Supplementary material

Supplementary material for the paper: “On the Global Convergence of Gradient Descent for Over-
parameterized Models using Optimal Transport” authored by Lénaic Chizat and Francis Bach (NIPS
2018).

This appendix is organized as follows:

o Appendix [A} Introductory facts
e Appendix [Bf Many-particle limit and Wasserstein gradient flow
e Appendix [C} Convergence to global minimizers

e Appendix [D} Case studies and numerical experiments

A Introductory facts

A.1 Tools from measure theory

In this paper, the term measure refers to a finite signed measure on R?, d > 1, endowed with its Borel
o-algebra. We write M(X) for the set of such measures concentrated on a measurable set X C RY,
Hereafter, we gather some concepts and facts from measure theory that are used in the proofs.

Variation of a signed measure. The Jordan decomposition theorem [10, Cor. 4.1.6] asserts that any
finite signed measure 1 € M(R?) can be decomposed as 1 = 1y — p— where pu, u— € M, (R?).
If iy and p— are chosen with minimal total mass, the variation of p is the nonnegative measure
|| == py + p_ and |u|(R?) is the total variation norm of pu.

Support and concentration set. The support spt pu of a measure 1 € M (R?) is the complement
of the largest open set of measure 0, or, equivalently, the set of points which neighborhoods have
positive measure. We say that 1 is concentrated on a set S C R? if the complement of S is included
in a measurable set of measure 0. In particular, p is concentrated on spt p.

Pushforward. Let X and Y be measurable subsets of R? and let 7' : X — Y be a measurable map.
To any measure ;1 € M(X) corresponds a measure T u € M(Y') called the pushfoward of by T'. Tt
is defined as T 1(B) = p(T~1(B)) for all measurable set B C Y and corresponds to the distribution
of the “mass" of y after it has been displaced by the map 7. It satisfies fy ed(Typp) = fX poTdu
whenever ¢ : Y — R is a measurable function such that ¢ o T' is p-integrable [10, Prop. 2.6.8]. In
particular, with a projection map 7 : (1, 22, ...) > x;, the pushforward 7@ w is the marginal of p
on the ¢-th factor.

Weak convergence and Bounded Lipschitz norm. We say that a sequence of measures p,, €
M(R?) weakly (or narrowly) converges to . if, for all continuous and bounded function ¢ : R? — R
it holds [ ¢du,, — [ dp. For sequences which are bounded in total variation norm, this is

equivalent to the convergence in Bounded Lipschitz norm. The latter is defined, for 1 € M(R?), as

| ullBL = sup {/@du; p: R =R, Lip(p) <1, [l < 1} (7)
where Lip(¢p) is the smallest Lipschitz constant of ¢ and || - ||o the supremum norm.

Wasserstein metric. The p-Wasserstein distance between two probability measures 1, v € P(R?)
is defined as

Wil (m/ Iy - x’)dv(ﬂc,w)l/p

where the minimization is over the set of probability measures v € P(R? x R) such that the marginal
on the first factor R? is z and is v on the second factor. The set of probability measures with finite
second moments endowed with the metric W5 is a complete metric space that we denote Po(R?).
A sequence (i, ) converges in Po(R?) iff for all continuous function ¢ : R? — R with at most
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quadratic growth it holds [ ¢dpu,,, — [ ¢du [3l Prop. 7.1.5] (this is stronger than weak convergence).
Using, respectively, the duality formula for W [29] Eq. (3.1)] and Jensen’s inequality, it holds

= viBL < Wilp,v) < Wa(p,v).

Note that the functional of interest in this article is continuous for the Wasserstein metric. This strong
regularity is rather rare in the study of Wasserstein gradient flows.

Lemma A.1 (Wasserstein continuity of F'). Under Assumptions[2.1} the function F is continuous for
the Wasserstein metric W.

Proof. Let (i )m, it € P2(€2) be such that Wa (i, 1) — 0. By Assumption R.1}(ii)-(c), || ||
and |V| have at most quadratic growth. It follows | Vdu,, — [ Vdu and since, by the properties
of Bochner integrals [10, Prop. E.5], it holds || [ ®dj, — [ @dpl| < [ [|®]|d(pm — p), we also

have [ ®du,, — [ ®du strongly in F. As R is continuous in the strong topology of F, it follows
Flum) = F(u). 0

A.2 Lifting to the space of probability measures

Let us give technical details about the lifting introduced in Section [2.1] that allows to pass from a
problem on the space of signed measures on © C R9~! (the minimization of .J defined in (T)) to an
equivalent problem on the space of probability measures on a bigger space  C R¢ (the minimization
of F defined in (3)).

Homogeneity. We recall that a function f from R to a vector space is said positively p-
homogeneous, with p > 0 if for all u € R? and A\ > 0 it holds f(\u) = A f(u). We often
use without explicit mention the properties related to homogeneity such as the fact that the (sub)-
derivative of a positively p-homogeneous function is positively (p — 1)-homogeneous and, for f
differentiable (except possibly at 0), the identity u - V f(u) = pf(u) for u # 0.

A.2.1 The partially 1-homogeneous case

We take 2 := R x O, &(w,0) = w - ¢(f) and V(w, ) = |w|V(0) for some continuous functions
¢: 0 — Fand V:0— R, . This setting covers the lifted problems mentioned in Section
We first show that F' can be indifferently minimized over M, (£2) or over P(2), thanks to the
homogeneity of ® and V' in the variable w.

Proposition A.2. For all n € M (), there is v € P(2) such that F(u) = F(v).

Proof. Tf |11 (€2) = 0 then F'(u) = 0 = F(J0,9,) Where 6 is any point in ©. Otherwise, we define
the map 7" : (w,0) — (|u|(©2) - w,0) and the probability measure v := T (u/|u|(Q)) € P(Q),
which satisfies F'(v) = F(u). O

We now introduce a projection operator h' : M (£2) — M(O) that is adapted to the partial
homogeneity of ® and V. It is defined by h'(u)(B) = [, wu(dw,B) for all p € P(Q) and
measurable set B C O or, equivalently, by the property that for all continuous and bounded test
function p : © — R,

[ e@artw® = [ wplo)duw.o)

e Rx©

This operator is well defined whenever (w, #) — w is p-integrable.

Proposition A.3 (Equivalence under lifting). It holds M(©) C h*(P(Q)) = h'(M(Q)). For
a regularizer G on M(0©) of the form G(u) = inf,cp-1(,) [o Vdv, it holds inf,cpe) J(v) =
inf,ent, () F'(1). If the infimum defining G is attained and if v € M(©) minimizes J, then there
exists ;1 € h™1(v) that minimizes F over M (£2).

Proof. A signed measure v € M(O) can be expressed as v = fo where 0 € P(O) and f : © —
R € L'(0) (take for instance o the normalized variation of y if ||(©) > 0). The measure

o= (f x id)go @®)
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belongs to P(£2) and satisfies h' () = . This proves that b (P(9)) is surjective. It is clear by the
definition of A" that for all u € h™*(v), itholds [ ®du = [ ¢ dv hence F(u) > J(v), with equality
when g is the minimizer in the definition of G. O

The class of regularizer considered in Proposition [A.3|includes the total variation norm.

Proposition A.4 (Total variation). Let V (w,6) = |w|. For p € M(©), it holds [ Vdu > |h*(1)|(©)
with equality if, for instance,  is a lift of h*(11) of the form ().

Proof. Let i € P(Q) and v = h'(p). We define 7y := fR+ wp(w,-) and v_ = — [ wp(w,-).
Clearly, v = U, — D_ and by the definition of the total variation of a signed measure, |v|(©) =
[v4(©) + |v_|(©) < [74](8) + |7—|(©) = [ Vdpu. There is equality whenever spt 7, N spt _
has |v|-measure 0 (see [L0, Cor. 4.1.6]), a condition which is satisfied by the lift in @]) O

A.2.2 The 2-homogeneous case

Another structure that is studied in this paper is when ® and V' are defined on R? and are positively
2-homogeneous. In this case, the role played by © is the previous section is played by the unit
sphere S9! of R%. We could again make links between F' (defined as in Eq. (3)) and a functional on
nonnegative measures on the sphere (playing the role of .J) but here we will limit ourselves to defining
the projection operator relevant in this setting. It is A2 : M, (R?) — M, (S?1) characterized
by the relationship, for all continuous and bounded function ¢ : S?~* — R (with the convention

¢(0/0) = 0):
/ ¢(9)dh2(u)(9)=/ [ul*e(u/ [ul)dp(u).
gd—1 Rd

This operator is well-defined iff i has finite second order moments.

B Many-particle limit and Wasserstein gradient flow

B.1 Proof of Proposition 2.3]

As the sum of a continuously differentiable and a semiconvex function, F,,, is locally semiconvex and
the existence of a unique gradient flow on a maximal interval [0, T'[ with the claimed properties is
standard, see [30, Sec. 2.1]. Now, a general property of gradient flows is that fora.et € Ry, u € ,
the derivative is (minus) the subgradient of minimal norm. This leads to the explicit formula involving
the velocity field with pointwise minimal norm:

vy(u) = argmin {|v]* ; T(u) — v € OV (u)}
= Oy(u) — argmin {|0;(u) — 2> ; z € OV (uv)}
= (id = projoy (u)) (0¢(w)).

In the specific case of gradient flows of lower bounded functions, we can derive estimates that imply
that T = oo (even if F},, is not globally semiconvex). Indeed, for all £ > 0, it holds

F0(0) = By (u(t) = - [ " u(s)ds = - / T ()Pds > (/ t |u’<s>ds)2

by Jensen’s inequality. Since F,, is lower bounded, this proves that the gradient flow has bounded
length on bounded time intervals. By compactness, if 7" was finite then u(7") would exist, thus
contradicting the maximality of 7', hence T' = oo and the gradient flow is globally defined.

B.2 Link between classical and Wasserstein gradient flows

We first give a rigorous definition of the continuity equation which appear in the definition of
Wasserstein gradient flows (Definition |2.4).
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Continuity equation. Considerations from fluid mechanics suggest that if a time dependent dis-
tribution of mass (u); is displaced under the action of a velocity field (v;);, then the continuity
equation is satisfied: Oy = —div(vept). For distributions which do not have a smooth density,
this equation should be understood distributionally, which means that for all smooth test functions
¢ :]0, 0o[ xR with compact support, it holds

/C><> / (Orpe(u) + Ve (u) - ve(u)) dpg (w)dt = 0.
0o JRrd

The integrability condition fot ® Jga lve(w)|dp(u)dt < oo for all £y < T should also hold.

As we show now, there is a precise link between classical and Wasserstein gradient flow (Defini-
tions [2.2]and 2.4). This is a simple result but might be instructive for readers who are not familiar
with the concept of distributional solutions of partial differential equations.

Proposition B.1 (Atomic solutions of Wasserstein gradient flow). Ifu : Ry — Q™ is a classical
gradient flow for F,,, in the sense of Definition thent v fiy, == % ZZ’;I Ou,(¢) is a Wasserstein
gradient flow of F' in the sense of Definition|2.4]

Proof. Letus call v; the velocity vector field defined in (3. In it easy to see that ¢ +— i, ¢ is absolutely
continuous for W5 and for any smooth function with compact support ¢ : ]0, 0o[ x RY — R, we have

RS /R 4 ou(ua(t)) dr
=3 [ @) + T ) )

_ / + / (Drpe(u) + Vaipe(u) - vi(1)) dpi ol

which precisely means that (1, ¢):>0 is a distributional solution to (6). O

Note that (p,,); has the same number of atoms throughout the dynamic. In particular, if no
minimizer of F' is an atomic measure with at most m atoms, then (p, ¢); is guaranteed to not
converge to a minimizer.

B.2.1 Properties of the Wasserstein gradient flow (proof of Proposition

In this section, we use the general theory of Wasserstein gradient flows developed in [3] to prove
existence and uniqueness of Wasserstein gradient flows as claimed in Proposition under Assump-
tions 2.1] The “existence” part of the proof is in fact redundant with Theorem [2.6] which provides
with another constructive proof. We recall that F/(u) : Q@ — R is defined as

Fi(p)(w) = (R'(f@dp), @(w)) +V (u)
and that the field of subgradients of minimal norm of F”() has an explicit formula given in (3. Our

strategy is to use, as an intermediary step, the Wasserstein gradient flows for the family of functionals
F) . P2(2) — R defined, for r > 0, as
Fp) if p(@Qr) =1
F(T) — ’
(1) {oo otherwise

where (Q,.)>0 is the nested family of subsets of R that appear in Assumptions These “localized”
functionals have nice properties in the Wasserstein geometry, as shown in Lemma[B.2} For r > 0,
we say that v € P(Q x Q) is an admissible transport plan if both its marginals are concentrated
on (), and have finite second moments. The transport cost associated to «y is denoted Cp(y) =

([ |y — z|Pdy(z,y)) 1/p for p > 1, and we introduce the quantities

dd; — do,
[d®]jo,r = sup [|d®.]| Lgs = sup ”~7”
ueQr wacQ, & —ul
uF£U
dR; — dR
ldR]loo,r = sup [|dRy]| Lar = sup lldRy — dR||
FASERS

1,9€5 If— 9”
f#g
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where &, := { [®dp ; p € P(Q), p(Q,) = 1} is bounded in F. Those quantities are finite for all
r > 0 under Assumptions[2.1] For the sake of clarity, we set V' = 0 in the next lemma, and focus on
the loss term, which is a new object of study. The term involving V', well-studied in the theory of
Wasserstein gradient flows (see [3, Prop. 10.4.2]), is incorporated later.

Lemma B.2 (Properties of F(") in Wasserstein geometry). Under Assumptions suppose that
V = 0. Forall v > 0, F\") is proper and continuous for Wy on its closed domain. Moreover,

(i) there exists . > 0 such that for all admissible transport plan ~y, considering the transport
interpolation ] = ((1 — t)w' + tw?) 4, the function t — F(u]) is differentiable with a
A\-C3(v)-Lipschitz derivative;

(ii) for ju concentrated on Q. a velocity field v € L*(u, RY) satisfies, for any admissible transport
plan ~ with first marginal p,

F() 2 Fn) + [ 0(0) - (3 - w)dy(u @) +o(Ca()

if and only if v(u) € O(F'(p) + g, )(u) for p-almost every u € ), where 1, is the convex
Sfunction on ) that is worth 0 on Q. and oo outside.

Proof. First, it is clear that F is proper because F(")(,,) = R(®(uo)) is finite whenever ug € Q,..
It is moreover continuous (see Lemmal|A.1) on its closed domain {p € P2(Q) ; u(Q,) = 1}.

Proof of (i). Let us denote h(t) := F((u]). Since dR and d® are Lipschitz on F, and Q,
respectively, h(t) is differentiable with

W () = %F(”(MZ) = (R'(Jdpi]), [d(1-tyarey (v — ) dy(2.y)).

In particular, we can differentiate ¢ — [ ®du] = [®((1 — t)z + ty)dy(z,y) because all (1)),
are supported on ), where d® is uniformly bounded and Bochner integrals admit a dominated
convergence theorem [10, Thm. E6]. For 0 < t; < t3 < 1, we have the bounds

[ (t2) = B (t2)| < (I) + (IT)
where, one the one hand,
(I) = ‘<R/ (fq)dr“tz) - R (fq)dﬂtl) 7qu)(1—t2)z+t2y(y - :L')d’y(x, y)>’

< [Lar - |d®lcc,r - [t = ta] - C1(7)] - [[[d®]| oo, - C1 (V)]

< Lag - ld®1%, , - C3(7) - [t2 = ta]
where we used Holder’s inequality to obtain C7 () < C3() is the last line. On the other hand,

() = (R (Jodps,) , [ [dP(—ta)ortay — AP—t1)0rt2y] (v — 2)dy (2, 1))
< Laa - [|dR]|oc,r - C3(7) - [t2 — ta].

As a consequence, h' is A, - C3 () Lipschitz with A, = Lar||d® |2, , + Las ||[dR| s, In particular,

using the notions defined in [3] , F(") is (—\,.)-geodesically semiconvex. Remark that these bounds
may explode when r goes to infinity: this explains why we work with measures supported on Q...

Proof of (ii). The proof is similar, with the difference that this property is a local one. We have the
first-order Taylor expansions, for v, € Q.- and f,g € F,,

O(u) = @(u) + d®(a — u) + M(u, )

R(g) = R(f) + (R'(f),9— )+ N(f.9)

where the remainders M and N satisfy || M (u, @)|| < $Lao - |@ — ul* and [|[N(f,9)|| < 2Lar -
llg — f|I?>. We denote by y and v the first and second marginals of -y, assume that they are both
concentrated on (,., and obtain, by composition, the Taylor expansion

FO W) = FO(u) + (R/([®dp), [d, (i@ —u)dy(u, @) + (1) + (IT)
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where (I) = (R'([®dp), [M(u,@)dy(u, @)), so
()] < %HdRHoo,r - Lag - C3(7) = o(Ca(7))
and (IT) = N([®du, [®dv), so

(1)) < %LdR N dPo (@ — w)dry(u, @) + [ M (u, @)dy(u, @)

IN

glan (140, - U6+ 5 Lan - C30) ) = o(Cat)

where we used Holder’s inequality for the bound C%(7y) < C3(7y). As a consequence,
FO0) = FO ) + [ ([ 0d4), 0,0 - 0))dr(0,3) + 0(Cat)

and remember that the j-th component of VF’(p) is u — (R'([®du), d®,(e;)) where e; is the
j-th vector of the canonical basis of R, This completely characterizes a velocity field satisfying (ii)
on the interior of @,-. On the boundary of @, there is more freedom in the choice of v(u) since Wigy
is constrained to be supported on @, so v(u) — VF’(u)(u) can live in the normal cone of @, at u,
which is the set J¢q,. (u). The condition thus relaxes as v(u) € O(F' (1) + tg,.)(u). O

The previous properties are sufficient to guarantee that Wasserstein gradient flows for the functionals
F () are well defined.

Lemma B.3. Under Assumptions there exists a unique Wasserstein gradient flow for F(")
starting from any po € P2(Q2) concentrated on Q., i.e. a curve (ng))tzoy continuous in P2($2), that

solves (‘3,:/1@ + div(v,gr)uy)) = 0 where, for all t > 0, vgr)(u) € 8(F’(,u,§r))(u) + 1, (u)) for

uﬁ’”) -a.eu € Q.

Proof. 1t is easy to see that if V' is Ay -semiconvex, then the function p — f Vdup is Ay semiconvex
along generalized geodesics (in the sense of [3, Def. 9.2.4], see [3, Prop. 10.4.2]). Combining with
Lemma (i), we have that F'(") is (Av — A;)-semiconvex along generalized geodesics. Moreover,
Lemma (ii) implies that F(") admits strong Wasserstein subdifferentials on its domain [3, Def
10.3.1] and again, it is an easy adaptation to show that (ii) still holds with a potential term. So the

existence of a unique Wasserstein gradient flow characterized as above is guaranteed by [3, Thm.
11.2.1], H

We are in position to prove the well-posedness of Wasserstein gradient flows for the original functional
F'. Notice that, by the characterization in Lemma the Wasserstein gradient flows for the functions
F() all coincide for 7 > 7o > 0 on [0, 7] if {*" is concentrated in Q,, for all ¢ € [0,7]. Our
strategy is thus simply to make sure that for all time 7', such a ry > 0 exists, i.e. to make sure that
the support of gradient flows does not grow too fast.

Proof of Proposition[2.5] Let r( be such that i is concentrated on @Q,,. Given Lemma[B.3] for all
r > 10, there exists a unique, globally defined, Wasserstein gradient flow (,uz(f))t >o for F()_ For all

r > 10, consider the first exit time from @,
ty=inf{t > 0; pi*(Q,) < 1}.
Note that the definition of ¢, involves the flow (,ufr)t but in fact, for all # > r and 0 < ¢ < t,., it holds

Mg%“) = NEF) by the uniqueness in Lemma Thus, if ¢, > 0, we have existence and uniqueness

of a Wasserstein gradient flow in the sense of Deﬁnition on [0, ¢,]. It only remains to show that
lim,_,  t, = oo so that the gradient flow can be defined at all times.

Given the property of v(") in Lemma (ii), for all time 0 < ¢ < ¢, it holds vt(r) € 9F'( Mgf’)) in

L? (ugr); Rd). Therefore, using Assumption (iii)-(c) and the boundedness of d R on sublevel sets,
we have the bound, for 0 <t < ¢,,

[0l (w)| < C1 + Cor
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with constants Cy and C5 independent of u,r and ¢. This shows, by Gronwall’s lemma applied
to the flow of characteristics of the velocity field (this flow is defined below in Lemma [B.4), that

Mﬁ’“) is concentrated on {u € O ; dist(u, Q,,) < (ro + C1/C3)etC?} and thus, for all T > 0 there
exists 7 > 0 such that ¢, > T'. Hence lim,_, o, t, = oo and the gradient flow from Deﬁnition[ﬂ]is
uniquely well-defined on [0, T'[ for T' > 0 arbitrary large. O

Let us now add a useful representation lemma for the Wasserstein gradient flow as the pushforward
of po by the flow of the velocity fields.

Lemma B.4 (Representation of the flow). Under the assumptions of Proposition let (111)¢>0
be the Wasserstein gradient flow of F and (v;); the associated velocity fields. Consider the flow
X 1Ry x Q = Qwhich for all u € Q, is an absolutely continuous solution to

X(0,u)=u and O X(t,u) = v (X(t,u)) fora.e.t > 0.

Then X is uniquely well-defined, continuous, X (t, ) is Lipschitz on Q,, uniformly on compact time
intervals for all v > 0, and it holds p; = (X)xfto.

Proof. The claims concerning X are classical and follow from the fact that v, satisfies a one-sided
Lispchitz property on (.., uniformly on compact time intervals [[3, Lemma 8.1.4]. The expression as
a pushforward is also a general property of the continuity equation, see [3, Prop. 8.1.8]. O

B.3 Proof of the many-particle limit (Theorem 2.6)

While we could rely on abstract stability results for Wasserstein gradient flows [3, Thm.11.2.1
(Stability)] our proof is direct and uses basic arguments. It also gives an independent argument for the
existence of Wasserstein gradient flows, distinct from the standard one : it involves a discretization in
space instead of the classical discretization in time.

Step (i). We first show that, at least on a small time interval [0, ¢,.], the paths are contained in Q.
for some r > rg. Let us introduce ¢, the first exit time from Q.-

tr=inf{t > 0; Im € N, pup 1 (Qr) < 1}.

In order to show that ¢.. is strictly positive, it is sufficient to bound the velocity of individual particles
before t,. Consider Ly, the Lipschitz constant of V on @Q,.. Given the expression of the velocity
of each particle (given in Eq. (5)) and the minimum travel distance r — r( required to exit Q,., we
obtain the lower bound on the exit time ¢, > (r — 70)/(||d®||0o . ||dR||s0.r + Lv,r) > 0.

Step (ii). Let us now work on the time interval [0, ¢,.] and prove the existence of a limit curve
t — p in the space Po(O) using standard estimates for gradient flows and compactness. Our starting
point is the bound, for 0 < ¢ < ts < t,,

1 m (tz —tl) ta M
Wa(ftm 15 i, t2)° < o Z W i(t2) — W i (t1)* < T /t1 ; [7,,i(5)[*ds

=1

which follows by matching each particle at ¢; to its future position at ¢, and by Jensen’s inequality.
Recalling the identity - >~ | |u], ;(t)]* = — 2 F(ftm,¢) from Proposition it follows

1/2
Waltim s fomss)) < VB =T (supmm,o) in F(u)))

HEP(R)

and thus the family of curves (¢t — fiym,¢)m is equicontinuous in W5 on [0, ¢,], uniformly in m.
Moreover, for all ¢ € [0, ¢,.], the family (fim, +)m lies in a W5 ball, as such weakly precompact (but a
priori not Ws-precompact). Since the weak topology is weaker than the topology of W5, by Ascoli
theorem, we can extract a subsequence converging weakly to a curve (j1;);>0 continuous in the weak
topology, which is concentrated in @, at all time. We have also uniform convergence in the Bounded
Lipschitz metric, which metrizes weak convergence of probability measures. In the following we
only consider this subsequence, still denoted by (£t ).
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Step (iii). The next step is to show that the limit curve (1) satisfies a continuity equation as in
Definition @ Consider the velocity fields v,,; defined in Equation (3) and let us define v; the
analog for the limit curve (11;):. We want to show that the sequence (E,, ), of momenta, the vector
valued measures on [0, t,.] X €2 defined by E,,, := v, ¢t +dt, converges weakly to E := v, udi.
Notice that these measures are also concentrated on (,.. For any bounded and continuous function
¢ :[0,t,] x RY — R%, it holds

[ o+t = B < ol om0 = )it + | [ o v = )] 0

We first prove that the first term in (@) tends to 0. Since all (fiy,,¢)m ¢ are concentrated on Q. it
is sufficient to show that the sequence of velocity fields (¢, u) — vy, +(u) converges uniformly on
[0,t,] X @ to (t,u) — v:(u). We have, using the fact that a projection on a convex set is 1-Lipschitz,

[t (1) = ve(w)| < 2|Tgm(u) — Ve(w)] < 2[dP oo, - [ B'(f@dpim,e) — R'([@dpe)|-
Moreover, we have for all ¢ € [0, ¢,],
R (f @dptm,e) — R'([@dpe)l| < [|[dR|oo,r - || [ Pdpim,e — [ Ppe]

< ldRllso,r - sup  [(f, ©(u))d (s, — pe)(w)
feF, lIflI<1

< HdR”oom ~max{ || @], |[dPlco,r } - | tm,t — pellBL-

Since the convergence of (t — L, ¢)m is uniform in the Bounded Lipschitz norm, this proves
uniform convergence of the velocity fields and the convergence of the first term in (@) to 0. The
second term also converges to 0 because (¢, u) — ¢(t,u) - vt (u) is continuous and bounded. We thus
conclude that E,,, tends weakly to F and, in particular, the continuity equation (6} is also satisfied

in the limit. As (v;); is bounded on (), uniformly in time, one has fotr Joy lve(w) P dp (w)dt < oo
which proves that (p;); is absolutely continuous in Ws.

Step (iv). So far, we have shown the convergence, up to a subsequence, to a Wasserstein gradient
flow on [0,,]: it remains to show that lim,_, ¢, = oco. Since F'(um,0) — F'(uo) and all paths
(tt¢,m )1 decrease monotonically the value of F, everything lies in a sublevel of R, where dR is
bounded. It follows that a uniform bound on the velocity of the particles with linear growth in 7 is
available and, by Gronwall’s inequality, we obtain that lim,_, ., ¢, = oo, just as in the end of the
proof of Proposition[2.5] The theorem follows by combining this result with the uniqueness stated in

Proposition

C Convergence to global minimizers

We give in this section a proof of Theorems and [3.3] All results have two versions: one in the
2-homogeneous setting (Assumptions [3.2)) and its counterpart in the partially 1-homogeneous setting
(Assumptions[3.4). We have displayed in Figure [ the level sets of functions with these homogeneity
properties, in order to highlight the differences between these two cases. The proofs tend to be more
straightforward in the 2-homogeneous setting and they can be read independently of the other case.
This section is organized as follows:

e In Section[C.T} we justify the global optimality conditions.

e We give in Section[C.2]a criteria for Wasserstein gradient flows to escape from neighborhoods
of non-optimal stationary points, and we also characterize measures that can be limits of
Wasserstein gradient flows. These results are valid for arbitrary initializations.

e In Section [C.3] we prove that the assumption on the support of the initialization made in
Theorems|[3.3|and [3.5]is preserved by Wasserstein gradient flows.

e All these facts combined lead to a proof of Theorems [3.3]and [3.5]in Section[C.4]

It will be often the case in the statements and in the proofs that they involve the projection h? (1)
of a probability measure p € P(Q) (with ¢ = 1,2) (introduced in Section instead of p itself.
This is motivated by two facts: (i) this projected measure it generally the object of interest in the
optimization problem as it clears the redundancy caused by homogeneity and (ii) the assumptions
that the projection h'(p;) of a Wasserstein gradient flow converges is more reasonable than the
convergence in W, of the original gradient flow, where generally no compactness is available.
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(a) Positively 1-homogeneous in the vertical variable. (b) Positively 2-homogeneous.
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Figure 4: Level sets of some functions on = R? with homogeneity properties. The derivative
F'(u) of F, seen as a continuous function on € “looks like” plot (a) in the partially 1-homogeneous
case and like plot (b) in the 2-homogeneous case. Wasserstein gradient flows of F' are simply set
of particles i that “slide down™ such landscapes following the direction —V F” () (the subtlety
being that the landscape itself depends on y;). Minimizers p* of F over M () are characterized
by the fact that this function F’(u*) is nonnegative on ) and vanishes on the support of p*. By
homogeneity, it is sufficient to study these functions restricted to a subspace (dotted lines) as we do
in the proofs.

C.1 Optimality conditions (proof of Proposition [3.1)

Let us first remark that, by a first order Taylor expansion of R, we have that for all i, 0 € M(2) with
F(p),F(o) < oo, itholds [ |F'(u)|do < oo and

d

d—F(u +€0)|e=0 = / F'(p)do  with  F'(p) : u— (R'([®dp), ®(u)) + V(u).
€ Q

Let p, v € M4 () be such that F(v), F(u) < oo, consider o := v — p and its Lebesgue decompo-

sition 0 = fu + ot where f € L'(u), 6+ € M () is singular to x (see Thm. 4.3.2]). Clearly,

by the above first order formula, it is necessary to have F’(u) > 0 everywhere with equality p-a.e.,

for p to be a minimizer. It is also sufficient since in this case we have, by convexity,

0= S F(utt0)lico < % (1= F () + HF () im0 = F(v) — F (1)

C.2 A criteria to escape from non-optimal stationary points

We now give a criteria for Wasserstein gradient flows to escape from non-optimal stationary points.
It is valid both in the finite-particle regime and in the many-particle limit. Such a result supports
the idea that, even in the finite-particle case (i.e. classical gradient flows), the point of view using
measures is natural.

C.2.1 The 2-homogeneous case

We start with the positively 2-homogeneous setting which is slightly simpler. We consider the
operator h? : M, (R%) — M (S 1) defined in Appendix[A.2} To simplify notations, measures on
the sphere S?~1 are interpreted hereafter as measures on R? concentrated on the sphere.
Proposition C.1 (Criteria to espace local minima). Under Assumptions let i € M (R?) be such
that F' (1) is not nonnegative. There exists € > 0 and a set A C ) such that if (ut) is a Wasserstein
gradient flow of F satisfying ||h? (i) — h* (1t )||BL < € for some to > 0 and pur,(A) > O then there
exists t1 > to such that |h%(1) — h?(us,)||BL > €.

Such a set is given by A = {rf ; r € 10,00 and 0 € K} where K is the (—n)-sublevel set of the
restriction of F' (1) to the unit sphere, for some n > 0 that can be chosen arbitrarily close to 0.

Proof. Let g, : S~ — R be the restriction of F’(y) to the unit sphere, and first assume that 0
is in the range of g,,. Let —n < 0 be a negative regular value of g,,, which is guaranteed to exist
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(arbitrarily close to 0) thanks to Assumptionand let K C S be the corresponding sublevel set.
By the regular value theorem, its boundary 0K = g;l (—n) is a differentiable orientable compact
submanifold (of the sphere) of dimension d — 2 and is orthogonal to the gradient field of g,,. Also, V'
is differentiable on a neighborhood of 0K, by the regular value property. It holds g, () < —n for
6 € K and Vg, (0) - iy < —p for all § € OK, where iy is the unit normal vector to 0K pointing
outwards, for some 5 > 0. In the following lemma, we show that these properties of K are also
satisfied in a neighborhood of pi. We denote by || - |1 the maximum of the supremum norm of a
function and the supremum norm of its gradient.

Lemma C.2. Let ¢ be the restriction of ® to the sphere and let §,, : 0 € STV — (R'([ ®dp), #(6)).

For all Cy > 0, there exists o > 0 such that for all ji, v € M(S2), such that |h? (1)L, |h? (1) |81 <
n it holds

13 = guller < all@liEn - 17 (1) — 2*(v) |-

Proof. Let us introduce o > 0 the Lipschitz constant of dR on the set {[®dy ; u €
Po(RY) ; h%(u) < Co} which is bounded in F. Tt holds

190 = Gullcr < allgller - || [@du — [Rdv|
< allgllor - | fodh? () — [odh? (v)]|
<aléler - sup  [{f, @)d(h* (1) — h*(v))

feglfli<t
< allgllE - 172 () — h*(v)|sL.

where the last bound is due to the fact that u — (f, ¢(u)) is ||¢||%. -Lipschitz and upper bounded in

norm by ||@||c+ whenever f € F satisfies || f|| < 1, and can be extended from the sphere S~ to R?
as a Lipschitz function with the same constant. O

We now fix a large enough Cjy > 0 and consider measures v such that ||h?(v)| gL < Co. By posing
e = min{n, 3}/(4aM?) where o > 0 is given by the previous lemma, if ||h2(v) — h%(11)|| < e, then
gy is upper bounded by —7/2 on K and Vg, (0) - g < —5/2 forall § € OK. Now let us consider a
Wasserstein gradient flow () of F' such that p is concentrated on B(0, r) for some ¢ > 0 and,
posing € as above, we assume that ||h? (o) — h%(u)||BL < €. As long as this holds, the condition
|h2(pe)||pr. < Co for Lemmal|C.2]to apply also holds (if Cy was chosen large enough in the first
place). Let t; > 0 be the first time such that ||h?(ps, ) — h?(i)||BL > €, which might a priori be
infinite.

Consider the flow X of Lemrna By construction of the set K, any path ¢t — u; = X (¢, up) with
ug € Ry K remains in Ry K for ¢ < ¢1. Moreover, by positive 2-homogeneity of F” (1), the radial
component of the velocity field is lower bounded by 7 - 7 s0 |u¢| > |ug| exp(nt). In particular, for
0<t<tyand & >0,

h? (1) (K) = (€exp(nt))? - po(J€, oo x K).

It follows that as long as, for some & > 0, 110(]€, 0o[ x K) > 0, then h%(p;)(K) grows exponentially
fast: this implies that zi, leaves the || - ||y, ball (notice that all measures here are nonnegative). Hence
t1 is finite. Finally, if we had not assumed that 0 is in the range of g, in the first place, then we could
simply take K = S?~! and, by similar arguments, find that |h?(j;)|(S9~1) grows exponentially fast
fort <ty if po(R?\ {0}) > 0. O

We now give a general property of the stationary points.

Lemma C.3. Under Assumptions let (j1¢)¢ be a Wasserstein gradient flow of F. If h*(u)
converges weakly to v € M (S1), then F'(v) vanishes v-a.e.

Proof. We again consider the function g, : 6 € S¥ ! — (R/([ ®du),$(0)) for any measure
p € My (RY). Atapoint @ € S41, the velocity field (v;); associated to the gradient flow is obtained
by applying the 2-Lipschitz map (id — proj av((,)) to the vector of radial component 2g,,, (¢) and
tangential component Vg, (#). It follows, by Lemma that v,,, converges uniformly to v,, on the
sphere and as a consequence, [ |vy(w)[2dh? (i) (u) — [ |v, (uw)]*dh?(v)(u). By recalling the energy
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identity for gradient flows F'(us,) — F(ps,) = fssf lvg (u) |2dpedt (see [3, Eq. (11.2.4)]) and this
last term also equals fssf |vg(u)|2dh? (e )dt because the velocity field is positively 1-homogeneous.
This necessarily implies, since F is lower bounded on P5(2), that |v, (u)| = 0 for v-a.e. u € R

In particular, looking at the radial component which is 2F’(v), this implies that F’(v) vanishes
v-a.e.

C.2.2 The partially 1-homogeneous case

For the partially 1-homogeneous case, we consider the operator ! : M () — M(©) defined in
Appendix [A.2}

Proposition C.4 (Criteria to espace local minima). Under Assumptions let p € M(Q) be such
that F'(u) is not nonnegative. Then there exists € > 0 and a set A C  such that if (ui): is a
Wasserstein gradient flow of F satisfying ||h' (1) — h' (1, )||L < € for some to > 0 and py, (A) > 0
then there exists t1 > to such that ||h' (1) — h'(ue,)||BL > €

Such a set is givenby A = (Ry x KT)U (R_ x K~ ) where K™ (respectively K~ ) is the (—n)-
sublevel set of 0 — F'(u)(1,0) (respectively of 0 — F'(u)(—1,0)) for some n > 0 that can be
chosen arbitrarily close to 0.

Proof. Let us suppose that F'(u) takes a negative value on R x O (the case where it takes its
negative values only on R_ x © is similar) and let us introduce g,, : © — R the restriction of F’ (1)
to {1} x O, thatis g, (0) = (R'(f®du), #(A)) + V(). Let —n < 0 be a negative regular value of
g, which is guaranteed to exist (arbitrarily close to 0) thanks to Assumption andlet KT C ©
be the corresponding sublevel set. By the regular value theorem, its boundary 0K+ = g;l (—n) is
a differentiable orientable manifold of dimension d — 2 and is orthogonal to the gradient field of
gy In the case where © is bounded, 9K is compact and, as a consequence, there is 3 > 0 such
that infpeak |dg,(0)| > 8. If © = R9~! and the sublevel set K is unbounded, then we have to
choose 7 so that it is also a regular value of the function on the sphere S~2 to which g, converges
uniformly at infinity. Then, the same positive lower bound holds for some g > 0. It follows that
on K, g, < —nand, Vg,(0) -y < —f for all § € 0K, where 7y is the unit normal vector to 0K
pointing outwards. In the following lemma, we show that these properties of K are also true with
respect to g,, if v is close enough to ;. We denote by || - ||¢1 the maximum of the supremum norm of
a function and the supremum norm of its gradient.

Lemma C.5. For all Cy > 0, there exists o > 0 such that for all p,v € M (Q) that satisfy
1B () lBr, 1A (v)][BL < Co it holds

lgi = guller < all@liEs - A" (1) — h' ()|

Proof. Let us introduce « > 0 the Lipschitz constant of dR on the set { f ody 5 p o€
P(RY) ; h'(u) < Co} which is bounded in F. It holds

g = gvller < allgller - || [@du — [@dv|
< allgllor - | fodh’ (1) — [odh' (v)]]
<allgller - sup  [{f,@)d(h' () = hl(v))

seslfl<t
< allglg - |8} () — b (v) L

where the last bound is due to the fact that u — (f, ¢(u)) is ||@||c: -Lipschitz and upper bounded in
norm by ||¢||c1 whenever f € F satisfies || f|| < 1. O

We now fix a large enough Cj > 0 and consider measures v such that || (v)||gr, < Co. By posing
€ = min{n, B}/(4aM?) where a > 0 is given by the previous lemma, if ||h!(v) — h(p)| < e,
then g, is upper bounded by —7/2 on K and Vg, (6) - g < —3/2 for all 6 € OK. Now, let us
consider a Wasserstein gradient flow (p;); of F' such that g is concentrated on [—rg, 9] x © for
some 79 > 0 and ||h*(po) — A (1)||BL < €. As long as this holds, the condition || (u:)||BL, < Co
for Lemma [C.3]to apply also holds. Let t; > 0 be the first time such that this last condition is not
satisfied, which might a priori be infinite.
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Consider the flow X of Lemma By construction of the set KT, any path ¢ — (wy,0;) =
X (t, (wo, 0p)) with (wo, 8p) € Ry x K remains in R, x K for ¢ < t;. Moreover, by homogeneity
of F’(p) in the variable w, the component of the velocity field on w is lower bounded by 7/2 so
wy > wq + t - /2. For similar reasons, no path enters the set R_ x K during this time interval and
the paths inside this set satisfy w; > wq + t - /2 (this follows by the fact that F'(—1,-) > F’(1,-)).
In particular, for 0 <t < ¢4,

B () (K) = (t-0/2) - po(Ry x K*)+min{0,t- 5/2 = ro} - po(Re x K*).
So we see that as long as p1o(R; x K) > 0, then h* () (K1) grows at least linearly.

If © = K then the previous lower bound immediately implies that ¢; is finite (choose the constant
unit function in the definition of the norm || - ||gr,). Otherwise, in order to finalize our proof, we need
to make sure that the mass h'(u;)(K*) does not grow unbounded just near the boundary of K+.
To do so, let us consider another sublevel set K+ of g, associated to another regular value in the
range 7 €] — 7, 0[ and such that K+ does not cover ©. As g,, is Lipschitz, there exists A €]0, 1]
such that the distance between K+ and © \ KT is at least A. Taking another, smaller radius € > 0 if
necessary, by similar arguments as above, either ¢, is smaller than 2rg /7, or there exists £ > ¢, such
that 1.* (p1) is nonnegative on K+ for ¢ € [£,t;[. Choosing, as a test function in the definition of the
norm | - || gL, the distance to the set © \ K clipped to 1, one obtains, for ¢ € [f, ],

Ih* (o) L > A - A () (KF)

which also grows at least linearly with t. So h*(u;) eventually leaves any || - ||gL-ball, hence ¢; is
finite.

As for the 2-homogeneous case, we give a general property of the stationary points.

Lemma C.6. Under Assumptions let (j14)¢ be a Wasserstein gradient flow of F. If h*(u)
converges weakly to v € M (0), then F'(v) vanishes v-a.e.

Proof. Atapoint (1,0) € Q, with § € ©, the velocity field (v;); associated to the gradient flow is
given by applying the 2-Lipschitz map (id — projgy (1 ¢)) to the vector with first component g,,, (¢)
and other components Vg, (¢), where g,,, is defined as in the proof of Proposition It follows,
by Lemma that v,,, converges uniformly to v, on {1} x ©. However, in contrast to Lemma
the energy dissipation identity is not invariant by the projection operator, so we have to develop
arguments similar to those used to prove Proposition [C.4] (we do so with less details). Using the
uniform convergence of g, if there exists 6y € © such that g, (f) > 0 then we can build a set
R* x K with 6y € intK such that for some ¢ > 0, no trajectory of the flow X, enters this set after
to and the component of the velocity on w is upper bounded by —g,, (6)/2. Since p, is concentrated
on a set (., this implies that y,, (R* x K') vanishes in finite time and in particular, v(K') = 0. Thus
we have shown that F’ (1) is nonpositive v-a.e. Also it can be deduced by Proposition that F’(v)
is nonnegative v-a.e. So F’(v) vanishes v-a.e. O

C.3 Stability of separation properties

Here we prove the fact that the separation properties of the support used in Theorems [3.5]and [3.3] are
preserved by Wasserstein gradient flows. We give a proof based on topological degree theory: this tool
allows to cover the case of discontinuous velocity fields, which appear when V' is non-differentiable.
In a more regular setting, the facts that follow are easier to prove because then, y; is the pushforward
of 1o by a homeomorphism. Let us give a definition of the topological degree sufficient to our setting.

Definition C.7 (Topological degree). Let f : R? — R be a continuous map, A C R% a bounded
open setand y ¢ f(OA). The topological degree deg(f, A, y) is a signed integer that satisfies:

1. If deg(f, A,y) # O then there exists x € A such that f(x) = y. If y € A then
deg(id, A, y) = 1.

2. If Ay, Ay are disjoint open subsets of Aandy ¢ f(A\ (A1 U Ay)) then deg(f, A,y) =
deg(f, A1,y) + deg(f, Az, y).

3. IfX :[0,1] x R* — RY is continuous and y : [0, 1] — R? is a continuous curve such that
y(t) ¢ X¢(0A) forallt € [0,1], then deg(Xt, A, y) is constant on [0, 1].
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These properties characterize a uniquely well-defined map deg from the set of triplets (f, A, y) as
above to the set of signed integers [8, Thm. 1-2]. Intuitively, it gives an algebraic count of the
number of solutions to f(z) = y for & € A, where algebraic means that a solution = counts as +1 if
f preserves orientation around x and —1 otherwise.

The following lemma shows that taking the support of a measure and its pushforward by a continuous
map are operations that almost commute. They commute for instance if the map is closed (i.e. maps
closed sets to closed set).

Lemma C8. If f : RY — R% is a continuous map and i € M (R?), then spt(fup) = f(spt u).

Proof. Lety € f(sptu) and V a neighborhood of y. By continuity, f~!(V) is the neighborhood
of a point in spt  s0 0 < p(f~*(V)) = fapu(V), hence y € spt faup so f(sptp) C spt fup.
Conversely, let y € f(spt ,u)C and let V a neighborhood of y that does not intersect f(spt u). This
neighborhood satisfies f~1(V) C (spt p)¢, so it holds fxu(V) = u(f~1(V)) < p((spt u)¢) = 0.

— 7 ¢ -

Hence y € (spt fup)®so f(spt n) C (spt fyp)® which implies spt fup C f(spt p). O
C.3.1 The 2-homogeneous case

We first state the property and the stability result that we wish to establish in the 2-homogeneous
setting.

Property C.9 (Separation, 2-homogeneous case). K is a closed subset of R? contained in B(0,ry)
that separates r,S% from r,S*~1, for some 0 < 1, < 13,

Lemma C.10 (Stability of the separation property). Under Assumptions[3.2} let (j11)¢>0 be a Wasser-
stein gradient flow of F. If the support of g satisfies Property so does the support of , for all
t>0.

Note that this property is generally lost in the limit t — oo. This lemma is a consequence of the
following, more abstract proposition, that deals with sets instead of measures. The reader can keep
in mind that we will apply this result with X being the flow of the velocity field introduced in
Lemma[B.4Jand K being the support of 1.

Proposition C.11 (Set separation, spheres). Consider a continuous map X : [0, T] x R — R? such
that X (0,-) = id, and such that, for all € > 0, there exists ) > 0 such that uw € B(0,n) implies
X, (u) € B(0,€). If K satisfies Property then X(K) satisfies the same property for all
te[0,7]

Proof. Let 0 < ¢ < a < f8 be such that X;(K) C B(0,a — €) and B(0, + €) C X(B(0, 5))
for all ¢ € [0,7T] and let A be the intersection of B(0, 5) with the (unique) unbounded connected
component of R%\ K. Consider the function X : (t,z) + (t, X;(x)) and the set S = X ([0, T] x HA)
which is a compact subset of [0, '] x R?. Since connected components of S¢ (the complement of .S
in [0, 7] x R?) are path connected, recalling Deﬁnition it follows that
(t,z) — deg(Xy, A, x)
is constant on each connected component of S¢. Moreover, this degree equals 1 if the connected
component intersects {0} x A and 0 if it intersects {0} x (R?\ A). In particular, this degree
is 1 on [0, 7] x &S and, by the assumptions on K and X, there is a small tube [0,7] x B(0,n)
where the above degree is 0. So for a fixed ¢ € [0, T}, any path joining (1/2)S?~! to aS?~! must
intersect X;(0A). We restrict our attention to paths confined in B(0, «) and it remains to notice that
0A C K U S and so
X:(0A) N B(0, ) C (X¢(K)UX(BS)) N B(0,a) = X4(K)
This shows that any path joining (1/2)S to oS must intersect Xy (K). O

Proof of Lemma Consider the continuous flow X : [0, T]xR? — R introduced in Lemma
For all t € [0,T], the map X; is coercive and thus closed, so Lemma applies and gives
spt((X¢) 4 p0) = Xi(spt po). We just have to check the assumption of Proposition concerning
the stability of the inverse map of X; near 0. Since ® and V' are 2-homogeneous, we have that d®
and JV that are 1-homogeneous and thus, there exists a constant C' > 0 such that |v;(u)| < Clu] for
allt € [0,7] and u € RY. This upper bound on the velocity implies in particular that if g is at a
distance |ug| from 0, then it is at least at a distance |ug| exp(—Ct) for t € [0, T'. O
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C.3.2 The partially 1-homogeneous case

Here are the analogous separation property and stability lemma for the partially 1-homogeneous case.

Property C.12 (Separation, partially 1-homogeneous case). K is a closed set contained in a box
Qr = [—r,r] X © and separates {—r} x O from {r} x © for some r > 0 (in the ambiant space
Q=R x0)

Lemma C.13 (Stability of the separation property). Under Assumptions[3.4} let (j11)¢>0 be a Wasser-
stein gradient flow of F. If the support of p satisfies Property|[C.12} then so does the support of ju,
forallt > 0.

Similarly as above, we first prove an abstract topological result.

Proposition C.14 (Set separation, boxes). Let © C R? be the closure of a bounded, connected,
open set and, for some T > 0, let X : [0,T] x (R x ©) = R x O be a continuous map such that
X(0,:) =id and X;(Rx 90) C Rx 9O forallt € [0, T). If K satisfies Property|C.12] then X,(K)
satisfies Property|C.12\|for all t € [0,T).

Proof. Let 0 < ¢ < a < B besuch that X;(K) C |—a—ea+¢ x © and [—a,a] x © C
Xi(J—B—€B+€e[x0)forall t € [0,7T], and let A be the intersection of | — 3, 5[x© with the
(unique) connected component of (R x ©) \ K that contains {a} x ©. The set A is bounded and
open in R x R4~1. Consider the function X : (¢, x) — (t, X;(z)) and the set S = X ([0, 7] x OA)
which is a compact subset of [0, 7] x (R x ©). Since connected components of .S¢ (the complement
of S'in [0,7] x (R x ©)) are path connected, recalling Definition|C.7 it follows that

(t, (w,0)) — deg(Xy, A, (w,0))

is constant on each connected component of S¢. Moreover, this degree is 1 on [0, 7] x ({a} x ©)
andis 0 on [0, 7] x ({—a} x ©). So for a fixed t € [0, T, any path joining {—a} x © to {a} x ©
must intersect X;(0A). It is in particular true for paths entirely contained in [—a, o] X int ©. It
remains to notice that 0A C K U (R x 90) U ({5} x ©) and so, thanks to our assumption on X,

X:(0A) N ([—a, o] x intO) C X¢(K).

This shows that X;(K) separates {—a} x O from {a} x © in R X int © and in fact also in R x ©
because X (K) is closed. O

Proof of Lemma|C.13] Let X be the flow of the velocity fields introduced in Lemma [B.4] It is
continuous and satisfies 1, = (X;)gpo. Moreover, Xy = id and X, is closed because it is
coercive. We have to deal with two cases: when © is bounded and when © = R%~!. In the first
case, by Lemma it is sufficient so verify the assumptions of Proposition This reduces
to making sure that X;(R x 92) C R x 912, which is guaranteed by the Neumann boundary
conditions. For the unbounded case, we bring ourselves back to the bounded case, by means of the
diffeomorphism 1) : R x RY — R x int B(0, 1) defined by ¥ (w, ) = (w, (8/|0]) - tanh |6]) if § # 0
and v (w,0) = (w, 0) otherwise. Let Y; := ¥ o X; o U~! be the flow where the second variable is
mapped to the open unit ball. By direct calculus, one sees that Y; is the flow of the velocity field
0¢(y) = diby—1(y) (v 01~ (y)) defined on R x int B(0, 1) and that can be extended by continuity on
R x S¥~2 by (guo (#) - sign w, 0) where g is the limit which existence is assumed in Assumption
and, here, sign 0 = 0. As Y} satisfies the properties of Proposition[C.14] the conclusion of this
proposition holds for the set ¥ (spt p1+) = 1) o X;(spt o). Since 1 is a diffeomorphism, it preserves
connectedness properties and Lemma [C.13]is proved. O

C.4 Main theorems: proofs and generalization

First, let us state a lemma that relates the convergence of the Wasserstein gradient flows to an
asymptotic property for the classical gradient flows, when m, ¢ — oco. This result is used in the last
claims of Theorems [3.3]and 3.3

Lemma C.15. Under Assumptions let (uy) be a Wasserstein gradient flow which initialization
is concentrated on a set Q,, and such that F(u,) — F*. If (1to,m)m is a sequence of measures
concentrated on a set )y, that converges to (o in Wa, then

F*= lim lim F(pme) = lHm Hm F(pme).

t—00 m—o0 —00 t—00
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Proof. The first double limit where m goes first to oo is a consequence of Theorem 2.6 combined
with the continuity of F" for the Wasserstein metric, proved in Lemma[A.T] The other double limit is
obtained by the mononicity of F'(u;) along Wasserstein gradient flows. Indeed, for all € > 0, there
exists tg € Ry such that F'(uy,) < F* 4 €/2 and by Theorem [2.6] there is mo € N such that for all
m > mo, F(pg,m) < F(p,) + €/2. Since t — F (i) is decreasing and lower bounded for all
m € N, it follows

Vm > mo, flifgoF(Mm,t) S F(Mm,to) < F +e€

which proves the second limit. O

C.4.1 The 2-homogeneous case

Theorem C.16. Under the assumptions of Theorem if h%(p¢) converges weakly, then its limit is
a global minimizer of F over M () and limy_, o F(p1) = F™*.

This statement is stronger than Theorem 3.3} indeed, if 1, converges for the Wasserstein metric, then
h2(u¢) converges weakly (but the converse is generally not true).

Proof Letv € M, (S ') be the weak limit of h?(y;). By Lemma|C.3} F'(v) vanishes v-a.e.
For the sake of contradiction, assume that v is not a minimizer of F' over M (Q): this implies
that F”(v) is not nonnegative. Let A C  and Bpr, C M(S%!) be the set and the || - ||pr.-ball
provided by Proposition As h?(us) converges weakly, there exists tq > 0 such that for all ¢ > ¢,
h?(u:) € Bgpr. But by Lemmaut0 (A) > 0 and, by Proposition|C.1| there exists ¢; > to such
that y1;, ¢ Bpr,, which is a contradiction so v is minimizer of F' over M, (§2). The second claim is a
consequence of the continuity of F' (LemmalA.1). O

C.4.2 The partially 1-homogeneous case

Again, we prove a statement in terms of the projected measures: Theorem [3.5]can be deduced as an
immediate corollary. Some highlights of the proof are given in Figure [5]

Theorem C.17. Under the assumptions of Theorem if b (us) converges weakly, then its limit is
a global minimizer of F' over M4 () and limy_, o F'(us) = F*.

Proof. Let v be the weak limit of 1! (1) and we see it as a measure on {1} x ©. By Lemma|C.6]
F'(v) vanishes v-a.e. For the sake of contradiction, assume that v is not a minimizer of F' over
M (92): this implies that F’(v) is not nonnegative. Let A C  and e be the set and the radius of the
|| - ||pL-ball which are provided by Proposition|C.1} As k() converges weakly, there exists to > 0
such that for all t > tg, ||h'(us) — v||r, < €. In the favorable case where 4, (A) > 0 then we can
conclude as in the 2-homogeneous case, but this is not immediately guaranteed by Lemma the
situation is thus trickier than in the proof of the 2-homogeneous case.

We take notations from the proof of Proposition [C.4]and consider first the case when © is bounded.
Let fg € K be a local minimum of g, in the interior of K relatively to © (the case when K+
is empty but K~ is not could be treated similarly). Thanks to Neumann boundary conditions, it
holds Vg, (o) = 0, even when 6 lies on the boundary of ©. By Lemma [C.10] the line R x {6}
intersects the support of 11, . If this intersection lies in R, x KT, we can conclude immediately by
Proposition Otherwise, we fix M > 0 such that p, is concentrated on [—M, M] x © and we
resort to applying Lemma [C.T8|below.

Let rg > 0 be such that B(6p,79) N © C K*. By Lemma there exists t; > to such that if
the support of p, intersects [—M, 0] x {6y} then it intersects R x K at a subsequent time and
again, we can conclude by Proposition[C.T} So it remains to check that the support of 1, intersects
[—M, 0] x {0y}; the difficulty here is that M/ was chosen prior to t1. The justification is as follows:
by Lemma [C.10} the support of iy, intersects R_ x {6y} at a point (wy, fy). The properties of
K™ imply that the pre-image by the flow X; of (wq, f) is included in [—M,0[x KT and, since
the w-component of the velocity field is lower bounded on R_ x K by /2 for t > t(, one has
wo > M.

As for the case when © = R%~!, we can reproduce the proof above by mapping the flow to the unit
sphere, as done in the proof of Lemma|[C.13] The last claim of the theorem is a consequence of the
continuity of F' (LemmalA.I). O
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Figure 5: Example, in the partially 1-homogeneous setting, of a stationary point v that is not a
minimizer of F over M () since F’(v) is not nonnegative. The variable w corresponds to the
vertical axis, the support of v is the discrete set of red dots, and the lines show the level sets of F’(v).
There is a neighborhood of v such that if a Wasserstein gradient flow u; enters this neighborhood
and gives mass to a certain set (shown in red) then p; subsequently escapes this neighborhood. In
Proposition this is proved for the lower part of this set (under the horizontal axis, where F”(v) is
negative). Technical Lemma[C.18]is concerned with building the upper part of this set. The proof of
Theorem [C.17]lies on the fact that any measure satisfying the separation Property [C.12] gives mass to
this set.

In the unfavorable case encountered in the proof of Theorem|[C.17} we had to invoke the following
lemma. It has a different nature than the other results of this paper because it relies on an explicit
integration of the trajectories of the gradient flow, which means that it depends on the choice of the
metric.

Lemma C.18. Consider, for a measure v € M(O), a point 0y € O such that |Vg,(0)| = 0 and
9,(0) < —n for some n > 0. For any M > 0 and ro > 0, there exists T, e > 0 such that if (u):
is a Wasserstein gradient flow of F that satisfies for all t € [0, T, ||gu, — gvllcr < € and denoting
(w(t),0(t)) the solution of the flow of Lemma B.4|starting from (wq, 0) with wo € [—M, 0], it holds
w(T) =0and |0(T) — 6y| < ro.

Proof. The Lipschitz regularity of g, and its derivative implies that there exists L > 0 such that
max{|g,(0) — g, (00)], Vg, (0) — Vg, (00)|} < L|0 — 6| for all § € ©. Without loss of generality,
we assume that 79 < 1/(4L). Consider € € |0, n/4[ and assume that there exists 7' > 0 such that
|91, — gvllcr < efort € [0, T). Writing ¢(t) = |0(t) — 6y, it holds for t € [0, T,

d
& < —w(e+ Lo
dw
i 5
dt_77 ¢ g

In particular, if we can make sure that |q(t)| < 7 fort € [0, 7] andif T > 2/n then, as (dw/dt) > 1/2
on this interval, there exists 7' < 2/n such that w(T") = 0.

It remains to make sure that we indeed have |¢(t)| < 7 for ¢ € [0, T], by adjusting if necessary the
value of e. Parametrizing in w instead of ¢ (it is an admissible reparametrization thanks to the positive
lower bound on its derivative), we get

dg/dw = (dg/dt) - (dt/dw) < —w(e+ Lq) - 2/n.

We can apply Gronwall’s lemma to G(w) = € + Lg(w) which satisfies (d/dw)¢(w) < (—2L/n) -
w - ¢(w) and obtain

d(w) < d(wo) exp (—(2L/n) [}, sds ) = eexp(Luwd/n).

Thus, choosing € < Lrg/(exp(Lwg/n) — 1), it is guaranteed that g(¢) < ro for t € [0, T). O
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C.5 Remarks

We conclude this theoretical section with two opening remarks related to the global convergence
theorems.

Convergence of the gradient flow. In the statements of Theorems [3.3|and [3.5] the convergence of
the Wasserstein gradient flow comes as an assumption. In order to prove convergence of gradient
flows, one generally needs two properties: (i) compactness of the trajectories and (ii) a so-called
Lojasiewicz inequality which, intuitively, controls how much a function flattens around its critical
points. As compactness in Wy is a very strong requirement, we have relaxed the topology where
convergence is required to obtain more reasonable assumptions. Yet, even when a gradient flow lies
in a compact set, there are some cases where it does not converge. There has been recent progress
on related issues with the study of Lojasiewicz inequalities in Wasserstein space [5, [17], but to our
knowledge, no general result is known in our non-geodesically convex case.

Towards quantitative statements. We stress that Propositions and [C.4]provide with an intu-
itive criterion for a particle gradient flow to escape local minimum: roughly, it is sufficient that, when
it passes close to a local minimum, at least one particle belongs to a O-sublevel set of the current
potential F’(1). In this paper we exploit this property by studying the many-particle limit, but other
approaches are worth exploring. For instance, we could estimate the size of this sublevel set in
specific cases, and use it as an indication for the particle-complexity to attain global minimizers. A
discussion on a specific example is given in Section[D.5]

D Case studies and numerical experiments
In this section, we verify the assumptions for the examples treated in Section 4]

D.1 Loss functions

We first give sufficient conditions to satisfy the assumptions on the loss R, when the Hilbert space is
F = L?(p) for a probability measure p on a space X, which is either a domain of R? or the torus. In
this setting, typical losses are the form R(f) = [ r(x, f(x))dp(z) for a function r : XX x R — Ry.
The next lemma gathers some properties of such losses.

Lemma D.1 (Properties of the loss). If r is convex in the second variable, then R is convex. If r
is differentiable in the second variable with Oyr Lipschitz, uniformly in the first variable, then R
is differentiable with differential dR Lipschitz. If moreover |dor|> < Cyr + Cy for some constants
C1,Cy > 0, then dR is bounded on sublevel sets.

Proof. The convexity property is easy. If 01 is L-Lipschitz (uniformly in the first variable), then it
can be seen that dRy : h — [ 7/(r, f(z))h(x)dp(x) is the differential of R because for all f,h € &,
by a Taylor expansion,

L L
[R(f + 1) = R(f) — dBs(h)| < 5 / |h(z)Pdp(x) = §||h||2 = o([|Al])-
It is direct to see that dR is L-Lipschitz in the operator norm. Finally, if |827'|2 < Cir + Cs, then

ldR; |2 = / (Bor (2, f(2)) Pdp(z) < CLR(f) + Co

so dR is bounded on sublevel sets. O

D.2 Sparse deconvolution

Let us show that Assumptions [3.4 hold for the setting of Section [4.1] While we did not mention
explicitly the choice of the torus © = R?/Z? as a domain in our results, it poses no difficulties: it is
similar to the case © bounded, but without the difficulties related to boundaries. On the separable
Hilbert space F = L?(©) where © is the d-torus endowed with the normalized Lebesgue measure,

the loss R is as in Lemma with r(z, f) = (f(y) — y(x))? and the regularization term V = 1
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trivially satisfies the assumptions. Let us turn our attention to the function ¢(6) : @ — (x — 6).
Its norm does not depend on 6, so it is bounded. If ¢ is continuously differentiable with Lipschitz
derivative, then ¢ is differentiable with d¢pg(0) : x — Vip(z—6) -0 which is bounded (again, its norm
[d®|| = ||V¥|| does not depend on ) and is Lipschitz, as similarly as in the proof of Lemma D.1]

It remains to check the Morse -type regularity assumption i.e., to check that for all f € F, the function

fo = [ f(z)¥(z — 0)dx has a set of regular values which is dense in its range. If
thls functlon 1s constantly 0 then this is trivially true, otherwise, its range is an interval of R. By
Morse-Sard’s lemma, if this function is d — 1-times continuously differentiable, then the set of critical
values has zero Lebesgue measure and our assumption holds. By differentiating under the integral
sign, this assumption is thus satisfied if ¢ is d — 1-times continuously differentiable.

D.3 Neural network: sigmoid activation

Let us show that Assumptions [3.4] hold for the setting presented in Section[4.2]in the case of sigmoid
activation functions. We write the disintegration of p with respect to the variable z as p(dz ® dy) =
p(dy|z) ® p,(dz) where p, is the marginal of p on X and (p(-|x))zex a family of conditional
probabilities on R (see [3, Thm. 5.3. 1]) On the separable Hilbert space L?(p,.), the loss R is as in
Lemma 1{with r(z, p) fR p,y)p(dy|x) and the regularization term V = 1 satisfies trivially the
assumptions. In order to simplify notatlons, we consider the augmented variable z = (z,1) € R¢~!
and p, its distribution when x is distributed according to p,.. Let ¢(0) :  — o(z - ), defined on
0 = R4 1

Lemma D.2. If p, has finite moments up to order 4, then the function ¢ : R4~1 — F is differentiable
with a Lipschitz and bounded differential dgg(h) : © — (h- z)o’'(z - 0) where z = (z, 1).

Proof. Letus check that the function d¢ defined above is indeed the differential of ¢. For #, h € R4~1,
we have

A(h)? = [|p(0 + h) — ¢(0) — dpa(h)|?
/\ae s D) =00 2) — (h-2)0' (2 - 0)2dpa (2)

<—/|h z|*dp. (2

where L denotes the Lipschitz constant of ¢’. So if p, has finite 4-th order moment My (p.)
then A(h) < IY2@=) 1312 and dg is indeed the differential of ¢. This differential is bounded
and Lipschitz since [|dgg|| < [0’|lcor/Ma2(p.) and ||dey — dog|| < L/Ma(p.)|0 — 0| for all

0,0 ¢ RI-1. Finally, it is clear that if p,, has finite 4-th moment then so does p.. O

It remains to check the Sard-type regularity assumption i.e., to check that for all f € F, § —

= [y f(x)o((x,1) - 0)dp,(x) has a set of regular values which is dense in its range. If this
function is constantly 1 then this is trivially true, otherwise, its range is an interval of R. If p,, has
finite moments up to order 2d — 2 then the function above is d — 1 continuously differentiable and
the conclusion follows by Morse-Sard’s lemma.

In the statement of Proposition 4.2} the boundary assumption is explicitly mentioned so the proof is
complete. We now briefly explain why is it difficult to check the Sard-type regularity in the boundary
condition a priori. Consider the simple setting of a quadratic loss R(f) = 3| f — f*||% where f* is
the optimal Bayes regressor that we may assume smooth. As required in the boundary assumption,
consider a function f € F of the form f = R'([ ®du) = [ ®dp— f* for some p in the domain of the
functional F. In the limit » — oo, the function g¢(r6) :== (f, ¢(r8)) = [ f(x)o(r6 - (z,1))dp,(z)
converges to the function g (6) = [, (@1)>0 f(z)dp,(x). This function is continuously differentiable

on the sphere if the density of p,. is in Co(R%~?) and f is bounded and continuous (this is the case
here) and the convergence of g¢(r-) — gy is indeed in C'. However, we cannot guarantee a very
high regularity for f in general: differentiating under the integral sign d — 1-times requires to have
moments of order (d — 1) bounded for x, which cannot be assumed a priori (u is just known to be in
the domain of F). This prevents us from applying Morse-Sard’s lemma.
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D.4 Neural network: ReLU activation
D.4.1 Classical parameterization

We now consider the activation function o(s) = max{0,s} and let ®(w,0) : z € R4 2 s
wo((z,1) - 0) be defined on R x R?~1. We show in the next lemma that @ is not differentiable on the
whole space: at points where the 6 coordinate vanishes, there is a discontinuity in the derivative. The
consequence of this Lemma is that particle gradient flows (Definition [2.2)—and a fortiori Wasserstein
gradient flows—are not well-defined in this case.

Lemma D.3. If p,. has finite moments up to order 2 and has a density, then the function ® : R — F
is differentiable on the set {(w,0) € R x R¥™1 ; 6 3£ 0}, with differential d®,, g)(w,0) : ©
(@0 +wh - 2)0’(z - 0) where z = (x,1) and o’ is the Heaviside step function. Yet, the differential d®
is discontinuous at points of the form (w, 0) for w # 0.

Proof. Let us verify that the properties of a Fréchet differential are satisfied by the function d® above.
For u = (w, §) such that 6 # 0 and @ = (w, #) in R?, we have

AZ(@) = [|[®(u+a) — D(u) — d, (@)
/|f u+a,x) — flu,z) — df(u,m)(ﬂ,0)|2dpm(w)

where we have introduced the function f : (u,x) — wo (0 - (x, 1)) which is differentiable whenever
6-(z,1) #0. For§ € R¥~1\ {0} and € > 0, welntroducethesets Spe={zeR¥2; |0 (x,1)] <
€|(z,1)|} and decompose the previous integral in two parts: one where f is regular and the integrand
can be controlled with second order terms, and another one that deals with the non-differentiability
inside Sy .. This choice of definition for Sy . guarantees that we have (6 + 6) - (x, 1) # 0 whenever
x is notin Sy 5. This leads to

A, 0)(@,0) < / A, V) - fal® - (2ful + |al))*dpa(x) +/ @0 - (,1)]*dp.(z)
So.1a| RA=2\Sy |4
_ _ 1 _
<ap P [ @R gl [ @ )Pdn)
50,11 RI=2\ Sy |4

If p,. has finite second order moment Ms(p,.), then the second term is negligible in front of |ii|? when
|| goes to 0. In order to have the same property for the first term, it is sufficient that the integral
/. So.15 |(z,1)|2dp. () goes to 0 as |#| goes to 0 which is the case since p, has a density. Therefore,

under these conditions, d®,, ¢y is the differential of ® at (w, #). To exhibit a discontinuity, let w # 0
and § € S41. For ¢ > 0, it holds

48 0y = @i = [0 [ 16 (1) Pl

For suitable choices of 6 (for instance, § = (Oga-1, 1)), this lower bound is strictly positive and
independent of ¢.

Although we do not use this fact explicitly in the paper, it is interesting to note that the regularizing
potential V' : (w,0) — |w] - |#| is admissible in the 2-homogeneous setting of Assumptions
although it is not differentiable nor convex, it is positively 2-homogeneous and semiconvex.

Lemma D.4. The function V : (w,0) — |w| - |6] defined on R x R4~ is positively 2-homogeneous
and semi-convex.

Proof. The homogeneity property is clear, and to see that V' is semi-convex, it is sufficient to remark
that

1 1 1
(w,0) = V(w,0) + Sl + 516 = 5 (6] + fu])?

is convex, since it is the square of a norm. O
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D.4.2 A differentiable parameterization

‘We now consider the alternative parameterization considered in Proposition defined as ®(6) :
x +— o(s(0) - (z,1)) where o(t) = max{t,0} and s is the signed square function s(t) = t|t| =
sign(t) - t? that acts entry-wise. As ® is clearly positively 2-homogeneous so we just have to prove
the differentiability of ®, which is done with the same technique as in Lemma|[D.3]

Lemma D.5. If p,, has finite moments up to order 2 and has a density, then the function ® : R* — F
is differentiable, with differential d®y(0) : x 2(2;1:1 0;10;|2:)0" (5(0) - (x,1)) where o' is the
Heaviside step function.

Proof. As in Lemma [D.3] we verify that the properties of a Fréchet differential are satisfied by
the function d® above. First, ® is differentiable at 0 with differential O since it is positively 2-
homogeneous. For 6 # 0 and 6 in R?, we have

A3(8) = (6 + 8) — B(6) — dy(B)|
- / F(0+8.2) — F(6,2) — dfg.0)(8.0)Pdpu ()

where we have introduced the function f : (6, z) — o(s(0) - (x, 1)) which is differentiable whenever
5(0) - (w,1) # 0. For § € R?\ {0} and € > 0, we introduce the sets Sp . = {z € R¥~!; [s(0) -
|(z,1)| < ¢€|(x,1)|} and decompose the previous integral in two parts: one where f is regular and
the integrand can be controlled with second order terms (through Taylor-Lagrange inequality), and
another one that deals with the non-differentiability inside S o] (Where f is only Lipschitz, locally
in @ and globally in (z, 1)). This leads to the bounds, for some constants Cy, Cj > 0 and |6| small
enough

MO < [ 0P OB [ ) Ppete)
0,10

So,1a)

Under the assumption that p, has a density, we have that A2(6) = o(|0|?). Therefore, d®y is the
differential of ® at 6. O

Note that the condition on the moments of p, is less strong for ReLU activation than for sigmoids in
Lemma|[D.Z} this comes from the fact that ReLU is piece-wise linear. Similarly as what explained in
the end of Section[D.3] it is difficult to verify the Sard-type regularity assumption so it is left as an
assumption in Proposition[4.3]

D.5 Numerical experiments : details and additional results

Animated particle gradient flows. We display on Figure E] animated version{] for each value of
m of the particle gradient flows shown in Section[d]as well as a particle gradient flow corresponding
to the training of a neural network with a single hidden layer and sigmoid activation function in
dimension d = 2. In all these cases, the global minimizer (supported on the dotted lines in the plots)
is found.

Setting for the empirical particle-complexity plot. Here we give more details on the numerical
experiments behind Figure[3]

1. For the leftmost panel, the setting is similar to that of Figure[T} for each realization, 5 spikes
are randomly distributed on the 1-torus (with a minimum separation of 0.1) with random
weights between 0.5 and 1.5 and a small noise is added to the filtered signal. Then for each
choice of m, we initialize m particles on a regular grid on {0} x © and integrate the particle
gradient flow with the forward-backward algorithm until the improvement per iteration is
below a small tolerance threshold.

5This animation is not displayed correctly by certain document viewers. It is for instance compatible with
Adobe Acrobat Reader.

31



(=) (S (=)
Figure 6: Particle gradient flows with a logarithmic time scale (animated). (left) sparse spikes
deconvolution, with position # shown horizontally and weight w shown vertically. (center) neural
network with ReLU activation function: we show for each particle the trajectory |w(t)| - 8(t) € R2.
(right) neural network with sigmoid activation function, with weights represented by the size of the
particles (blue for negative, red for positive, ground truth shown with 2 neurons shown by large
disks).

2. For the center panel, the setting is similar to that of Figure 2] but here in dimension d = 100.
The data is normally distributed and the ground truth labels are generated by a similar neural
network with 20 neurons (with random normally distributed parameters). The objective
function is the square loss without regularization, so the global minimum corresponds to a 0
loss. We optimize using SGD with fresh samples at each iteration.

3. The rightmost panel shows, similarly, the particle-complexity for training a neural network
with a single hidden layer and sigmoid activation function, in dimension d = 100. The
data is distributed on a sphere and the ground truth labels are generated by a similar neural
network with 20 neurons with random normal weights. Again, we minimize with SGD the
square loss without regularization and the global minimum corresponds to a O loss.

We compare the performance with the method of simply minimizing on the weights with the same
initialization. This is a convex problem, and the minimum value attained does not depend on the
minimization method. We plot for each case the final excess loss as a function of m for several random
realizations of the experiment and, for each value of m, its geometric average over all realizations.
We have indicated in transparent green the area of loss values which should be interpreted as “optimal”
but are not exactly 0 because the optimization has been stopped in finite time and the loss is not
known exactly but estimated through sampling.

Choice of the initial weights in the partially 1-homogeneous case. In all previous numerical
experiments dealing with the partially 1-homogeneous case, we have initialized the particle gradient
flow on a discretization of {0} x ©. But Theorem allows for a large variety of initialization
patterns. In this paragraph, we comment on the various possibilities and explain how the proof of
Theorem [3.5] helps understanding why the corresponding particle-complexity is impacted.

We display on Figure[7]a sparse spikes deconvolution experiment, in a similar setting than in Figure[T]
but with different initializations. For this problem, where mg = 5 spikes are to be recovered, we
have observed numerically that the particle gradient flows initialized on a uniform grid on {0} x ©
succeed in finding a global minimizer as soon as there are more than m = 7 particles. In the first
panel of Figure[7| the particle gradient flow with m = 15 particles initialized on {1} x © fails at
finding a minimizer and a larger number of particles is needed for success (as shown in the center
panel, with m = 30).

This phenomenon can be understood in light of the proof of Theorem when (u:); enters the
neighborhood (given by Proposition [C.4) of the local minimum v reached in the left panel, say at
to > 0, there exists a set R~ x K~ such that if a particle of u; for t > ¢, falls in this set, then
(11)+ eventually escapes from this local minimum v. This set is, to put it simply, a O-sublevel set
of the function F”(v), which is a positively 1-homogeneous function in the weight coordinate (the
vertical axis in Figure[7). The difficulty here is that, because of the initialization, 1, is concentrated
on R, x ©, so we can only hope that a particle “slides” on a ridge of F’(v) to eventually reach
the set R~ x K. This is guaranteed to happen in the many-particle limit (this is the object of
Lemma , but this is likely to require a high density of particles around ridges of F’(v) (the set
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R x {6} in the proof of Theorem 3.5). This supports the idea that initializing on {0} x © is a good
choice. In the rightmost panel of Figure[7]we also show the behavior for a uniform initialization on
({1} x ©) U ({—1} x ©) which, in this example, also avoids the difficulty described above.
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Figure 7: Particle gradient flow for partially 1-homogeneous problems (sparse spikes recovery): effect
of the initialization pattern on the particle-complexity. (left) m = 15 particles on {1} x O: failure
(center) m = 30 particles on {1} x O: success (right) m = 10 particles on ({1} x ©) U ({—1} x ©):
success.
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