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Abstract

We present the first robust Bayesian Online Changepoint Detection algorithm
through General Bayesian Inference (GBI) with β-divergences. The resulting
inference procedure is doubly robust for both the parameter and the changepoint
(CP) posterior, with linear time and constant space complexity. We provide a
construction for exponential models and demonstrate it on the Bayesian Linear
Regression model. In so doing, we make two additional contributions: Firstly, we
make GBI scalable using Structural Variational approximations that are exact as
β → 0. Secondly, we give a principled way of choosing the divergence parameter
β by minimizing expected predictive loss on-line. Reducing False Discovery Rates
of CPS from over 90% to 0% on real world data, this offers the state of the art.

1 Introduction

Modeling non-stationary time series with changepoints (CPS) is popular [23, 50, 33] and important
in a wide variety of research fields, including genetics [8, 16, 42], finance [27], oceanography [24],
brain imaging and cognition [13, 20], cybersecurity [37] and robotics [2, 26]. For streaming data,
a particularly important subclass are Bayesian On-line Changepoint Detection (BOCPD) methods
that can process data sequentially [1, 11, 43, 47, 46, 41, 8, 34, 44, 40, 25] while providing full
probabilistic uncertainty quantification. These algorithms declare CPS if the posterior predictive
computed from y1:t at time t has low density for the value of the observation yt+1 at time t + 1.
Naturally, this leads to a high false CP discovery rate in the presence of outliers and as they run
on-line, pre-processing is not an option. In this work, we provide the first robust on-line CP detection
method that is applicable to multivariate data, works with a class of scalable models and quantifies
model, CP and parameter uncertainty in a principled Bayesian fashion.

Standard Bayesian inference minimizes the Kullback-Leibler divergence (KLD) between the fitted
model and the Data Generating Mechanism (DGM), but is not robust under outliers or model mis-
specification due to its strictly increasing influence function. We remedy this by instead minimizing
the β-divergence (β-D) whose influence function has a unique maximum, allowing us to deal with
outliers effectively. Fig. 1 A illustrates this: Under the β-D, the influence of observations first
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Figure 1: A: Influence of yt on inference as function of distance to the posterior expectation
in Standard Deviations for β-divergences with different βs. B: Five jointly modeled Simulated
Autoregressions (ARS) with true CPS at t = 200, 400; bottom-most AR injected with t4-noise.
Maximum A Posteriori CPS of robust (standard) BOCPD shown as solid (dashed) vertical lines.

increases as they move away from the posterior mean, mimicking the KLD. However, once they
move far enough, their influence decreases again. This can be interpreted to mean that they are
(increasingly) treated as outliers. As β increases, observations are registered as outliers closer to the
posterior mean. Conversely, as β → 0, one recovers the KLD which cannot treat any observation as an
outlier. In addressing misspecification and outliers this way, our approach builds on the principles of
General Bayesian Inference (GBI) [see 6, 21] and robust divergences [e.g. 4, 15]. This paper presents
three contributions in separate domains that are also illustrated in Figs. 1 and 3:

(1) Robust BOCPD: We construct the very first robust BOCPD inference. The procedure is
applicable to a wide class of (multivariate) models and is demonstrated on Bayesian Linear
Regression (BLR). Unlike standard BOCPD, it discerns outliers and CPS, see Fig. 1 B.

(2) Scalable GBI: Due to intractable posteriors, GBI has received little attention in machine
learning so far. We remedy this with a Structural Variational approximation which preserves
parameter dependence and is exact as β → 0, providing a near-perfect fit, see Fig. 3.

(3) Choosing β: While Fig. 1 A shows that β regulates the degree of robustness [see also
21, 15], it is unclear how to set its magnitude. For the first time, we provide a principled way
of initializing β. Further, we show how to refine it on-line by minimizing predictive losses.

The remainder of the paper is structured as follows: In Section 2, we summarize standard BOCPD
and show how to extend it to robust inference using the β-D. We quantify the degree of robustness
and show that inference under the β-D can be designed so that a single outlier never results in false
declaration of a CP, which is impossible under the KLD. Section 3 motivates efficient Structural
Variational Inference (SVI) with the β-D posterior. Within BOCPD, we propose to scale SVI using
variance-reduced Stochastic Gradient Descent. Next, Section 4 expands on how β can be initialized
before the algorithm is run and then optimized on-line during execution time. Lastly, Section 5
showcases the substantial gains in performance of robust BOCPD when compared to its standard
version on real world data in terms of both predictive error and CP detection.

2 Using Bayesian On-line Changepoint Detection with β-Divergences

BOCPD is based on the Product Partition Model [3] and introduced independently in Adams and
MacKay [1] and Fearnhead and Liu [11]. Recently, both formulations have been unified in Knoblauch
and Damoulas [25]. The underlying algorithm has extensions ranging from Gaussian Processes [41]
and on-line hyperparameter optimization [8] to non-exponential families [44, 34].

To formulate BOCPD probabilistically, define the run-length rt as the number of observations at time
t since the most recent CP and mt as the best model in the setM for the observations since that
CP. Then, given a real-valued multivariate process {yt}∞t=1 of dimension d, a model universeM, a
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run-length prior h defined over N0 and a model prior q overM, the BOCPD model is

rt|rt−1 ∼ H(rt, rt−1) mt|mt−1, rt ∼ q(mt|mt−1, rt) (1a)
θm|mt ∼ πmt(θmt) yt|mt,θmt ∼ fmt(yt|θmt) (1b)

where q(mt|mt−1, rt) = 1mt−1
(mt) for rt > 0 and q(mt) otherwise, and whereH is the conditional

run-length prior so thatH(0, r) = h(r+1),H(r+1, r) = 1−h(r+1) for any r ∈ N0 andH(r, r′) =
0 otherwise. For example, Bayesian Linear Regression (BLR) with the d × p regressor matrix Xt

and prior covariance Σ0 is given by θm = (σ2,µ), fm(yt|θm) = Nd(yt;Xtµ, Id) and πm(θm) =
Nd(µ;µ0, σ

2Σ0)IG(σ2; a0, b0). If the computations of the parameter posterior πm(θm|y1:t, rt) and
the posterior predictive fm(yt|y1:(t−1), rt) =

∫
Θm

fm(yt|θm)πm(θm|y1:(t−1), rt)dθm are efficient
for all models m ∈M, then so is the recursive computation given by

p(y1, r1 = 0,m1) = q(m1) ·
∫

Θm1

fm1
(y1|θm1

)πm1
(θm1

)dθm1
= q(m1) · fm1

(y1|y0), (2a)

p(y1:t, rt,mt) =
∑

mt−1,rt−1

{
fmt(yt|Ft−1)q(mt|Ft−1,mt−1)H(rt, rt−1)p(y1:(t−1), rt−1,mt−1)

}
(2b)

where Ft−1 =
{
y1:(t−1), rt−1

}
and p(y1:t, rt,mt) is the joint density of y1:t, mt and rt.

The run-length and model posteriors are then available exactly at time t, as p(rt,mt|y1:t) =
p(y1:t, rt,mt)/

∑
mt,rt

p(y1:t, rt,mt). For a full derivation and the resulting inference see [25].

2.1 General Bayesian Inference (GBI) with β-Divergences (β-D)

Standard Bayesian inference minimizes the KLD between the Data Generating Mechanism (DGM)
and its probabilistic model (see Section 2.1 of [6] for a clear illustration). In the M-closed world
where one assumes that the DGM and model coincide, the KLD is the most efficient way of updating
posterior beliefs. However, this is no longer the case in the M-open world [5] where they match
only approximately [21], e.g. in the presence of outliers. GBI [6, 21] generalizes standard Bayesian
updating based on the KLD to a family of divergences. In particular, it uses the relationship between
losses ` and divergences D to deduce for D a corresponding loss `D. It can then be shown that for
model m, the posterior update optimal for D yields the distribution

πDm(θm|y(t−rt):t) ∝ πm(θ) exp
{
−
∑t
i=t−rt`

D(θm|yi)
}
. (3)

For parameter inference with the KLD and β-D, these losses are the log score and the Tsallis score:

`KLD(θm|yt) = − log (fm(yt|θm) (4)

`β(θm|yt) = −
(

1

βp
fm(yt|θm)βp − 1

1 + βp

∫
Y
fm(z|θm)1+βpdz

)
. (5)

Eq. (5) shows why the β-D excels at robust inference: Similar to tempering, `β exponentially
downweights the density, attaching less influence to observations in the tails of the model. This
phenomenon is depicted with influence functions I(yt) in Figure 1 A. I(yt) is a divergence between
the posterior with and without an observation yt [28].

GBI with the β-D yields robust inference without the need to specify a heavy-tailed or otherwise
robustified model. Hence, one estimates the same model parameters as in standard Bayesian inference
while down-weighting the influence of observations that are overly inconsistent with the model.
Accordingly, GBI provides robust inference for a much wider class of models and situations than the
ones illustrated here. Though other divergences such as α-Divergences [e.g. 19] also accommodate
robust inference, we restrict ourselves to the β-D. We do this because unlike other divergences, it
does not require estimation of the DGM’s density. Density estimation increases estimation error,
is computationally cumbersome and works poorly for small run-lengths (i.e. sample sizes). Note
that versions of GBI have been proposed before [14, 32, 38, 10], but have framed the procedure as
alternative to Variational Bayes instead.

Apart from the computational gains of Section 3.1, we tackle robust inference via the β-D rather
than via Student’s t errors for three reasons: Firstly, robust run-length posteriors need robustness
in ratios rather than tails (see Section 2.3 and the simulation results for Student’s t errors in the
Appendix). Secondly, Student’s t errors model outliers as part of the DGM, which compromises
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Figure 2: A: Lower bound on the odds of Thm. 1 for priors used for Figure 1 B and h(r) = 1/100.
B: k̂ for different choices of βp and output (input) dimensions d (2d) in an autoregressive BLR

the inference target: Consider a BLR with error et = εt + wtνt, where wt ∼ Ber(p) for p = 0.01,
εt ∼ N (0, σ2) with outliers νt ∼ t1(0, γ). Appropriate choices of βp give most influence to
the (1 − p) · 100% = 99% of typical observations one can explain well with the BLR model. In
contrast, modeling et as Student’s t under the KLD lets νt dominate parameter inference and lets
1% of observations inflate the predictive variance substantially. Thirdly, using Student’s t errors is a
technique only applicable to symmetric, continuous models. In contrast, GBI with the β-D is valid
for any setting, e.g. for asymmetric errors as well as point and count processes.

2.2 Robust BOCPD

The literature on robust on-line CP detection so far is sparse and covers limited settings without
Bayesian uncertainty quantification [e.g. 36, 7, 12]. For example, the method in Fearnhead and
Rigaill [12] only produces point estimates and is limited to fitting a piecewise constant function to
univariate data. In contrast, BOCPD can be applied to multivariate data and a set of modelsM while
quantifying uncertainty about these models, their parameters and potential CPS, but is not robust.
Noting that for standard BOCPD the posterior expectation is given by

E
(
yt|y1:(t−1)

)
=
∑
rt,mt

E
(
yt|y1:(t−1), rt−1,mt−1

)
p(rt−1,mt−1|y1:(t−1)), (6)

the key observation is that prediction is driven by two probability distributions: The run-length and
model posterior p(rt,mt|y1:t) and parameter posterior distributions πm(θm|y1:t). Thus, we make
BOCPD robust by using β-D posteriors pβrlm(rt,mt|y1:t), πβp

m (θm|y1:t) for β = (βrlm, βp) > 01.

βrlm prevents abrupt changes in pβrlm(rt,mt|y1:t) caused by a small number of observations, see
section 2.3. This form of robustness is easy to implement and retains the closed forms of BOCPD:
In Eqs. (2a) and (2b), one simply replaces fmt(yt|y0) and fmt(yt|Ft−1) by their β-D-counterparts
exp{`βrlm(θmt |yt)}, where

`βrlm(θmt |yt) = −
(

1

βrlm
fm(yt|Ft−1)βrlm − 1

1 + βrlm

∫
Y
fm(z|Ft−1)1+βrlmdz

)
. (7)

While the posterior pβrlm(rt,mt|y1:t) is only available up to a constant, it is discrete and thus easy
to normalize. Complementing this, βp regulates the robustness of πβp

m (θ|y1:t) by preventing it
from being dominated by tail events. Section 3.1 overcomes the intractability of πβp

m (θ|y1:t) using
Structural Variational Inference (SVI) that recovers the approximated distribution exactly as βp → 0.

2.3 Quantifying robustness

The algorithm of Fearnhead and Rigaill [12] is robust because hyperparameters enforce that a single
outlier is insufficient for declaring a CP. Analogously, we investigate conditions under which a single
(outlying) observation yt+1 is able to force a CP. An intuitive way of achieving this is by studying
the odds of rt+1 ∈ {0, r + 1} conditional on rt = r:

p(rt+1 = r + 1|y1:t+1, rt = r,mt)

p(rt+1 = 0|y1:t+1, rt = r,mt)
= ((((((((
p(y1:t, rt = r,mt) · (1−H(rt+1, rt))f

D
mt(yt+1|Ft)

((((((((
p(y1:t, rt = r,mt) ·H(rt+1, rt)fDmt(yt+1|y0)

. (8)

1In fact, βp= βm
p , i.e. the robustness is model-specific, but this is suppressed for readability
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Here, fDmt denotes the negative exponential of the score under divergence D. In particular,
fKLD
mt (yt+1|Ft) = fmt(yt+1|Ft) and fβrlm

mt (yt+1|Ft) = exp
{
−`βrlm(θm|yt)

}
as in Eq. (7). Tak-

ing a closer look at Eq. (8), if yt+1 is an outlier with low density under fDmt(yt+1|Ft), the
odds will move in favor of a CP provided that the prior is sufficiently uninformative to make
fDmt(yt+1|y0) > fDmt(yt+1|Ft). In fact, even very small differences have a substantial impact on
the odds. This is why using the Student’s t error for the BLR model with standard Bayes will not
provide robust run-length posteriors: While an outlying observation yt+1 will have greater density
fKLD
mt (yt+1|Ft) under a Student’s t error model than under a normal error model, fKLD

mt (yt+1|y0) (the
density under the prior) will also be larger under the Student’s t error model. As a result, changing
the tails of the model only has a very limited effect on the ratio in Eq. (8). In fact, the perhaps
unintuitive consequence is that Student’s t error models will yield CP inference that very closely
resembles that of the corresponding normal model. A range of numerical examples in the Appendix
illustrate this surprising fact. In contrast, CP inference robustified via the β-D does not suffer from
this phenomenon. In fact, Theorem 1 provides very mild conditions for the β-D robustified BLR
model ensuring that the odds never favor a CP after any single outlying observation yt+1.
Theorem 1. If mt in Eq. (8) is the Bayesian Linear Regression (BLR) model with µ ∈ Rp and priors
a0, b0, µ0, Σ0; and if the posterior predictive’s variance determinant is larger than |V |min > 0, then
one can choose any (βrlm, H(rt, rt+1)) ∈ S (p, βrlm, a0, b0, µ0,Σ0, |V |min) to guarantee that

(1−H(rt+1, rt))f
βrlm
mt (yt+1|Ft)

H(rt+1, rt)f
βrlm
mt (yt+1|y0)

≥ 1, (9)

where the set S (p, βrlm, a0, b0, µ0,Σ0, |V |min) is defined by an inequality given in the Appendix.

Thm. 1 says that one can bound the odds for a CP independently of yt+1. The requirement for a
lower bound |V |min results from the integral term in Eq. (5), which dominates β-D-inference if
|V | is extremely small. In practice, this is not restrictive: E.g. for p = 5, h(r) = 1

λ , a0 = 3, b0 =
5,Σ0 = diag(100, 5) used in Fig. 1 B, Thm. 1 holds for (βrlm, λ) = (0.15, 100) used for inference if
|V |min ≥ 8.12× 10−6. Fig. 2 A plots the lower bound (see Appendix) as function of |V |min.
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Figure 3: Exemplary contour plots of bivariate marginals for the approximation π̂βp
m (θm) of Eq. (11)

(dashed) and the target πβp
m (θm|y(t−rt):t) (solid) estimated and smoothed from 95, 000 Hamiltonian

Monte Carlo samples for the β-D posterior of BLR with d = 1, two regressors and βp = 0.25.

3 On-line General Bayesian Inference (GBI)

3.1 Structural Variational Approximations for Conjugate Exponential Families

While there has been a recent surge in theoretical work on GBI [6, 15, 21, 14], applications have
been sparse, in large part due to intractability. While sampling methods have been used successfully
for GBI [21, 15], it is not easy to scale these for the robust BOCPD setting. Thus, most work on
BOCPD has focused on conjugate distributions [1, 43, 11] and approximations [44, 34]. We extend
the latter branch of research by deploying Structural Variational Inference (SVI). Unlike mean-field
approximations, this preserves parameter dependence in the posterior, see Figure 3. While it is
in principle possible to solve the inference task by sampling, this is computationally burdensome
and makes the algorithm on-line in name only: Any sampling approach needs to (I) sample from
π
βp
m (θm|yt−rt:t) in Eq. (3), (II) numerically integrate to obtain fm(yt|y1:(t−1), rt) and lastly (III)
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sample and numerically integrate the integral in Eq. (7) which no longer has a closed form. Moreover,
this has to be performed for each (rt,m) at times t = 1, 2, . . . . On top of this increased computational
cost, it creates three sources of approximation error propagated forward through time via Eqs. (2a)
and (2b). Since πKLD

m is available in closed form and as β-D → KLD as β → 0 [4], there is an
especially compelling way of doing SVI for conjugate models using the β-D based on the fact that

π
βp
m (θm|y(t−rt):t) ≈ π

KLD
m (θm|y(t−rt):t) (10)

is exact as β → 0. Thus we approximate the β-D posterior for model m and run-length rt as

π̂
βp
m (θm) = argmin

πKLD
m (θm)

{
KL
(
πKLD
m (θm)

∥∥∥πβp
m (θm|y(t−rt):t)

)}
. (11)

While this ensures that the densities π̂βp
m and πKLD

m belong to the same family, the variational parameters
can be very different from those implied by the KLD-posterior. This approximation mitigates multiple
issues that would arise with sampling approaches: By forcing πβpm (θm|y1:t) into the conjugate closed
form, steps (II) and (III) are solved analytically. Thus, inference is orders of magnitude faster, while
the resulting approximation error remains negligible (see Figs 2B, 3).

Moreover, for many models, the Evidence Lower Bound (ELBO) associated with the optimization
in Eq. (11) is available in closed form. As a result, off-the-shelf optimizers are sufficient and no
black-box or sampling-based techniques are required to efficiently tackle the problem. Theorem 2
provides the conditions for a conjugate exponential family to admit such a closed form ELBO. The
proof alongside the derivation of the ELBO for BLR can be found in the Appendix
Theorem 2. The ELBO objective corresponding to the β-D posterior approximation in Eq. (11)
of an exponential family likelihood model fm(y; θm) = exp

(
η(θm)TT (y)

)
g(η(θm))A(x) with

conjugate prior π0(θm|ν0,X0) = g(η(θm))ν0 exp
(
ν0η(θm)TX0

)
h(X0, ν0) and variational posterior

π̂
βp
m (θm|νm,Xm) = g(η(θm))νm exp

(
νmη(θm)TXm

)
h(Xm, νm) within the same conjugate family

is analytically available iff the following three quantities have closed form:

E
π̂
βp
m

[η(θm)] , E
π̂
βp
m

[log g(η(θm))] ,

∫
A(z)1+βp

[
h

(
(1 + βp)T (z) + νmXm

1 + βp + νm
, 1 + β + νm

)]−1

dz.

The conditions of Theorem 2 are met by many exponential models, e.g. the Normal-Inverse-Gamma,
the Exponential-Gamma, and the Gamma-Gamma. For a simulated autoregressive BLR, we assess
the quality of π̂βp following Yao et al. [48], who estimate a difference k̂ between πβp

m and π̂βp
m relative

to a posterior expectation. We use this on the posterior predictive, which is an expectation relative to
π
βp
m and drives the CP detection. Yao et al. [48] rate π̂βp

m as close to πβp
m if k̂ < 0.5. Figs 3 and 2 B

show that our approximation lies well below this threshold for choices of βp decreasing reasonably
fast with the dimension. Note that these are exactly the values of βp one will want to select for
inference: As d increases, the magnitude of fmt(yt|Ft−1) decreases rapidly. Hence, βp needs to
decrease as d increases to prevent the β-D inference from being dominated by the integral in Eq. (5)
and disregarding yt [21]. This is also reflected in our experiments in section 5, for which we initialize
βp = 0.05 and βp = 0.005 for d = 1 and d = 29, respectively. However, as Figs. 3 and 2 B illustrate,
the approximation is still excellent for values of βp that are much larger than that.

3.2 Stochastic Variance Reduced Gradient (SVRG) for BOCPD

While highest predictive accuracy within BOCPD is achieved using full optimization of the variational
parameters at each of T time periods, this has space and time complexity of O(T ) and O(T 2). In
comparison, Stochastic Gradient Descent (SGD) has space and time complexity of O(1) and O(T ),
but yields a loss in accuracy, substantially so for small run-lengths. In the BOCPD setting, there is
an obvious trade-off between accuracy and scalability: Since the posterior predictive distributions
fmt(yt|y1:(t−1), rt) for all run-lengths rt drive CP detection, SGD estimates are insufficiently accurate
for small run-lengths rt. On the other hand, once rt is sufficiently large, the variational parameter
estimates only need minor adjustments and computing an optimum is costly.

Recently, a new generation of algorithms interpolating SGD and global optimization have addressed
this trade-off. They achieve substantially better convergence rates by anchoring the stochastic gradient
to a point near an optimum [22, 9, 35, 18, 29]. We propose a memory-efficient two-stage variation of
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Stochastic Variance Reduced Gradient (SVRG) inference for BOCPD

Input at time 0: Window & batch sizes W , B∗, b∗; frequency m, prior θ0, #steps K, step size η
s.t. W > B∗ > b∗; and ∼ denotes sampling without replacement

for next observation yt at time t do
for retained run-lengths r ∈ R(t) do

if τr = 0 then
if r < W then
θr ← θ∗r ← FullOpt (ELBO(yt−r:t)); τr ← m

else if r ≥W then
θ∗r ← θr; τr ← Geom (B∗/(B∗ + b∗))

B ← min(B∗, r)
ganchor
r ← 1

B

∑
i∈I ∇ELBO(θ∗r ,yt−i), where I ∼ Unif{0, . . . ,min(r,W )}, |I| = B

for j = 1, 2, . . . ,K do
b← min(b∗, r) and Ĩ ∼ Unif{0, . . . ,min(r,W )} and |Ĩ| = b
gold
r ← 1

b

∑
i∈Ĩ ∇ELBO(θ∗r ,yt−i), gnew

r ← 1
b

∑
i∈Ĩ ∇ELBO(θr,yt−i)

θr ← θr + η ·
(
gnew
r − gold

r + ganchor
r

)
; τr ← τr − 1

r ← r + 1 for all r ∈ R(t); R(t)← R(t) ∪ {0}

these methods tailored to BOCPD. First, the variational parameters are moved close to their global
optimum using a variant of [22, 35]. Unlike standard versions, we anchor the gradient estimates to
a (local) optimum by calling a convex optimizer FullOpt every m steps for the first W iterations.
While our implementation uses Python scipy’s L-BFSG-B optimization routine, any convex optimizer
could be used for this step. Compared to standard SGD or SVRG, full optimization substantially
decreases variance and increases accuracy for small rt. Second, once rt > W we do not perform
full optimization anymore. Instead, we anchor optimization to the current value as in standard SVRG,
by updating the anchor at stochastic time intervals determined by a geometric random variable with
success probability B∗/(B∗ + b∗). Whether the anchor is based on global optimization or not, the
next step consists in sampling B = min(rt, B

∗) observations without replacement from a window
with the min(rt,W ) most recent observations to initiate the SVRG procedure. Following this, for the
next K observations, we incrementally refine the estimates while keeping their variance low using a
stochastic-batch variant of [29, 30] by sampling a batch of size b = min(rt, b

∗) without replacement
from the min(rt,W ) most recent observations. The resulting on-line inference has constant space
and linear time complexity like SGD, but produces good estimates for small rt and converges faster
[22, 29, 30]. We provide a detailed complexity analysis of the procedure in the Appendix, where we
also demonstrate numerically that it is orders of magnitude faster than MCMC-based inference.

4 Choice of β

Initializing βp: The β-D has been used in a variety of settings [15, 4, 14, 49], but there is no
principled framework for selecting β. We remedy this by minimizing the expected predictive loss
with respect to β on-line. As the losses need not be convex in βp, initial values can matter for
the optimization. A priori, we pick βp maximizing the β-D influence for a given Mahalanobis
Distance (MD) x∗ under π(θm). As Figure 1 A shows, βp > 0 induces a point of maximum influence
MD(βp, πm(θm)): Points further in the tails are treated as outliers, while points closer to the mode
receive similar influence as under the KLD. A Monte Carlo estimate of MD(βp, πm(θm)) is found via
M̂D(βp, πm(θm)) = argmaxx∈R+

Î(βp, πm(θm))(x) [28]. We initialize βp by solving the inverse
problem: For x∗, we seek βp such that M̂D(βp, πm(θm)) = x∗. (The Appendix contains a pictorial
illustration of this procedure.) The k-th standard deviation under the prior is a good choice of x∗
for low dimensions [see also 12], but not appropriate as delimiter for high density regions even in
moderate dimensions d. Thus, we propose x∗ =

√
d for larger values of d, inspired by the fact that

under normality, MD →
√
d as d → ∞ [17]. One then finds βp by approximating the gradient of

M̂D(βp, πm(θm)) with respect to βp. As βrlm does not affect πβp
m , its initialization matters less and

generally, initializing βrlm ∈ [0, 1] produces reasonable results.
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Optimizing β on-line: For β = (βrlm, βp) and prediction ŷt(β) of yt obtained as posterior ex-
pectation via Eq. (6), define εt(β) = yt − ŷt(β). For predictive loss L : R → R+, we target
β∗ = argminβ {E (L(εt(β)))}. Replacing expected by empirical loss and deploying SGD, we seek
to find the partial derivatives of ∇βL (εt(β)). Noting that ∇βL (εt(β))) = L′ (εt(β))) · ∇β ŷt(β),
the issue reduces to finding the partial derivatives∇βrlm ŷt(β) and∇βp ŷt(β). Remarkably,∇βrlm ŷt(β)
can be updated sequentially and efficiently by differentiating the recursion in Eq. (2b). The derivation
is provided in the Appendix. The gradient ∇βp ŷt(β) on the other hand is not available analytically
and thus is approximated numerically. Now, β can be updated on-line via

βt = βt−1 − η ·
[
∇βrlm,tL

(
εt(β1:(t−1))

)
∇βp,tL

(
εt(β1:(t−1))

)
)

]
(12)

In spirit, this procedure resembles existing approaches for model hyperparameter optimization [8].
For robustness, L should be chosen appropriately. In our experiments L is a bounded absolute loss.

5 Results

Next, we illustrate the most important improvements this paper makes to BOCPD. First, we show
how robust BOCPD deals with outliers on the well-log data set. Further, we show that standard
BOCPD breaks down in the M-open world whilst β-D yields useful inference by analyzing noisy
measurements of Nitrogen Oxide (NOX) levels in London. In both experiments, we use the methods
in section 4, on-line hyperparameter optimization [8] and pruning for p(rt,mt|y1:t) [1]. Detailed
information is provided in the Appendix. Software and simulation code is available as part of a
reproducibility award at https://github.com/alan-turing-institute/rbocpdms/.

5.1 Well-log

The well-log data set was first studied in Ruanaidh et al. [39] and has become a benchmark data
set for univariate CP detection. However, except in Fearnhead and Rigaill [12] its outliers have
been removed before CP detection algorithms are run [e.g. 1, 31, 40]. WithM containing one BLR
model of form yt = µ + εt, Figure 4 shows that robust BOCPD deals with outliers on-line. The
maximum of the run-length distribution for standard BOCPD is zero 145 times, so declaring CPS

based on the run-length distribution’s maximum [see e.g. 41] yields a False Discovery Rate (FDR)
> 90%. This problem persists even with non-parametric, Gaussian Process, models [p. 186, 45].
Even using Maximum A Posteriori (MAP) segmentation [11], standard BOCPD mislabels 8 outliers
as CPS, making for a FDR > 40%. In contrast, the segmentation of the β-D version does not mislabel
any outliers. Morevoer and in accordance with Thm. 1, its run-length distribution’s maximum never
drops to zero in response to outliers. Further, a natural byproduct of the robust segmentation is a
reduction in squared (absolute) prediction error by 10% (6%) compared to the standard version. The
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Figure 4: Maximum A Posteriori (MAP) segmentation and run-length distributions of the well-log
data. Robust segmentation depicted using solid lines, CPS additionally declared under standard
BOCPD with dashed lines. The corresponding run-length distributions for robust (middle) and
standard (bottom) BOCPD are shown in grayscale. The most likely run-lengths are dashed.
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