of the regret
bound in (12) with respect to the best expert θ∗; that is, −RS

`Brier
−∆Rθ∗(t) at each round t.

J.1 Testing the AGAA

To test the AGAA empirically, we used prediction data4 from the British football leagues, including
the Premier Leagues, Championships, Leagues 1-2, and Conferences. The first dataset contains
predictions for the 2005/2006, 2006/2007, 2007/2008, and 2008/2009 seasons, matching the dataset
used in [15]. The second dataset contains predictions for the 2009/2010, 2010/2011, 2011/2012, and
2012/2013 seasons. For this set, we considered predictions from 9 bookmakers; Bet365, Bet&Win,
Blue Square, Gamebookers, Interwetten, Ladbrokes, Stan James, VC Bet, and William Hill.

On each dataset, we compared the performance of the AGAA with that of the AA using the Brier
score (the Brier loss is 1-mixable). For the AGAA, we chose βt according to Theorem 19 with
vt := − 1

2t

∑t
s=1 `xs(A

s) and we set Φ = S, i.e. the Shannon entropy. The results in Figure 1 [resp.
Figure 2] correspond to the seasons from 2005 to 2009 [resp. 2009 to 2013]. For fair comparison

4The data was collected from http://www.football-data.co.uk/.
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Figure 2: The figure corresponds to the 2009/2010, 2010/2011, 2011/2012, and 2012/2013 seasons
The solid lines represent, at each round t, the difference between the cumulative losses of the experts
and that of the learner who uses either the AA (left) or the AGAA (right); that is, Loss`Brier

θ (t) −
Loss`Brier

M (t), for M ∈ {AA,AGAA}. The red dashed lines represent the negative of the regret
bound in (12) with respect to the best expert θ∗; that is, −RS

`Brier
−∆Rθ∗(t) at each round t.
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Figure 3: The figure on the left [resp. right] hand side corresponds to the football seasons from 2005
to 2009 [resp. 2009 to 2013]. The solid lines represent, at each round t, the difference between the
cumulative losses of the experts and that of the learner using the AA-AGAA meta algorithm (refer
to text); that is, Loss`Brier

θ (t)− Loss`Brier

AA-AGAA(t). The red dashed lines represent the negative of the
regret bound in (12) with respect to the best expert θ∗; that is, −RS

`Brier
−∆Rθ∗(t) at each round t.

with the results of Vovk [15], we 1) used the same substitution function as [15]; 2) used the same
method for converting odds to probabilities; and 3) sorted the data first by date then by league and
then by name of the host team (For more detail see [15]).

In all figures the solid lines represent, at each round t, the difference between the cumulative losses of
the experts and that of the learners; that is, Loss`Brier

θ (t)− Loss`Brier

M (t), for M = AA,AGAA. The
red dashed lines represent the negative of the regret bound in (12) with respect to the best expert θ∗;
that is, −RS

`Brier
−∆Rθ∗(t) = −RS

`Brier
−
∑t−1
s=1(vsθ − 〈vs, qs〉) at each round t, where (qs) are the

distributions over experts.

From Figures 1 and 2 it can be seen that the learners using the AGAA perform better than the best
expert (and better than the AA) at the end of the games.

J.2 Testing a AA-AGAA Meta-Learner

Consider the algorithm (referred to as AA-AGAA) that takes the outputs of the AGAA and the AA as
in the previous section and aggregates them using the AA to yield a meta prediction. The worst case
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regret of this algorithm is guaranteed not to exceed that of the original AA and AGAA by more than
η−1 log 2 for an η-mixable loss. Figure 3 shows the results for this algorithm for the same datasets as
the previous section. The AA-AGAA still achieves a negative regret at the end of the game.
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