
Supplementary Material:
A Simple Unified Framework for Detecting Out-of-Distribution

Samples and Adversarial Attacks

A Preliminaries for Gaussian discriminant analysis

In this section, we describe the basic concept of the discriminative and generative classifier [27].
Formally, denote the random variable of the input and label as x 2 X and y 2 Y = {1, · · · , C},
respectively. For the classification task, the discriminative classifier directly defines a posterior dis-
tribution P (y|x), i.e., learning a direct mapping between input x and label y. A popular model
for discriminative classifier is softmax classifier which defines the posterior distribution as follows:

P (y = c|x) =
exp(w>

c x+bc)
P

c0 exp(w>
c0x+bc0)

, where wc and bc are weights and bias for a class c, respectively.

In contrast to the discriminative classifier, the generative classifier defines the class conditional dis-
tribution P (x|y) and class prior P (y) in order to indirectly define the posterior distribution by
specifying the joint distribution P (x, y) = P (y)P (x|y). Gaussian discriminant analysis (GDA) is
a popular method to define the generative classifier by assuming that the class conditional distribu-
tion follows the multivariate Gaussian distribution and the class prior follows Bernoulli distribution:
P (x|y = c) = N (x|µc,⌃c) , P (y = c) = �cP

c0 �c0
, where µc and ⌃c are the mean and covariance

of multivariate Gaussian distribution, and �c is the unnormalized prior for class c. This classifier has
been studied in various machine learning areas (e.g., semi-supervised learning [17] and incremental
learning [29]).

In this paper, we focus on the special case of GDA, also known as the linear discriminant analysis
(LDA). In addition to Gaussian assumption, LDA further assumes that all classes share the same
covariance matrix, i.e., ⌃c = ⌃. Since the quadratic term is canceled out with this assumption, the
posterior distribution of generative classifier can be represented as follows:
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One can note that the above form of posterior distribution is equivalent to the softmax classifier by
considering µ>

c ⌃
�1 and �

1
2µ

>
c ⌃

�1µc + log �c as weight and bias of it, respectively. This implies
that x might be fitted in Gaussian distribution during training a softmax classifier.

B Experimental setup

In this section, we describe detailed explanation about all the experiments described in Section 3.

B.1 Experimental setups in detecting out-of-distribution

Detailed model architecture and training. We consider two state-of-the-art neural network archi-
tectures: DenseNet [14] and ResNet [12]. For DenseNet, our model follows the same setup as in
Huang & Liu [14]: 100 layers, growth rate k = 12 and dropout rate 0. Also, we use ResNet with 34
layers and dropout rate 0.2 The softmax classifier is used, and each model is trained by minimizing
the cross-entropy loss using SGD with Nesterov momentum. Specifically, we train DenseNet for
300 epochs with batch size 64 and momentum 0.9. For ResNet, we train it for 200 epochs with
batch size 128 and momentum 0.9. The learning rate starts at 0.1 and is dropped by a factor of 10 at
50% and 75% of the training progress, respectively. The test set errors of DenseNet and ResNet on
CIFAR-10, CIFAR-100 and SVHN are reported in Table 4.

Datasets. We train DenseNet and ResNet for classifying CIFAR-10 (or 100) and SVHN datasets:
the former consists of 50,000 training and 10,000 test images with 10 (or 100) image classes, and
the latter consists of 73,257 training and 26,032 test images with 10 digits.3 The corresponding

2ResNet architecture is available at https://github.com/kuangliu/pytorch-cifar.
3We do not use the extra SVHN dataset for training.
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test dataset is used as the in-distribution (positive) samples to measure the performance. We use
realistic images as the out-of-distribution (negative) samples: the TinyImageNet consists of 10,000
test images with 200 image classes from a subset of ImageNet images. The LSUN consists of 10,000
test images of 10 different scenes. We downsample each image of TinyImageNet and LSUN to size
32⇥ 32.4

Tested methods. In this paper, we consider the baseline method [13] and ODIN [21] for compari-
son. The confidence score in Hendrycks & Gimpel [13] is a maximum value of softmax posterior
distribution, i.e., maxy P (y|x). The key idea of ODIN is the temperature scaling which is defined
as follows:

P (y = by|x;T ) =
exp (fby(x)/T )P
y exp (fy(x)/T )

,

where T > 0 is the temperature scaling parameter and f = (f1, . . . , fK) is final feature vector of
deep neural networks. For each data x, ODIN first calculates the pre-processed image bx by adding
the small perturbations as follows:

x0 = x� "odinsign (�5x logP✓(y = by|x;T )) ,
where "odin is a magnitude of noise and by is the predicted label. Next, ODIN feeds the
pre-processed data into the classifier, computes the maximum value of scaled predictive dis-
tribution, i.e., maxy P✓(y|x0;T ), and classifies it as positive (i.e., in-distribution) if the confi-
dence score is above some threshold �. For ODIN, the perturbation noise "odin is chosen from
{0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2}, and the temperature T is cho-
sen from {1, 10, 100, 1000}.

Hyper parameters for our method. There are two hyper parameters in our method: the magnitude
of noise in (4) and layer indexes for feature ensemble. For all experiments, we extract the confidence
scores from every end of dense (or residual) block of DenseNet (or ResNet). The size of feature maps
on each convolutional layers is reduced by average pooling for computational efficiency: F ⇥H ⇥

W ! F⇥1, where F is the number of channels and H⇥W is the spatial dimension. The magnitude
of noise in (4) is chosen from {0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2}.

Performance metrics. For evaluation, we measure the following metrics to measure the effective-
ness of the confidence scores in distinguishing in- and out-of-distribution images.

• True negative rate (TNR) at 95% true positive rate (TPR). Let TP, TN, FP, and FN de-
note true positive, true negative, false positive and false negative, respectively. We measure
TNR = TN / (FP+TN), when TPR = TP / (TP+FN) is 95%.

• Area under the receiver operating characteristic curve (AUROC). The ROC curve is a
graph plotting TPR against the false positive rate = FP / (FP+TN) by varying a threshold.

• Area under the precision-recall curve (AUPR). The PR curve is a graph plotting the
precision = TP / (TP+FP) against recall = TP / (TP+FN) by varying a threshold. AUPR-IN
(or -OUT) is AUPR where in- (or out-of-) distribution samples are specified as positive.

• Detection accuracy. This metric corresponds to the maximum classification probability
over all possible thresholds �:
1�min

�

�
Pin (q (x)  �)P (x is from Pin) + Pout (q (x) > �)P (x is from Pout)

 
,

where q(x) is a confident score. We assume that both positive and negative examples have
equal probability of appearing in the test set, i.e., P (x is from Pin) = P (x is from Pout).

Note that AUROC, AUPR and detection accuracy are threshold-independent evaluation metrics.

B.2 Experimental setups in detecting adversarial samples

Adversarial attacks. For the problem of detecting adversarial samples, we consider the following
attack methods: fast gradient sign method (FGSM) [10], basic iterative method (BIM) [16], Deep-
Fool [26] and Carlini-Wagner (CW) [3]. The FGSM directly perturbs normal input in the direction
of the loss gradient. Formally, non-targeted adversarial examples are constructed as

xadv = x+ "FGSM sign (5x`(y
⇤, P (y|x))) ,

4LSUN and TinyImageNet datasets are available at https://github.com/ShiyuLiang/odin-pytorch.
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CIFAR-10 CIFAR-100 SVHN
L1 Acc. L1 Acc. L1 Acc.

DenseNet

Clean 0 95.19% 0 77.63% 0 96.38%
FGSM 0.21 20.04% 0.21 4.86% 0.21 56.27%
BIM 0.22 0.00% 0.22 0.02% 0.22 0.67%

DeepFool 0.30 0.23% 0.25 0.23% 0.57 0.50%
CW 0.05 0.10% 0.03 0.16% 0.12 0.54%

ResNet

Clean 0 93.67% 0 78.34% 0 96.68%
FGSM 0.25 23.98% 0.25 11.67% 0.25 49.33%
BIM 0.26 0.02% 0.26 0.21% 0.26 2.37%

DeepFool 0.36 0.33% 0.27 0.37% 0.62 13.20%
CW 0.08 0.00% 0.08 0.01% 0.15 0.04%

Table 4: The L1 mean perturbation and classification accuracy on clean and adversarial samples.

where "FGSM is a magnitude of noise, y⇤ is the ground truth label and ` is a loss function to measure
the distance between the prediction and the ground truth. The BIM is an iterative version of FGSM,
which applies FGSM multiple times with a smaller step size. Formally, non-targeted adversarial
examples are constructed as

x0
adv = x, xn+1

adv = Clip"BIM
x {xn

adv + ↵BIM sign
�
5xn

adv
`(y⇤, P (y|xn

adv))
�
},

where Clip"BIM
x means we clip the resulting image to be within the "BIM -ball of x. DeepFool works

by finding the closest adversarial examples with geometric formulas. CW is an optimization-based
method which arguably the most effective method. Formally, non-targeted adversarial examples are
constructed as

argmin
xadv

�d(x,xadv)� `(y⇤, P (y|xadv)),

where � is penalty parameter and d(·, ·) is a metric to quantify the distance between an original
image and its adversarial counterpart. However, compared to FGSM and BIM, this method is much
slower in practice. For all experiments, L2 distance is used as a constraint. We used the library from
FaceBook [11] for generating adversarial samples.5 Table 4 tatistics of adversarial attacks including
the L1 mean perturbation and classification accuracy on adversarial attacks.

Tested methods. Ma et al. [22] proposed to characterize adversarial subspaces by using local in-
trinsic dimensionality (LID). Given a test sample x, LID is defined as follows:

bLID = �

 
1

k

X

i

log
ri(x)

rk(x)

!
,

where ri(x) denotes the distance between x and its i-th nearest neighbor within a sample of points
drawn from in-distribution, and rk(x) denotes the maximum distance among k nearest neighbors.
We commonly extract the LID scores from every end of dense (or residual) block of DenseNet (or
ResNet) similar to ours. Given test sample x and the set Xc of training samples with label c, the
Gaussian kernel density with bandwidth � is defined as follows:

KD(x) =
1

|Xc|

X

xi2Xc

k�(xi,x),

where k�(x, y) / exp(�||x� y||2/�2). For LID and KD, we used the library from Ma et al. [22].

Hyper-parameters and training. Following the similar strategies in [7, 22], we randomly choose
10% of original test samples for training the logistic regression detectors and the remaining test
samples are used for evaluation. The training sets consists of three types of examples: adversarial,
normal and noisy. Here, noisy examples are generated by adding random noise to normal examples.
Using nested cross validation within the training set, all hyper-parameters including the bandwidth

5The code is available at https://github.com/facebookresearch/adversarial_image_defenses.
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(a) Small training data: the x-axis represents the number of training data
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(b) Noisy training data: the x-axis represents the percentage of training data with random label

Figure 5: Comparison of AUROC (%) under different training data. To evaluate the robustness of
proposed method, we train ResNet (a) by varying the number of training data and (b) assigning
random label to training data on CIFAR-10 dataset.
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Figure 6: Experimental results of class-incremental learning on CIFAR-100 and CIFAR-10 datasets.
We report (left) AUC with respect to the number of learned classes and, (right) the base-new class
accuracy curve after the last new classes is added.

parameter for KD, the number of nearest neighbors for LID, and input noise for our method are
tuned. Specifically, the value of k is chosen from {10, 20, 30, 40, 50, 60, 70, 80, 90} with respect to
a minibatch of size 100, and the bandwidth was chosen from {0.1, 0.25, 0.5, 0.75, 1}. The magnitude
of noise in (4) is chosen from {0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2}.

C More experimental results

In this section, we provide more experimental results.

C.1 Robustness of our method in detecting adversarial samples

In order to verify the robustness, we measure the detection performance when we train ResNet
by varying the number of training data and assigning random label to training data on CIFAR-10
dataset. As shown in Figure 5, our method (blue bar) outperforms LID (green bar) for all experi-
ments.

C.2 Class-incremental learning

Figure 6 compares the AUCs of tested methods when CIFAR-100 is pre-trained and CIFAR-10 is
used as new classes. Our proposed Mahalanobis distance-based classifier outperforms the other
methods by a significant margin, as the number of new classes increases. The AUC of our proposed
method is 47.7%, which is better than 41.0% of the softmax classifier and 43.0% of the Euclidean
distance classifier after all new classes are added.
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C.3 Experimental results on joint confidence loss

In addition, we remark that the proposed detector using softmax neural classifier trained by standard
cross entropy loss typically outperforms the ODIN detector using softmax neural classifier trained
by confidence loss [19] which involves jointly training a generator and a classifier to calibrate the
posterior distribution. Also, our detector provides further improvement if one use it with model
trained by confidence loss. In other words, our proposed method can improve any pre-trained soft-
max neural classifier.

Cross entropy loss + ODINCross entropy loss + baseline Cross entropy loss + Mahalanobis (ours)

Joint confidence loss + ODINJoint confidence loss + baseline Joint confidence loss + Mahalanobis (ours)
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Figure 7: Performances of the baseline detector [13], ODIN detector [21] and Mahalanobis detector
under various training losses.

C.4 Comparison with ODIN

In-dist
(model) Out-of-dist TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out

Baseline [13] / ODIN [21] / Mahalanobis (ours)

CIFAR-10
(DenseNet)

SVHN 40.2 / 86.2 / 90.8 89.9 / 95.5 / 98.1 83.2 / 91.4 / 93.9 83.1 / 78.8 / 96.6 94.7 / 98.3 / 99.2
TinyImageNet 58.9 / 92.4 / 95.0 94.1 / 98.5 / 98.8 88.5 / 93.9 / 95.0 95.3 / 98.5 / 98.8 92.3 / 98.5 / 98.8

LSUN 66.6 / 96.2 / 97.2 95.4 / 99.2 / 99.3 90.3 / 95.7 / 96.3 96.5 / 99.3 / 99.3 94.1 / 99.2 / 99.1

CIFAR-100
(DenseNet)

SVHN 26.7 / 70.6 / 82.5 82.7 / 93.8 / 97.2 75.6 / 86.6 / 91.5 74.3 / 87.1 / 94.8 91.0 / 97.3 / 98.8
TinyImageNet 17.6 / 42.6 / 86.6 71.7 / 85.2 / 97.4 65.7 / 77.0 / 92.2 74.2 / 85.6 / 97.6 69.0 / 84.5 / 97.2

LSUN 16.7 / 41.2 / 91.4 70.8 / 85.5 / 98.0 64.9 / 77.1 / 93.9 74.1 / 86.4 / 98.2 67.9 / 84.2 / 97.5

SVHN
(DenseNet)

CIFAR-10 69.3 / 71.7 / 96.8 91.9 / 91.4 / 98.9 86.6 / 85.8 / 95.9 95.7 / 95.2 / 99.6 82.8 / 84.5 / 95.8
TinyImageNet 79.8 / 84.1 / 99.9 94.8 / 95.1 / 99.9 90.2 / 90.4 / 98.9 97.2 / 97.1 / 99.9 88.4 / 91.4 / 99.6

LSUN 77.1 / 81.1 / 100.0 94.1 / 94.5 / 99.9 89.1 / 89.2 / 99.3 97.0 / 97.0 / 99.9 87.4 / 90.5 / 99.7

CIFAR-10
(ResNet)

SVHN 32.5 / 86.6 / 96.4 89.9 / 96.7 / 99.1 85.1 / 91.1 / 95.8 85.4 / 92.5 / 98.3 94.0 / 98.5 / 99.6
TinyImageNet 44.7 / 72.5 / 97.1 91.0 / 94.0 / 99.5 85.1 / 86.5 / 96.3 92.5 / 94.2 / 99.5 88.4 / 94.1 / 99.5

LSUN 45.4 / 73.8 / 98.9 91.0 / 94.1 / 99.7 85.3 / 86.7 / 97.7 92.5 / 94.2 / 99.7 88.6 / 94.3 / 99.7

CIFAR-100
(ResNet)

SVHN 20.3 / 62.7 / 91.9 79.5 / 93.9 / 98.4 73.2 / 88.0 / 93.7 64.8 / 89.0 / 96.4 89.0 / 96.9 / 99.3
TinyImageNet 20.4 / 49.2 / 90.9 77.2 / 87.6 / 98.2 70.8 / 80.1 / 93.3 79.7 / 87.1 / 98.2 73.3 / 87.4 / 98.2

LSUN 18.8 / 45.6 / 90.9 75.8 / 85.6 / 98.2 69.9 / 78.3 / 93.5 77.6 / 84.5 / 98.4 72.0 / 85.7 / 97.8

SVHN
(ResNet)

CIFAR-10 78.3 / 79.8 / 98.4 92.9 / 92.1 / 99.3 90.0 / 89.4 / 96.9 95.1 / 94.0 / 99.7 85.7 / 86.8 / 97.0
TinyImageNet 79.0 / 82.1 / 99.9 93.5 / 92.0 / 99.9 90.4 / 89.4 / 99.1 95.7 / 93.9 / 99.9 86.2 / 88.1 / 99.1

LSUN 74.3 / 77.3 / 99.9 91.6 / 89.4 / 99.9 89.0 / 87.2 / 99.5 94.2 / 92.1 / 99.9 84.0 / 85.5 / 99.1

Table 5: Distinguishing in- and out-of-distribution test set data for image classification. We tune the
hyper-parameters using validation set of in- and out-of-distributions. All values are percentages and
the best results are indicated in bold.
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In-dist
(model) Out-of-dist TNR at TPR 95% AUROC Detection accuracy AUPR in AUPR out

Baseline [13] / ODIN [21] / Mahalanobis (ours)

CIFAR-10
(DenseNet)

SVHN 40.2 / 70.5 / 89.6 89.9 / 92.8 / 97.6 83.2 / 86.5 / 92.6 83.1 / 72.1 / 94.5 94.7 / 97.4 / 99.0
TinyImageNet 58.9 / 87.1 / 94.9 94.1 / 97.2 / 98.8 88.5 / 92.1 / 95.0 95.3 / 94.7 / 98.7 92.3 / 97.0 / 98.8

LSUN 66.6 / 92.9 / 97.2 95.4 / 98.5 / 99.2 90.3 / 94.3 / 96.2 96.5 / 97.7 / 99.3 94.1 / 98.2 / 99.2

CIFAR-100
(DenseNet)

SVHN 26.7 / 39.8 / 62.2 82.7 / 88.2 / 91.8 75.6 / 80.7 / 84.6 74.3 / 80.8 / 82.6 91.0 / 94.0 / 95.8
TinyImageNet 17.6 / 43.2 / 87.2 71.7 / 85.3 / 97.0 65.7 / 77.2 / 91.8 74.2 / 85.8 / 96.2 69.0 / 84.7 / 97.1

LSUN 16.7 / 42.1 / 91.4 70.8 / 85.7 / 97.9 64.9 / 77.3 / 93.8 74.1 / 86.7 / 98.1 67.9 / 84.6 / 97.6

SVHN
(DenseNet)

CIFAR-10 69.3 / 69.3 / 97.5 91.9 / 91.9 / 98.8 86.6 / 86.6 / 96.3 95.7 / 95.7 / 99.6 82.8 / 82.8 / 95.1
TinyImageNet 79.8 / 79.8 / 99.9 94.8 / 94.8 / 99.8 90.2 / 90.2 / 98.9 97.2 / 97.2 / 99.9 88.4 / 88.4 / 99.5

LSUN 77.1 / 77.1 / 100 94.1 / 94.1 / 99.9 89.1 / 89.1 / 99.2 97.0 / 97.0 / 99.9 87.4 / 87.4 / 99.6

CIFAR-10
(ResNet)

SVHN 32.5 / 40.3 / 75.8 89.9 / 86.5 / 95.5 85.1 / 77.8 / 89.1 85.4 / 77.8 / 91.0 94.0 / 93.7 / 98.0
TinyImageNet 44.7 / 69.6 / 95.5 91.0 / 93.9 / 99.0 85.1 / 86.0 / 95.4 92.5 / 94.3 / 98.6 88.4 / 93.7 / 99.1

LSUN 45.4 / 70.0 / 98.1 91.0 / 93.7 / 99.5 85.3 / 85.8 / 97.2 92.5 / 94.1 / 99.5 88.6 / 93.6 / 99.5

CIFAR-100
(ResNet)

SVHN 20.3 / 12.2 / 41.9 79.5 / 72.0 / 84.4 73.2 / 67.7 / 76.5 64.8 / 48.6 / 69.1 89.0 / 84.9 / 92.7
TinyImageNet 20.4 / 33.5 / 70.3 77.2 / 83.6 / 87.9 70.8 / 75.9 / 84.6 79.7 / 84.5 / 76.8 73.3 / 81.7 / 90.7

LSUN 18.8 / 31.6 / 56.6 75.8 / 81.9 / 82.3 69.9 / 74.6 / 79.7 77.6 / 82.1 / 70.3 72.0 / 80.3 / 85.3

SVHN
(ResNet)

CIFAR-10 78.3 / 79.8 / 94.1 92.9 / 92.1 / 97.6 90.0 / 89.4 / 94.6 95.1 / 94.0 / 98.1 85.7 / 86.8 / 94.7
TinyImageNet 79.0 / 80.5 / 99.2 93.5 / 92.9 / 99.3 90.4 / 90.1 / 98.8 95.7 / 94.8 / 98.8 86.2 / 87.5 / 98.3

LSUN 74.3 / 76.3 / 99.9 91.6 / 90.7 / 99.9 89.0 / 88.2 / 99.5 94.2 / 93.0 / 99.9 84.0 / 85.0 / 98.8

Table 6: Distinguishing in- and out-of-distribution test set data for image classification when we tune
the hyper-parameters of ODIN and our method only using in-distribution and adversarial (FGSM)
samples. All values are percentages and boldface values indicate relative the better results.

C.5 LID for detecting out-of-distribution samples

Figure 8 and 9 shows the performance of the ODIN [21], LID [22] and Mahalanobis detector for
each in- and out-of-distribution pair. We remark that the proposed method outperforms all tested
methods.
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Figure 8: Distinguishing in- and out-of-distribution test set data for image classification using
ResNet.
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Figure 9: Distinguishing in- and out-of-distribution test set data for image classification using
DenseNet.

D Evaluation on ImageNet dataset

In this section, we verify the performance of the proposed method using the ImageNet 2012 clas-
sification dataset [5] that consists of 1000 classes. The models are trained on the 1.28 million
training images, and evaluated on the 50k validation images. For all experiments, we use the
pre-trained ResNet [12] which is available at https://github.com/pytorch/vision/blob/
master/torchvision/models/resnet.py. First, we measure the classification accuracy of gen-
erative classifier from the pre-trained model as follows:

by(x) = argmin
c

(f(x)� bµc)
> b⌃�1 (f(x)� bµc) + log b�c,

where b�c = Nc
N is an empirical class prior. We remark that this corresponds to predicting a class

label using the posterior distribution from generative with LDA assumption. Table 7 shows the
top-1 classification accuracy on ImageNet 2012 dataset. One can note that the proposed generative
classifier can perform reasonably well even though the softmax classifier outperforms it in all cases.
However, we remark that the gap between them is decreasing as the training accuracy increases, i.e.,
the pre-trained model learned more strong representations.

Model Softmax (training) Softmax (validation) Generative (validation)

ResNet (101 layers) 86.55 75.66 73.49
ResNet (18 layers) 69.06 68.69 63.32

Table 7: Top-1 accuracy (%) of ResNets on ImageNet 2012 dataset.

Next, we also evaluate the detection performance of the Mahalanobis distance-based detector on
ImageNet 2012 dataset using ResNets with 18 layers. For evaluation, we consider the problem of
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Figure 10: (a)/(b) Distinguishing clean and adversarial samples using ResNet with 18 layers on
ImageNet 2012 validation set. (c)/(d) Distinguishing clean and garbage samples using ResNet 18
layers trained on CIFAR-10 dataset.
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Figure 11: The generated garbage sample and its target class.

detecting adversarial samples generated by FGSM [10] and BIM [16]. Similar to Section 3.2, we
extract the confidence scores from every end of residual block of ResNet. Figure 10(a) and 10(b)
show the performance of various detectors. One can note that the proposed Mahalanobis distance-
based detector outperforms all tested methods including LID. These results imply that our method
can be working well for the large-scale datasets.

E Adaptive attacks against Mahalanobis distance-based detector

In this section, we evaluate the robustness of our method by generating the garbage images which
may fool the Mahalanobis distance-based detector in a white-box setting, i.e., one can access to the
parameters of the classifier and that of the Mahalanobis distance-based detector. Here, we remark
that accessing the parameters of the Mahalanobis distance-based detector, i.e., sample means and
covariance, is not mild assumption since the information about training data is required to compute
them. To attack our method, we generate a garbage images xg by minimizing the Mahalanobis
distance as follows:

argmin
xg

(f(xg)� bµc)
> b⌃�1 (f(xg)� bµc) ,

where c is a target class. We test two different scenarios using ResNet with 34 layers trained on
CIFAR-10 dataset. In the first scenario, we generate the garbage images only using a penultimate
layer of DNNs. In the second scenario, we attack every end of residual block of ResNet. Figure 11
shows the generated samples by minimizing the Mahalanobis distance. Even though the generated
sample looks like the random noise, it successfully fools the pre-trained classifier, i.e., it is classified
as the target class. We measure the detection performance of the baseline [13], ODIN [21], LID
[22] and the proposed Mahalanobis distance-based detector. As shown in Figure 10(c) and 10(d),
our method can distinguish CIFAR-10 test and garbage images for both scenarios better than the
tested methods. In particular, we remark that the input pre-processing is very useful in detecting
such garbage samples. These results imply that our proposed method is robust to the attacks.

F Hybrid inference of generative and discriminative classifiers

In this paper, we show that the generative classifier can be very useful in characterizing the abnormal
samples such as OOD and adversarial samples. Here, a caveat is that the generative classifier might
degrade the classification performance. In order to handle this issue, we introduce a hybrid inference
of generative and discriminative classifiers. Given a generative classifier with GDA assumptions, the
posterior distribution of generative classifier via Bayes rule is given as:

P (y = c|x) =
P (y = c)P (x|y = c)P
c0 P (y = c0)P (x|y = c0)

=
exp

�
µ>
c ⌃

�1x�
1
2µ

>
c ⌃

�1µc + log �c

�
P

c0 exp
�
µ>
c0⌃

�1x�
1
2µ

>
c0⌃

�1µc0 + log �c0
� .
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To match this with a standard softmax classifier’s weights, the parameters of the generative classifier
have to satisfy the following conditions:

µc = ⌃wc, log �c � 0.5µ>
c ⌃

�1µc = bc,

where wc and bc are weights and bias for a class c, respectively. Using the empirical covariance
b⌃ as shown in (1), one can induce the parameters of another generative classifier which has same
decision boundary with the softmax classifier as follows:

µ̃c = b⌃wc, �̃c =
exp(0.5µ̃>

c
b⌃�1µ̃c � bc)P

c0 exp(0.5µ̃
>
c0
b⌃�1µ̃c0 � bc0)

.

Here, we normalize the �̃c to satisfy
P

c �̃c = 1. Then, using this generative classifier, we define new
hybrid posterior distribution which combines the softmax- and sample-based generative classifiers:

Ph(y|x)

=
exp

⇣
�
⇣
bµ>
c
b⌃�1x� 0.5bµ>

c
b⌃�1bµc + log b�c

⌘
+ (1� �)

⇣
µ̃>
c
b⌃�1x� 0.5µ̃>

c
b⌃�1µ̃c + log �̃c

⌘⌘

P
c0 exp

⇣
�
⇣
bµ>
c0
b⌃�1x� 0.5bµ>

c0
b⌃�1bµc0 + log b�c0

⌘
+ (1� �)

⇣
µ̃>
c0
b⌃�1x� 0.5µ̃>

c0
b⌃�1µ̃c0 + log �̃c0

⌘⌘ ,

where � 2 [0, 1] is a hyper-parameter. This hybrid model can be interpreted as ensemble of softmax
and generative classifiers, and one can expect that it can improve the classification performance.
Table 8 compares the classification accuracy of softmax, generative and hybrid classifiers. One can
note that the hybrid model improves the classification accuracy, where we determine the optimal
tuning parameter between the two objectives using the validation set. We also remark that such
hybrid model can be useful in detecting the abnormal samples, where we pursue these tasks in the
future.

Model Dataset Softmax Generative Hybrid

DenseNet
CIFAR-10 95.16 94.76 95.00
CIFAR-100 77.64 74.01 77.71

SVHN 96.42 96.32 96.34

ResNet
CIFAR-10 93.61 94.13 94.11
CIFAR-100 78.08 77.86 77.96

SVHN 96.62 96.58 96.59

Table 8: Classification test set accuracy (%) of DenseNet and ResNet on CIFAR-10, CIFAR-100
and SVHN datasets.
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