
A Upper Complexity Bound for Convex SVRG

Proof of Theorem 1 and Corollary 2. (2.1) and (2.2) follows directly from the analysis of
[21, Thm 3.1] with slight modification.
For the linear rate ρ in (2.2), we have
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Therefore, the epoch complexity (i.e. the number of epochs required to reduce the subopti-
mality to below ε) is
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where d·e is the ceiling function, and the second equality is due to m = n+ 121κQ.
Hence, the gradient complexity is

K = (n+m)K0

≤ O
( n+ κQ

ln(1.21 + n
100κQ ) ln 1

ε

)
+ n+ 121κQ,

which is equivalent to (2.3).

B Lower Complexity Bound for Convex SVRG

Definition 2. [17, Def. 2] An optimization algorithm is called a Canonical Linear Iterative
(CLI) optimization algorithm, if given a function F and initialization points {w0

i }i∈J , where
J is some index set, it operates by iteratively generating points such that for any i ∈ J ,

wk+1
i =

∑
j∈J

OF (wkj ; θkij), k = 0, 1, ...

holds, where θkij are parameters chosen, stochastically or deterministically, by the algorithm,
possibly depending on the side-information. OF is an oracle parameterized by θkij . If the
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parameters do not depend on previously acquired oracle answers, we say that the given
algorithm is oblivious. Lastly, algorithms with |J | ≤ p, for some p ∈ N, are denoted by
p-CLI.

In [17], two types of oblivious oracles are considered. The generalized first order oracle for
F (x) = 1

n

∑n
i=1 fi(x)

O(w;A,B,C, j) = A∇fj(w) +Bw + C, A,B ∈ Rd×d, C ∈ Rd, j ∈ [n].

The steepest coordinate descent oracle for F (x) = 1
n

∑n
i=1 fi(x) is given by

O(w; i, j) = w + t∗ei, t∗ ∈ arg min
t∈R

fj(w1, ..., wi−1, w + t, wi+1, ..., wd), j ∈ [n],

where ei is the ith unit vector. SDCA, SAG, SAGA, SVRG, SARAH, etc. without proximal
terms are all p−CLI oblivious algorithms.
We now state the full version of Theorem 2.
Theorem 4. Lower complexity bound oblivious p-CLI algorithms. For any oblivious
p-CLI algorithm A, for all µ,L, k, there exist L-smooth, and µ-strongly convex functions fi
such that at least14:
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n
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+
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nκ

)
ln 1
ε

+ n

)
(B.1)

iterations are needed for A to obtain expected suboptimality E[f(K(ε))− f(X∗)] < ε.

Proof of Theorem 4. In this proof, we use lower bound given in [17, Thm 2], and refine its
proof for the case n ≥ 1

3κ.
[17, Thm 2] gives the following lower bound,

K(ε) ≥ Ω(n+
√
n(κ− 1) ln 1

ε
). (B.2)

Some smaller low-accuracy terms are absorbed are ignored, as is done in [17]. For the case
n ≥ 1

3κ, the proof of [17, Thm 2] tells us that, for any k ≥ 1, there exist L−Lipschitz
differentiable and µ−strongly convex quadratic functions fk1 , fk2 , ..., fkn and F k = 1

n

∑n
i=1 f

k
i ,

such that for any x0, the xK produced after K gradient evaluations, we have15
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where R is a constant and κ = L
µ .

Therefore, in order for ε ≥ E[F (xk)− F (x∗)], we must have
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Since 1 + 1
3x ≤

√
1 + x when 0 ≤ x ≤ 3, and 0 ≤ κ−1

n ≤ κ
n ≤ 3, we have
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14We absorb some smaller low-accuracy terms (high ε) as is common practice. Exact lower bound
expressions appear in the proof.

15note that for the SVRG in Algorithm 1 with ψ = 0, each update in line 7 is regarded as an
iteration.
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or equivalently,
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= Ω( n

1 + (ln(n/κ))+
ln(1/ε) + n) (B.4)

Now the expression in (B.4) is valid for n ≥ 1
3κ. When n < 1

3κ, the lower bound in (B.4)
is asymptotically equal to Ω(n ln(1/ε) + n), which is dominated by (B.2). Hence the lower
bound in (B.4) is valid for all κ, n.
We may sum the lower bounds in (B.2) and (B.4) to obtain (B.1). This is because given
an oblivious p-CLI algorithm, we may simply chose the adversarial example that has the
corresponding greater lower bound.

C Lower Complexity Bound for SDCA

Proof of Propsition 1. Let φi(t) = 1
2 t

2, λ = µ, and yi be the ith column of Y , where Y =
c(n2I+J) and J is the matrix with all elements being 1, and c = (n4 +2n2 +n)−1/2(L−µ)1/2.
Then

fi(x) = 1
2(xT yi)2 + 1

2µ‖x‖
2,

F (x) = 1
2n‖Y

Tx‖2 + 1
2µ‖x‖

2,

D(α) = 1
nµ

( 1
2n‖Y α‖

2 + 1
2µ‖α‖

2).

Since
‖yi‖2 = c2

(
(n2 + 1)2 + n− 1

)
= c2(n4 + 2n2 + n) = L− µ,

fi is L−smooth and µ−strongly convex, and that x∗ = 0.
We also have

∇D(α) = 1
nµ

( 1
n
Y 2α+ µα) = 1

nµ

(
(c2n3I + 2nc2J + c2J)α+ µα

)
,

So for every k ≥ 0, minimizing with respect to αik as in (2.5) yields the optimality condition:

0 = eTik∇D(αk+1)

= 1
nµ

(
c2n3αk+1

ik
+ 2c2n(

∑
j 6=ik

αkj + αk+1
ik

) + c2(
∑
j 6=ik

αkj + αk+1
ik

) + µαk+1
ik

)
.

Therefore, rearranging yields:

αk+1
ik

= − (c2 + 2c2n)
c2n3 + 2c2n+ c2 + µ

∑
j 6=ik

αkj = − (c2 + 2c2n)
c2n3 + 2c2n+ c2 + µ

(eTik(J − I)αk).
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As a result,

αk+1 = (I − eikeTik)αk − (c2 + 2c2n)
c2n3 + 2c2n+ c2 + µ

(eikeTik(J − I)αk).

Taking full expectation on both sides gives

Eαk+1 =
(

(1− 1
n

)I − (c2 + 2c2n)
c2n3 + 2c2n+ c2 + µ

J − I
n

)
Eαk , TEαk.

for linear operator T . Hence we have by Jensen’s inequality:

E
∥∥xk∥∥2 = n−2µ−2E

∥∥Y αk∥∥2

≥ n−2µ−2∥∥Y Eαk
∥∥2

= n−2µ−2∥∥Y T kα0∥∥2

We let α0 = (1, . . . , 1), which is an vector of T . Let us say the corresponding eigenvalue for
T is θ:

E
∥∥xk∥∥2 ≥ θ2kn−2µ−2∥∥Y α0∥∥2 (C.1)

= θ2k∥∥x0∥∥2 (C.2)

We now analyze the value of θ:

θ = (1− 1
n

)− (c2 + 2c2n)
c2n3 + 2c2n+ c2 + µ

n− 1
n

= 1− 1
n
− 1 + 2n
n3 + 2n+ 1 + µc−2

n− 1
n

≥ 1− 1
n
− 1 + 2n
n3 + 2n+ 1

≥ 1− 2
n

for n > 2. This in combination with (C.2) yields (2.7).

D Nonconvex SVRG Analysis

Proof of Theorem 3. Without loss of generality, we can assume x∗ = 0 and F (x∗) = 0.

According to lemma 3.3 and Lemma 5.1 of [20], for any u ∈ Rd, and η ≤ 1
2 min

{
1
L ,

1√
mL̄

}
we have

E[F (xj+1)− F (u))] ≤ E[− 1
4mη ‖x

j+1 − xj‖2 + 〈x
j − xj+1, xj − u〉

mη
− µ

4 ‖x
j+1 − u‖2],

or equivalently,

E[F (xj+1)−F (u))] ≤ E[ 1
4mη ‖x

j+1−xj‖2+ 1
2mη ‖x

j−u‖2− 1
2mη ‖x

j+1−u‖2−µ4 ‖x
j+1−u‖2].

Setting u = x∗ = 0 and u = xj yields the following two inequalities:

F (xj+1) ≤ 1
4mη (‖xj+1 − xj‖2 + 2‖xj‖2 − 2(1 + 1

2mηµ)‖xj+1‖2), (D.1)

F (xj+1)− F (xj) ≤ − 1
4mη (1 +mηµ)‖xj+1 − xj‖2. (D.2)

Define τ = 1
2mηµ, multiply (1 + 2τ) to (D.1), then add it to (D.2) yields

2(1 + τ)F (xj+1)− F (xj) ≤ 1
2mη (1 + 2τ)

(
‖xj‖2 − (1 + τ)‖xj+1‖

)
.
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Multiplying both sides by (1 + τ)j gives

2(1 + τ)j+1F (xj+1)− (1 + τ)jF (xj) ≤ 1
2mη (1 + 2τ)

(
(1 + τ)j‖xj‖2 − (1 + τ)j+1‖xj+1‖

)
.

Summing over j = 0, 1, ..., k − 1, we have

(1 + τ)kF (xk) +
k−1∑
j=0

(1 + τ)jF (xj)− F (x0) ≤ 1
2mη (1 + 2τ)(‖x0‖2 − (1 + τ)k‖xk‖2).

Since F (xj) ≥ 0, we have

F (xk)(1 + τ)k ≤ F (x0) + 1
2mη (1 + 2τ)‖x0‖2.

By the strong convex of F , we have F (x0) ≥ µ
2 ‖x

0‖2, therefore

F (xk)(1 + τ)k ≤ F (x0)(2 + 1
2τ ),

Finally, η = 1
2 min{ 1

L , (
1

L
2
m

) 1
2 } gives

1
τ

= 4 max{ κ
m
, ( L

2

mµ2 ) 1
2 } ≤ 4( κ

m
+ ( L

2

mµ2 )− 1
2 ),

which yields

F (xk) ≤ (1 + τ)−kF (x0)
(
2 + 2( κ

m
+ ( L

2

mµ2 )− 1
2 )
)
.

To prove (4.2), we notice that

τ = 1
4 min{m

κ
, (mµ

2

L
2 ) 1

2 },

so we have
1

ln(1 + τ) ≤
1

ln(1 + m
4κ ) + 1

ln
(
1 + (mµ2

4L
) 1

2
)

Now for small ε, the epoch complexity can be written as

K0 = d 1
ln(1 + τ) ln

F (x0)(2 + 2( κm + ( L
2

mµ2 )− 1
2 ))

ε
e

≤ O
(

( 1
ln(1 + m

4κ ) + 1
ln
(
1 + (mµ2

4L
) 1

2
) ) ln 1

ε

)
+ 1.

Since m = min{2, n}, we have a gradient complexity of

K = (n+m)K0 ≤ O
(

( n

ln(1 + n
4κ ) + n

ln
(
1 + (nµ2

4L
) 1

2
) ) ln 1

ε

)
+ 2n.

And this is equivalent to the expression in (4.3).
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