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Abstract

There are now several large scale deployments of differential privacy used to
collect statistical information about users. However, these deployments periodically
recollect the data and recompute the statistics using algorithms designed for a single
use. As a result, these systems do not provide meaningful privacy guarantees over
long time scales. Moreover, existing techniques to mitigate this effect do not apply
in the “local model” of differential privacy that these systems use.
In this paper, we introduce a new technique for local differential privacy that makes
it possible to maintain up-to-date statistics over time, with privacy guarantees that
degrade only in the number of changes in the underlying distribution rather than
the number of collection periods. We use our technique for tracking a changing
statistic in the setting where users are partitioned into an unknown collection of
groups, and at every time period each user draws a single bit from a common (but
changing) group-specific distribution. We also provide an application to frequency
and heavy-hitter estimation.

1 Introduction

After over a decade of research, differential privacy [12] is moving from theory to practice, with
notable deployments by Google [15, 6], Apple [2], Microsoft [10], and the U.S. Census Bureau [1].
These deployments have revealed gaps between existing theory and the needs of practitioners. For
example, the bulk of the differential privacy literature has focused on the central model, in which user
data is collected by a trusted aggregator who performs and publishes the results of a differentially
private computation [11]. However, Google, Apple, and Microsoft have instead chosen to operate in
the local model [15, 6, 2, 10], where users individually randomize their data on their own devices and
send it to a potentially untrusted aggregator for analysis [18]. In addition, the academic literature has
largely focused on algorithms for performing one-time computations, like estimating many statistical
quantities [7, 22, 16] or training a classifier [18, 9, 4]. Industrial applications, however have focused
on tracking statistics about a user population, like the set of most frequently used emojis or words [2].
These statistics evolve over time and so must be re-computed periodically.

Together, the two problems of periodically recomputing a population statistic and operating in the local
model pose a challenge. Naïvely repeating a differentially private computation causes the privacy loss
to degrade as the square root of the number of recomputations, quickly leading to enormous values of
ε. This naïve strategy is what is used in practice [15, 6, 2]. As a result, Tang et al. [23] discovered that
the privacy parameters guaranteed by Apple’s implementation of differentially private data collection
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can become unreasonably large even in relatively short time periods.1 Published research on Google
and Microsoft’s deployments suggests that they encounter similar issues [15, 6, 10].

On inspection the naïve strategy of regular statistical updates seems wasteful as aggregate population
statistics don’t change very frequently—we expect that the most frequently visited website today will
typically be the same as it was yesterday. However, population statistics do eventually change, and if
we only recompute them infrequently, then we can be too slow to notice these changes.

The central model of differential privacy allows for an elegant solution to this problem. For large
classes of statistics, we can use the sparse vector technique [13, 22, 16, 11] to repeatedly perform
computations on a dataset such that the error required for a fixed privacy level grows not with
the number of recomputations, but with the number of times the computation’s outcome changes
significantly. For statistics that are relatively stable over time, this technique dramatically reduces the
overall error. Unfortunately, the sparse vector technique provably has no local analogue [18, 24].

In this paper we present a technique that makes it possible to repeatedly recompute a statistic with
error that decays with the number of times the statistic changes significantly, rather than the number
of times we recompute the current value of the statistic, all while satisfying local differential privacy.
This technique allows for tracking of evolving local data in a way that makes it possible to quickly
detect changes, at modest cost, so long as those changes are relatively infrequent. Our approach
guarantees privacy under any conditions, and obtains good accuracy by leveraging three assumptions:
(1) each user’s data comes from one of m evolving distributions; (2), these distributions change
relatively infrequently; and (3) users collect a certain amount of data during each reporting period,
which we term an epoch. By varying the lengths of the epochs (for example, collecting reports hourly,
daily, or weekly), we can trade off more frequent reports versus improved privacy and accuracy.

1.1 Our Results and Techniques

Although our techniques are rather general, we first focus our attention on the problem of privately
estimating the average of bits, with one bit held by each user. This simple problem is widely applicable
because most algorithms in the local model have the following structure: on each individual’s device,
data records are translated into a short bit vector using sketching or hashing techniques. The bits
in this vector are perturbed to ensure privacy using a technique called randomized response, and
the perturbed vector is then sent to a server for analysis. The server collects the perturbed vectors,
averages them, and produces a data structure encoding some interesting statistical information about
the users as a whole. Thus many algorithms (for example, those based on statistical queries) can be
implemented using just the simple primitive of estimating the average of bits.

We analyze our algorithm in the following probabilistic model (see Section 3 for a formal description).
The population of n users has an unknown partition into subgroups, each of which has size at least
L, time proceeds in rounds, and in each round each user samples a private bit independently from
their subgroup-specific distribution. The private data for each user consists of the vector of bits
sampled across rounds, and our goal is to track the total population mean over time. We require
that the estimate be private, and ask for the strong (and widely known) notion of local differential
privacy—for every user, no matter how other users or the server behave, the distribution of the
messages sent by that user should not depend significantly on that user’s private data.

To circumvent the limits of local differential privacy, we consider a slightly relaxed estimation
guarantee. Specifically, we batch the rounds into T epochs, each consisting of ` rounds, and aim in
each epoch t to estimate pt, the population-wide mean across the subgroups and rounds of epoch t.
Thus, any sufficiently large changes in this mean will be identified after the current epoch completes,
which we think of as introducing a small “delay".

Our main result is an algorithm that takes data generated according to our model, guarantees a fixed
level of local privacy ε that grows (up to a certain point) with the number of distributional changes
rather than the number of epochs, and guarantees that the estimates released at the end of each epoch
are accurate up to error that scales sublinearly in 1/` and only polylogarithmically with the total
number of epochs T . Our method improves over the naïve solution of simply recomputing the statistic
every epoch – which would lead to either privacy parameter or error that scales linearly with the

1Although the value of ε that Apple guarantees over the course of say, a week, is not meaningful on its own,
Apple does take additional heuristic steps (as does Google) that make it difficult to combine user data from
multiple data collections [2, 15, 6]. Thus, they may still provide a strong, if heuristic, privacy guarantee.
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number of epochs—and offers a quantifiable way to reason about the interaction of collection times,
reporting frequency, and accuracy. We note that one can alternatively phrase our algorithm so as to
have a fixed error guarantee, and a privacy cost that scales dynamically with the number of times the
distribution changes2.
Theorem 1.1 (Protocol for Bernoulli Means, Informal Version of Theorem 4.3). In the above
model, there is an ε-differentially private local protocol that achieves the following guarantee: with
probability at least 1−δ, while the total number of elapsed epochs t where some subgroup distribution

has changed is fewer than ε ⋅min( L
√

n ln(mT /δ)
, ln(T )

√
n
`
), the protocol outputs estimates p̃t where

∣p̃t − pt∣ = O
⎛

⎝
ln(T )

√
ln(nT /δ)

`

⎞

⎠

where L is the smallest subgroup size, n is the number of users, ` is the chosen epoch length, and T
is the resulting number of epochs.

To interpret the theorem, consider the setting where there is only one subgroup and L = n. Then
to achieve error α we need, ignoring log factors, ` ≥ 1/α2 and that fewer than εα

√
n changes have

occured. We emphasize that our algorithm satisfies ε-differential privacy for all inputs without a
distributional assumption—only accuracy relies on distributional assumptions.

Finally, we demonstrate the versatility of our method as a basic building block in the design of
locally differentially private algorithms for evolving data by applying it to the well-known heavy
hitters problem. We do so by implementing a protocol due to [3] on top of our simple primitive.
This adapted protocol enables us to efficiently track the evolution of histograms rather than single
bits. Given a setting in which each user in each round independently draws an object from a
discrete distribution over a dictionary of d elements, we demonstrate how to maintain a frequency
oracle (a computationally efficient representation of a histogram) for that dictionary with accuracy
guarantees that degrade with the number of times the distribution over the dictionary changes, and
only polylogarithmically with the number of rounds. We summarize this result below.
Theorem 1.2 (Protocol for Heavy-Hitters, Informal Version of Theorem 5.2). In the above model,
there is an ε-differentially private local protocol that achieves the following guarantee: with proba-
bility at least 1 − δ, while the total number of elapsed epochs t where some subgroup distribution

has changed is fewer than ε ⋅min( L
√

n ln(mT /δ)
, ln(T )

√
n ln(nT /δ)

`
) the protocol outputs estimate

oracles f̂ t such that for all v ∈ [d]

∣f̂ t(v) −Pt(v)∣ = O
⎛

⎝
ln(T )

√
ln(nT /δ)

`
+

√
ln(dnT /δ)

n

⎞

⎠
.

where n is the number of users, L is the smallest subgroup size, Pt is the mean distribution over
dictionary elements in epoch t, d is the number of dictionary elements, ` is the chosen epoch length,
and T is the resulting number of epochs.

1.2 Related Work

The problem of privacy loss for persistent local statistics has been recognized since at least the original
work of Erlingsson et al. [15] on RAPPOR (the first large-scale deployment of differential privacy
in the local model). Erlingsson et al. [15] offers a heuristic memoization technique that impedes a
certain straightforward attack but does not prevent the differential privacy loss from accumulating
linearly in the number of times the protocol is run. Ding et al. [10] give a formal analysis of a similar
memoization technique, but the resulting guarantee is not differential privacy—instead it is a privacy
guarantee that depends on the behavior of other users, and may offer no protection to users with
idiosyncratic device usage. In contrast, we give a worst-case differential privacy guarantee.

Our goal of maintaining a persistent statistical estimate is similar in spirit to the model of privacy
under continual observation Dwork et al. [14]. The canonical problem for differential privacy under

2We can achieve a dynamic, data-dependent privacy guarantee using the notion of ex-post differential privacy
[19], for example by using a so-called privacy odometer [21].
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continual observation is to maintain a running count of a stream of bits. However, the problem we
study is quite different. In the continual observation model, new users are arriving, while existing
users’ data does not change. In our model each user receives new information in each round. (Also,
we work in the local model, which has not been the focus of the work on continual observation.)

The local model was originally introduced by Kasiviswanathan et al. [18], and the canonical algorith-
mic task performed in this model has become frequency estimation (and heavy hitters estimation).
This problem has been studied in a series of theoretical [17, 3, 5, 8, 2] and practical works [15, 6, 2].

2 Local Differential Privacy

We require that our algorithms satisfy local differential privacy. Informally, differential privacy is a
property of an algorithm A, and states that the distribution of the output of A is insensitive to changes
in one individual user’s input. Formally, for every pair of inputs x,x′ differing on at most one user’s
data, and every set of possible outputs Z, P [A(x) ∈ Z] ≤ eε ⋅ P [A(x′) ∈ Z]. A locally differentially
private algorithm is one in which each user i applies a private algorithm Ai only to their data.

Most local protocols are non-interactive: each user i sends a single message that is indepen-
dent of all other messages. Non-interactive protocols can thus be written as A(x1, . . . , xn) =

f(A1(x1), . . . ,An(xn)) for some function f , where each algorithm Ai satisfies ε-differential pri-
vacy. Our model requires an interactive protocol: each user i sends several messages over time, and
these may depend on the messages sent by other users. This necessitates a slightly more complex
formalism.

We consider interactive protocols among the n users and an additional center. Each user runs an
algorithm Ai (possibly taking a private input xi) and the central party runs an algorithm C. We let
the random variable tr(A1, . . . ,An,C) denote the transcript containing all the messages sent by all
of the parties. For a given party i and a set of algorithms A′

−i,C
′, we let tri(xi;A′

−i,C
′) denote the

messages sent by user i in the transcript tr(Ai(xi),A′

−i,C
′). As a shorthand we will write tri(xi),

since A′

−i,C
′ will be clear from context. We say that the protocol is locally differentially private if

the function tri(xi) is differentially private for every user i and every (possibly malicious) A′

−i,C
′.

Definition 2.1. An interactive protocol (A1, . . . ,An,C) satisfies ε-local differential privacy if for
every user i, every pair of inputs xi, x′i for user i, and every set of algorithms A′

−i,C
′, the resulting

algorithm tri(xi) = tri(Ai(xi),A
′

−i,C
′) is ε-differentially private. That is, for every set of possible

outputs Z, P [tri(xi) ∈ Z] ≤ eε ⋅ P [tri(x
′

i) ∈ Z].

3 Overview: The THRESH Algorithm

Here we present our main algorithm, THRESH. The algorithmic framework is quite general, but for
this high level overview we focus on the simplest setting where the data is Bernoulli. In Section 4 we
formally present the algorithm for the Bernoulli case and analyze the algorithm to prove Theorem 1.1.

To explain the algorithm we first recall the distributional model. There are n users, each of whom
belongs to a subgroup Sj for some j ∈ [m]; denote user i’s subgroup by g(i). There are R = T`
rounds divided into T epochs of length `, denoted E1, . . . ,ET . In each round r, each user i receives a
private bit xri ∼ Ber(µrg(i)). We define the population-wide mean by µr = 1

n
(∣S1∣µ

r
1 + . . . + ∣Sm∣µrm).

For each epoch t, we use pt to denote the average of the Bernoulli means during epoch t, pt =
1
` ∑r∈Et µ

r. After every epoch t, our protocol outputs p̃t such that ∣pt − p̃t∣ is small.

The goal of THRESH is to maintain some public global estimate p̃t of pt. After any epoch t, we can
update this global estimate p̃t using randomized response: each user submits some differentially
private estimate of the mean of their data, and the center aggregates these responses to obtain p̃t.
The main idea of THRESH is therefore to update the global estimate only when it might become
sufficiently inaccurate, and thus take advantage of the possibly small number of changes in the
underlying statistic pt. The challenge is to privately identify when to update the global estimate.

The Voting Protocol. We identify these “update needed” epochs through a voting protocol. Users
will examine their data and privately publish a vote for whether they believe the global estimate
needs to be updated. If enough users vote to update the global estimate, we do so (using randomized
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response). The challenge for the voting protocol is that users must use randomization in their voting
process, to keep their data private, so we can only detect when a large number of users vote to update.

First, we describe a naïve voting protocol. In each epoch t, each user i computes a binary vote ati.
This vote is 1 if the user concludes from their own samples that the global estimate p̃t−1 is inaccurate,
and 0 otherwise. Each user casts a noisy vote using randomized response accordingly, and if the sum
of the noisy votes is large enough then a global update occurs.

The problem with this protocol is that small changes in the underlying mean pt may cause some users
to vote 1 and others to vote 0, and this might continue for an arbitrarily long time without inducing
a global update. As a result, each voter “wastes" privacy in every epoch, which is what we wanted
to avoid. We resolve this issue by having voters also estimate their confidence that a global update
needs to occur, and vote proportionally. As a result, voters who have high confidence will lose more
privacy per epoch (but the need for a global update will be detected quickly), while voters with low
confidence will lose privacy more slowly (but may end up voting for many rounds).

In more detail, each user i decides their confidence level by comparing ∣p̂t − p̂
f(t)
i ∣—the difference

between the local average of their data in the current epoch and their local average the last time a
global update occurred—to a small set of discrete thresholds. Users with the highest confidence will
vote in every epoch, whereas users with lower confidence will only vote in a small subset of the
epochs. We construct these thresholds and subsets so that in expectation no user votes in more than a
constant number of epochs before a global update occurs, and the amount of privacy each user loses
from voting will not grow with the number of epochs required before an update occurs.

4 THRESH: The Bernoulli Case

4.1 The THRESH Algorithm (Bernoulli Case)

We now present pseudocode for the algorithm THRESH, including both the general framework as well
as the specific voting and randomized response procedures. We emphasize that the algorithm only
touches user data through the subroutines VOTE, and EST, each of which accesses data from a single
user in at most two epochs. Thus, it is an online local protocol in which user i’s response in epoch t
depends only on user i’s data from at most two epochs t and t′ (and the global information that is
viewable to all users). THRESH uses carefully chosen thresholds τb = 2(b + 1)

√
ln(12nT /δ)/2` for

b = −1,0, . . . , ⌊log(T )⌋ to discretize the confidence of each user; see Section 4.2 for details on this
choice.

We begin with a privacy guarantee for THRESH. Our proof uses the standard analysis of the privacy
properties of randomized response, combined with the fact that users have a cap on the number of
updates that prevents the privacy loss from accumulating. We remark that our privacy proof does not
depend on distributional assumptions, which are only used for the proof of accuracy. We sketch a
proof here. A full proof appears in Section 6 of the Appendix.
Theorem 4.1. The protocol THRESH satisfies ε-local differential privacy (Definition 2.1)

Proof Sketch: Naïvely applying composition would yield a privacy parameter that scales with T .
Instead, we will rely on our defined privacy “caps" cVi and cEi that limit the number of truthful votes
and estimates each user sends. Intuitively, each user sends at most O( ε

a
+ ε
b
) messages that depend

on their private data, and the rest are sampled independently of their private data. Thus, we need only
bound the privacy “cost" of each of these O( ε

a
+ ε
b
) elements of a user’s transcript coming from a

different distribution and bound the sum of the costs by ε. ◻

4.2 Accuracy Guarantee

Our accuracy theorem needs the following assumption on L, the size of the smallest subgroup, to
guarantee that a global update occurs whenever any subgroup has all of its member users vote “yes".

Assumption 4.2. L > ( 3
√

2
+

√

32
ε

)
√
n ln(12mT /δ).

This brings us to our accuracy theorem, followed by a proof sketch (see Appendix 7 for full details).
Theorem 4.3. Given number of users n, number of subgroups m, smallest subgroup size L, number
of rounds R, privacy parameter ε, and chosen epoch length ` and number of epochs T = R/`, with
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Algorithm 1 Global Algorithm: THRESH

Require: number of users n, number of epochs T , minimum subgroup size L, number of subgroups
m, epoch length `, privacy parameter ε, failure parameter δ

1: Initialize global estimate p̃0 ← −1
2: Initialize vote privacy counters cV1 , . . . , c

V
n ← 0, . . . ,0

3: Initialize estimate privacy counters cE1 , . . . , c
E
n ← 0, . . . ,0

4: Initialize vote noise level a← 4
√

2n ln(12mT /δ)

L− 3
√

2

√

n ln(12mT /δ)

5: Initialize estimate noise level b←
√

2 ln(12T /δ)/2n

log(T )

√

ln(12nT /δ)/2`−
√

ln(12T /δ)/2n

6: for each epoch t ∈ [T ] do
7: for each user i ∈ [n] do
8: User i publishes ati ← VOTE(i, t)
9: end for

10: GlobalUpdatet ← ( 1
n ∑

n
i=1 a

t
i >

1
ea+1

+

√
ln(10T /δ)

2n
)

11: if GlobalUpdatet then
12: f(t)← t
13: for each i ∈ [n] do
14: User i publishes p̃ti ← EST(i, t)
15: end for
16: Aggregate user estimates into global estimate: p̃t ← 1

n ∑
n
i=1

p̃ti(e
b
+1)−1

eb−1
17: else
18: f(t)← f(t − 1)
19: for each i ∈ [n] do
20: User i publishes p̃ti ← Ber( 1

eb+1
)

21: end for
22: p̃t ← p̃t−1

23: end if
24: Analyst publishes p̃t
25: end for

Algorithm 2 Local Subroutine: VOTE

Require: user i, epoch t
1: Compute local estimate p̂ti ←

1
` ∑r∈Et x

r
i

2: b∗ ← highest b such that ∣p̂ti − p̂
f(t)
i ∣ > τb

3: VoteYesti ← (cVi < ε/4 and 2⌊logT ⌋−b∗ divides t)
4: if VoteYesti then
5: cVi ← cVi + a

6: ati ← Ber( ea

ea+1
)

7: else
8: ati ← Ber( 1

ea+1
)

9: end if
10: Output ati

Algorithm 3 Local Subroutine: EST

Require: user i, epoch t
1: SendEstimateti ← {cEi < ε/4}
2: if SendEstimateti then
3: cEi ← cEi + b

4: p̃ti ← Ber(
1+p̂ti(e

b
−1)

eb+1
)

5: else
6: p̃ti ← Ber( 1

eb+1
)

7: end if
8: Output p̃ti
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probability at least 1 − δ, in every epoch t ∈ [T ] such that fewer than

ε

4
⋅min

⎛

⎝

L

8
√

2n ln(12mT /δ)
− 1,

1
√

2
[log(T )

√
n

`
− 1]

⎞

⎠

changes have occurred in epochs 1,2, . . . , t, THRESH outputs p̃t such that

∣p̃t − pt∣ ≤ 4(⌊log(T )⌋ + 2)

√
ln(12nT /δ)

2`
.

Proof Sketch: We begin by proving correctness of the voting process. Lemma 7.1 guarantees that
if every user decides that their subgroup distribution has not changed then a global update does not
occur, while Lemma 7.2 guarantees that if every user in some subgroup decides that a change has
occurred, then a global update occurs. By Lemma 7.3, for each user i the individual user estimates
driving these voting decisions are themselves accurate to within t` = O(

√
ln(nT /δ)/`) of the true

µtg(i). Finally, by Lemma 7.4 guarantees that if every user decides that a change has occurred, then a
global update occurs that produces a global estimate p̃t that is within t` of the true pt.

To reason about how distribution changes across multiple epochs affect THRESH, we use the preceding
results to show that the number of global updates never exceeds the number of distribution changes
(Lemma 7.6). A more granular guarantee then bounds the number of changes any user detects—and
the number of times they vote accordingly—as a function of the number of distribution changes
(Lemma 7.7). These results enable us, in Lemma 7.8, to show that each change increases a user’s
vote privacy cap cVi by at most 2 and estimate privacy cap cEi by at most 1.

Finally, recall that THRESH has each user i compare their current local estimate p̂ti to their local
estimate in the last global update, p̂f(t)i , to decide how to vote, with higher thresholds for ∣p̂ti − p̂

f(t)
i ∣

increasing the likelihood of a “yes" vote. This implies that if every user in some subgroup computes
a local estimate p̂ti such that ∣p̂ti − p̂

f(t)
i ∣ exceeds the highest threshold, then every user sends a “yes"

vote and a global update occurs, bringing with it the accuracy guarantee of Lemma 7.4. In turn, we
conclude that ∣p̃t − pt∣ never exceeds the highest threshold, and our accuracy result follows. ◻

We conclude this section with a few remarks about THRESH. First, while the provided guarantee
depends on the number of changes of any size, one can easily modify THRESH to be robust to changes
of size ≤ c, paying and additive c term in the accuracy. Second, the accuracy’s dependence on `
offers guidance for its selection: roughly, for desired accuracy α, one should set ` = 1/α2. Finally, in
practice one may want to periodically assess how many users have exhausted their privacy budgets,
which we can achieve by extending the voting protocol to estimate the fraction of “live” users. We
primarily view this as an implementation detail outside of the scope of the exact problem we study.

5 An Application to Heavy Hitters

We now use the methods developed above to obtain similar guarantees for a common problem
in local differential privacy known as heavy hitters. In this problem each of n users has their
own dictionary value v ∈ D (e.g. their homepage), and an aggregator wants to learn the most
frequently held dictionary values (e.g. the most common homepages), known as “heavy hitters",
while satisfying local differential privacy for each user. The heavy hitters problem has attracted
significant attention [20, 17, 5, 8]. Here, we show how our techniques combine with an approach
of Bassily and Smith [3] to obtain the first guarantees for heavy hitters on evolving data. We note that
our focus on this approach is primarily for expositional clarity; our techniques should apply just as
well to other variants, which can lead to more efficient algorithms.

5.1 Setting Overview

As in the simpler Bernoulli case, we divide time into ` ⋅ T rounds and T epochs. Here, in each round
r each user i draws a sample vri from a subgroup-specific distribution Prg(i) over the d values in
dictionary D and track P1, . . . ,PT , the weighted average dictionary distribution in each epoch. We
will require the same Assumption 4.2 as in the Bernoulli case, and we also suppose that d ≫ n, a
common parameter regime for this problem.
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In the Bernoulli case users could reason about the evolution of µtj directly from their own ` samples in
each epoch. Since it is reasonable to assume d≫ `, this is no longer possible in our new setting—Ptj
is too large an object to estimate from ` samples. However, we can instead adopt a common approach
in heavy hitters estimation and examine a “smaller" object using a hash on dictionary samples. We
will therefore have users reason about the distribution ptj over hashes that Ptj induces, which is a
much smaller joint distribution of m (transformed) Bernoulli distributions. Our hope is that users can
reliably “detect changes” by analyzing ptj , and the feasibility of this method leans crucially on the
properties of the hash in question.

5.2 Details and Privacy Guarantee

First we recall the details of the one-shot protocol from Bassily and Smith [3]. In their protocol, each
user starts with a dictionary value v ∈ [d] with an associated basis vector ev ∈ Rd. The user hashes
this to a smaller vector h ∈ Rw using a (population-wide) Φ, a w × d Johnson-Lindenstrauss matrix
where w ≪ d. The user then passes this hash ẑti = Φev to their own local randomizer R, and the
center aggregates these randomized values into a single z̄ which induces a frequency oracle.

We will modify this to produce a protocol HEAVYTHRESH in the vein of THRESH. In each epoch t
each user i computes an estimated histogram p̂ti and then hashes it into Φp̂ti ∈ Rw, where w = 20n
(we assume the existence of a subroutine GenProj for generating Φ). Each user votes on whether or
not a global update has occurred by comparing Φp̂ti to their estimate during the most recent update,
Φp̂

f(t)
i , in HEAVYVOTE. Next, HEAVYTHRESH aggregates these votes to determine whether or

not a global update will occur. Depending on the result, each user then calls their own estimation
subroutine HEAVYEST and outputs a randomized response usingR accordingly. If a global update
occurs, HEAVYTHRESH aggregates these responses into a new published global hash ỹt; if not,
HEAVYTHRESH publishes ỹt−1. In either case, HEAVYTHRESH publishes (Φ, ỹt) as well. This final
output is a frequency oracle, which for any v ∈ [d] offers an estimate ⟨Φev, ỹ

t⟩ of Pt(v).

HEAVYTHRESH will use the following thresholds with τb = 2(b + 1)
√

2 ln(16wnT /δ)/w` for
b = −1,0, . . . , ⌊log(T )⌋. See Section 5.3 for details on this choice. Fortunately, the bulk of our
analysis uses tools already developed either in Section 4 or Bassily and Smith [3]. Our privacy
guarantee is almost immediate: since HEAVYTHRESH shares its voting protocols with THRESH, the
only additional analysis needed is for the estimation randomizerR (Lemma 8.1). Using the privacy
ofR, privacy for HEAVYTHRESH follows by the same proof as for the Bernoulli case.
Theorem 5.1. HEAVYTHRESH is ε-local differentially private.

5.3 Accuracy Guarantee

As above, an accuracy guarantee for HEAVYTHRESH unfolds along similar lines as that for THRESH,
with additional recourse to results from Bassily and Smith [3]. We again require Assumption 4.2
and also assume d = 2o(n

2
/`) (a weak assumption made primarily for neatness in Theorem 1.2). Our

result and its proof sketch follow, with details and full pseudocode in Appendix Section 9.
Theorem 5.2. With probability at least 1 − δ, in every epoch t ∈ [T ] such that fewer than

ε

4
⋅min

⎛
⎜
⎜
⎝

L

8
√

2n ln(12mT /δ)
− 1,

log(T )

√
n ln(320n2T /δ)

10`
−

√
ln(16dT /δ)

10
− 2 ln(320nT /δ)

√
5
n

√
ln(320nT /δ) (1 + 20

√
n
)

⎞
⎟
⎟
⎠

changes have occurred in epochs 1,2, . . . , t,

∣f̂ t(v) −Pt(v)∣ < 4(log(T ) + 2)

√
2 ln(320n2T /δ)

`
+

¿
Á
ÁÀ ln( 16ndT

δ
)

n
.

Proof Sketch: Our proof is similar to that of Theorem 4.3 and proceeds by proving analogous versions
of the same lemmas, with users checking for changes in the subgroup distribution over observed
hashes rather than observed bits. This leads to one new wrinkle in our argument: once we show that
the globally estimated hash is close to the true hash, we must translate from closeness of hashes to
closeness of the distributions they induce (Lemma 9.4) . The rest of the proof, which uses guarantees
of user estimate accuracy to 1. guarantee that sufficiently large changes cause global updates and 2.
each change incurs a bounded privacy loss, largely follows that of Theorem 4.3. ◻
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6 Missing Proofs from Section 4

Theorem 6.1. The protocol THRESH satisfies ε-local differential privacy (Definition 2.1)

Proof. To begin, we fix an arbitrary private user i and arbitrary algorithms A′

−i,C
′ for the

other users and for the center. Fix any pair of inputs xi, x′i for user i. To ease notation, let
tr = tri(Ai(xi),A

′

−i,C
′) and tr′ = tri(Ai(x

′

i),A
′

−i,C
′) be the random variables corresponding

to the messages sent by user i in the protocol with inputs xi, x′i, respectively. Note that we drop the
subscript i, since user i will be fixed throughout. To prove the theorem, it suffices to show

P [tr = z]

P [tr′ = z]
≤ eε

for every possible set of messages z.

The structure of the transcripts is as follows: each epoch t contributes two elements, first the
vote at (the output of VOTE(i, t)) and the estimate p̃t (the output of EST(i, t)). So we can write
z = ((a1, p̃1), . . . , (aT , p̃T )) and

P [tr = z]

P [tr′ = z]
=

T

∏
t=1

P [trt = (at, p̃t) ∣ tr<t = z<t]

P [tr′t = (at, p̃t) ∣ tr′<t = z<t]
.

For any execution of the protocol, we can partition the set of epochs into those epochs SV ⊆ [T ]

where in at least one of tr and tr′ user i sets VoteYesti to True, and those ScV where VoteYesti is False
in both tr and tr′; similarly, we can partition [T ] into those epochs SE where SendEstimateti is True
in at least one of tr and tr′ and those ScE where SendEstimateti is False in both tr and tr′.

Since every epoch in SV causes the counter cvi to increase by a, SV contains at most ε/4a epochs
from each of tr and tr′, so ∣SV ∣ ≤ ε/2a.

For any t ∈ ScV , user i will sample at and p̃t from Ber( 1
ea+1

) in both tr and tr′. Thus

∏
t∈Sc

V

P [trt = (at, p̃t) ∣ tr<t = z<t]

P [tr′t = (at, p̃t) ∣ tr′<t = z<t]
= 1.

To complete the proof, we need to bound

∏
t∈SV

P [trt = (at, p̃t) ∣ tr<t = z<t]

P [tr′t = (at, p̃t) ∣ tr′<t = z<t]
≤ eε/2,
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which will hold because every factor in the product is at most ea and ∣SV ∣ ≤ ε/2a. To see why,
consider some epoch t ∈ SV . The first component of trt is the vote at ∈ {0,1}. The only two
possibilities for how at is chosen are at ∼ Ber( 1

ea+1
) or at ∼ Ber( ea

ea+1
). One can easily verify that

for any at ∈ {0,1},
P [at ∣ tr<t = z<t]

P [at ∣ tr′<t = z<t]
≤ ea.

We now consider the second component of trt, which is p̃t. As in the SV case, since every epoch in
SE causes the counter cEi to increase by b, SE contains at most ε/4b epochs from each of tr and tr′,
so ∣SE ∣ ≤ ε/2b.

When SendEstimatet is False, then p̃t is sampled from

Ber (
1

eb + 1
)

and when SendEstimatet is True, then p̃t is sampled from

Ber(
1 + p̂t(eb − 1)

eb + 1
)

depending on the value of the private data p̂t, which lies in [0,1]. Thus, the parameter in the Bernoulli
distribution lies in [ 1

eb+1
, eb

eb+1
]. Again, one can easily verify that for any p̃t ∈ {0,1},

P [p̃t ∣ tr<t = z<t, at]

P [p̃t ∣ tr′<t = z<t, at]
≤ eb.

Putting it together, we have

P [tr = z]

P [tr′ = z]
=

T

∏
t=1

P [trt = (at, p̃t) ∣ tr<t = z<t]

P [tr′t = (at, p̃t) ∣ tr′<t = z<t]

= ∏
t∈SV

P [trt = at ∣ tr<t = z<t]

P [tr′t = at ∣ tr′<t = z<t]
⋅ ∏
t∈SE

P [trt = p̃t ∣ tr<t = z<t, at]

P [tr′t = p̃t) ∣ tr′<t = z<t, at]

≤ ea⋅∣SV ∣
⋅ eb⋅∣SE ∣

≤ eε/2 ⋅ eε/2 ≤= eε.

This completes the proof.

7 Missing Proofs From Section 4.2

We begin the proof of our accuracy guarantee with a series of lemmas. Recalling that we set

a =
4
√

2n ln(12mT /δ)

L − 3
√

2

√
n ln(12mT /δ)

and

b =

√
2 ln(12T /δ)/2n

log(T )
√

ln(12nT /δ)/2` −
√

ln(12T /δ)/2n

we start by showing that if every user votes that a change has not occurred, then a global update will
not occur.
Lemma 7.1. With probability at least 1 − δ

6
, in every epoch t ∈ [T ], if every user i sets VoteYesti ←

False then GlobalUpdatet ← False.

Proof. Since every user i sets VoteYesti ← False, every ati is an iid draw from a Bern( 1
ea+1

) distribu-
tion. Thus a Chernoff bound says

P
⎡
⎢
⎢
⎢
⎢
⎣

∣
1

n

n

∑
i=1

ati −
1

ea + 1
∣ ≥

√
ln(12T /δ)

2n

⎤
⎥
⎥
⎥
⎥
⎦

≤
δ

6T
.
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Since GlobalUpdatet ← ( 1
n ∑

n
i=1 a

t
i >

1
ea+1

+

√
ln(12T /δ)

2n
), GlobalUpdatet ← False. Union-bounding

across T epochs completes the proof.

Similarly, we also want to ensure that if every user in some subgroup votes that an update has occurred
then a global update will indeed occur.

Lemma 7.2. With probability at least 1 − δ
3

, in every epoch t ∈ [T ], if there is a subgroup j where
every user i ∈ Sj sets VoteYesti ← True then GlobalUpdatet ← True.

Proof. Since ∣Sj ∣ ≥ L, Chernoff bounds imply that the aggregate vote satisfies

1

n

n

∑
i=1

ati >
1

n

⎡
⎢
⎢
⎢
⎢
⎣

Lea

ea + 1
−

√
L ln(12mT /δ)

2
+
n −L

ea + 1
−

√
(n −L) ln(12mT /δ)

2

⎤
⎥
⎥
⎥
⎥
⎦

.

Recalling that GlobalUpdatet ← True if and only if 1
n ∑

n
i=1 a

t
i >

1
ea+1

+

√
ln(12T /δ)

2n
, it suffices to

show that

1

n

⎡
⎢
⎢
⎢
⎢
⎣

Lea

ea + 1
−

√
L ln(12mT /δ)

2
+
n −L

ea + 1
−

√
(n −L) ln(12mT /δ)

2

⎤
⎥
⎥
⎥
⎥
⎦

>
1

ea + 1
+

√
ln(12T /δ)

2n
.

Rearranging, it is enough to show that

L >
3

√
2
⋅
ea + 1

ea − 1
⋅
√
n ln(12mT /δ)

and using the fact that e
a
+1

ea−1
< a+2

a
it is enough that

a >
3
√

2n ln(12mT /δ)

L − 3
√

2

√
n ln(12mT /δ)

which follows from our setting of a. Union-bounding across m subgroups and T epochs completes
the proof.

We now show that every user in every epoch obtains an estimate p̂ti of µtg(i) of bounded inaccuracy.
This will enable us to—among other things—guarantee that users do not send “false positive" votes.

Lemma 7.3. With probability at least 1 − δ
6

, in each epoch t ∈ [T ] each user i has

∣p̂ti − µ
t
g(i)∣ <

√
ln(12nT /δ)

2`
.

Proof. E [p̂ti] = µ
t
g(i), so by an additive Chernoff bound

P
⎡
⎢
⎢
⎢
⎢
⎣

∣p̂ti − µ
t
g(i)∣ ≥

√
ln(12nT /δ)

2`

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2 exp
⎛
⎜
⎝
−2

⎡
⎢
⎢
⎢
⎢
⎣

√
ln(12nT /δ)

2`

⎤
⎥
⎥
⎥
⎥
⎦

2

`
⎞
⎟
⎠
= δ/6nT.

A union bound across n users and T epochs then completes the proof.

Next, in those epochs in which a global update occurs and no user i has hit their estimation privacy
cap cEi , in the interest of asymptotic optimality we want to obtain a similar error for the resulting
collated estimate p̃t.

Lemma 7.4. With probability at least 1 − δ
3

, in every epoch t ∈ [T ] where every user i sets
SendEstimateti ← True,

∣pt − p̃t∣ < 2(log(T ) + 2)

√
ln(12nT /δ)

2`
.
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Proof. Since every user i sets SendEstimateti ← True we know that for all i

p̃ti ∼ Ber(
1 + p̂ti(e

b − 1)

eb + 1
) ,

so

E [p̃t] = E [
1

n

n

∑
i=1

p̃ti(e
b + 1) − 1

eb − 1
] =

1

n

n

∑
i=1

E [p̃ti] (e
b + 1) − 1

eb − 1
=

1

n

n

∑
i=1

p̂ti.

Since p̃t is an average of { −1
eb−1

, eb

eb−1
}-valued random variables, we transform it into the {0,1}-valued

random variable

Y = (p̃t +
1

eb − 1
) ⋅
eb − 1

eb + 1
.

Applying an additive Chernoff bound as above yields

P
⎡
⎢
⎢
⎢
⎢
⎣

∣Y −E [Y ]∣ ≥

√
ln(12T /δ)

2n

⎤
⎥
⎥
⎥
⎥
⎦

≤
δ

6T

which implies that

P
⎡
⎢
⎢
⎢
⎢
⎣

∣p̃t −
1

n

n

∑
i=1

p̂ti∣ ≥ (
eb + 1

eb − 1
)

√
ln(12T /δ)

2n

⎤
⎥
⎥
⎥
⎥
⎦

≤
δ

6T
.

Similarly, as E [ 1
n ∑

n
i=1 p̂

t
i] = p

t,

P
⎡
⎢
⎢
⎢
⎢
⎣

∣
1

n

n

∑
i=1

p̂ti − p
t
∣ ≥

√
ln(12T /δ)

2n

⎤
⎥
⎥
⎥
⎥
⎦

≤
δ

6T
.

Combining these results in the triangle inequality yields that with probability at least 1 − δ
6T

∣p̃t − pt∣ < 2(
eb + 1

eb − 1
)

√
ln(12T /δ)

2n
.

Since eb+1
eb−1

< b+2
b

, this implies that

∣p̃t − pt∣ < 2(
b + 2

b
)

√
ln(12T /δ)

2n

so to get

∣p̃t − pt∣ < 2(log(T ) + 2)

√
ln(12nT /δ)

2`
it is enough for

b >

√
2 ln(12T /δ)/n

(log(T ) + 2)
√

ln(12nT /δ)/2` −
√

ln(12T /δ)/2n
.

Substituting in our setting of

b =

√
2 ln(12T /δ)/2n

log(T )
√

ln(12nT /δ)/2` −
√

ln(12T /δ)/2n

and union-bounding over T epochs completes the proof.

Finally, we use the above lemmas to reason about how long users’ privacy budgets last. We’ll first
define a useful term for this claim.
Definition 7.5. We say a change ∆t occurs in epoch t ∈ [T ] if there exists subgroup j such that
µtj ≠ µ

t−1
j . Given changes ∆t1 and ∆t2 where t1 < t2, we say that ∆t1 and ∆t2 are adjacent changes

if there does not exist a change ∆t3 such that t1 < t3 < t2.

This lets us prove the following lemma bounding the frequency of global updates.
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Lemma 7.6. With probability at least 1 − δ, given adjacent changes ∆t1 and ∆t2 , GlobalUpdatet ←
True in at most one epoch t ∈ [t1, t2).

Proof. First, with probability at least 1 − δ all of the preceding lemma in this section apply, and we
condition on them for the remainder of this proof.

Assume instead that GlobalUpdatet ← True and GlobalUpdatet
′

← True as well for t1 ≤ t < t′ ≤ t2−1,
and that GlobalUpdatet3 ← False for all t3 ∈ (t, t′). Recall that by Lemma 7.1, if in epoch t′ every
user i sets VoteYest

′

i ← False then

1

n

n

∑
i=1

at
′

i ≤
1

ea + 1
+

√
ln(12T /δ)

2n

which means GlobalUpdatet
′

← False. Therefore since we know GlobalUpdatet
′

← True, it follows
that at least one user i sets VoteYest

′

i ← True. By the thresholding structure of THRESH, this implies
that

∣p̂t
′

i − p̂
t
i ∣ > 2

√
ln(12nT /δ)

2`
.

Since Lemma 7.3 guarantees that both p̂t
′

i and p̂ti are within
√

ln(12nT /δ)
2`

of µt
′

g(i) and µtg(i) re-

spectively, it follows that µt
′

g(i) ≠ µ
t
g(i). This contradicts the fact that ∆t1 and ∆t2 were adjacent

changes.

We similarly bound the frequency with which users vote that a change has occurred.

Lemma 7.7. With probability at least 1 − δ, given adjacent changes ∆t1 and ∆t2 such that a global
update occurs in t3 ∈ [t1, t2), for each user i there is at most one epoch t ∈ (t3, t2) where VoteYesti ←
True.

Proof. First, with probability at least 1 − δ all of the preceding lemmas in this section apply, and we
condition on them for the remainder of this proof. In particular, Lemma 7.6 implies that t3 is the only
epoch in [t1, t2) in which a global update occurs.

For contradiction, let t3 < t4 < t5 < t2 and assume that user i sets VoteYest4i ← True and VoteYest5i ←
True. Since there is only one t ∈ [T − 1] such that 2⌊log(T )⌋−1 divides t, and the construction of the
Vote subroutine requires this for a user m to set VoteYestm ← True, without loss of generality we may
suppose that ∣p̂t4i − p̂

f(t4)
i ∣ > Tb and ∣p̂t5i − p̂

f(t5)
i ∣ > Tb′ where b > b′ ≥ 1. However, Lemma 7.3 then

implies that every user m in Sg(i) has ∣p̂t5m − p̂
f(t5)
i ∣ > T ′b, so by Lemma 7.6 GlobalUpdatet5 ← True,

a contradiction of t3 being the only epoch in [t1, t2) in which a global update occurs.

Our last lemma before our main theorem ties the above results together to relate changes to increases
in users’ privacy caps ci. This will eventually let us lower bound the time for which THRESH outputs
accurate results.

Lemma 7.8. Denote by cti the value of ci in epoch t. Then with probability at least 1 − δ, across all
epochs, given any two adjacent changes ∆t1 and ∆t2 , for every user i

ct2−1
i,E ≤ ct1−1

i,E + 1

and
ct2−1
i,V ≤ ct1−1

i,V + 2.

Proof. First, with probability at least 1 − δ all of the preceding lemmas in this section apply, and we
condition on them for the remainder of this proof.

Fix a user i. First, ci,E increases in any epoch t where SendEstimateti ← True. This only happens in
epoch where GlobalUpdatet ← True, and by Lemma 7.6, at most one global update occurs in epochs
in [t1, t2), so ct2−1

i,E ≤ ct1−1
i,E + 1. We analyze ci,V in two cases.
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Case 1: For all t ∈ [t1, t2), GlobalUpdatet ← False. Here, since no global update occurs, if
ct2−1
i,V > ct1i + 2 then there must exist 3 epochs t ∈ [t1, t2) where user i sets VoteYesti ← True, a

contradiction of Lemma 7.7.

Case 2: For some epoch t∗ ∈ [t1, t2), GlobalUpdatet
∗

← True. It then suffices to show that user i sets
VoteYesti ← True in at most two epochs t ∈ [t1, t2 − 1] (possibly including t∗).

Assume instead that VoteYest3i , VoteYest4i , and VoteYest5i ← True for distinct t3, t4, t5 ∈ [t1, t2). By
Lemmas 7.3 and 7.4, VoteYesti ← False in any epoch t ∈ [t∗+1, t2). Therefore t3, t4, t5 ∈ [t1, t

∗], and
at least two are in [t1, t

∗−1] and do not trigger a global update. This again contradicts Lemma 7.7.

Taken together, these preliminary results let us prove our main accuracy theorem.
Theorem 7.9. With probability at least 1 − δ, in every epoch t ∈ [T ] such that fewer than

ε

4
⋅min

⎛

⎝

L

8
√

2n ln(12mT /δ)
− 1,

1
√

2
[log(T )

√
n

`
− 1]

⎞

⎠

changes have occurred in epochs 1,2, . . . , t,

∣p̃t − pt∣ ≤ 4(⌊log(T )⌋ + 2)

√
ln(12nT /δ)

2`
.

Proof. First, with probability at least 1 − δ all of the preceding lemmas and corollaries in this section
apply, and we condition on them for the remainder of this proof. In particular, since

min(
ε

8a
,
ε

4b
) =

ε

4
⋅min(

1

2a
,
1

b
)

=
ε

4
⋅min

⎛
⎜
⎝

L − 3
√

2

√
n ln(12mT /δ)

8
√

2n ln(12mT /δ)
,
log(T )

√
ln(12nT /δ)/2` −

√
ln(12T /δ)/2n

√
2 ln(12T /δ)/2n

⎞
⎟
⎠

>
ε

4
⋅min

⎛

⎝

L

8
√

2n ln(12mT /δ)
− 1,

1
√

2
[log(T )

√
n

`
− 1]

⎞

⎠

we know that the number of changes thus far is less than min ( ε
8a
, ε

4b
), and by Lemma 7.8 for every

user i, cVi < ε/4 and cEi < ε/4, i.e. no user has exceeded their voting or estimation privacy budget.

Now suppose for contradiction that

∣p̃t − pt∣ > 4(⌊log(T )⌋ + 2)

√
ln(12nT /δ)

2`
.

By Lemma 7.4 this means GlobalUpdatet ← False, so by Lemma 7.2 for every subgroup j ∈ [m]

there exists user i ∈ Sj such that

∣p̂ti − p̂
f(t)
i ∣ ≤ 2(⌊log(T )⌋ + 1)

√
ln(12nT /δ)

2`
.

Lemma 7.3 then implies that

∣µtj − µ
f(t)
j ∣ ≤ 2(⌊log(T )⌋ + 2)

√
ln(12nT /δ)

2`
.

Since this holds for every subgroup j, we get that

∣pt − pf(t)∣ ≤ 2(⌊log(T )⌋ + 2)

√
ln(12nT /δ)

2`
,

and since GlobalUpdatet ← False, by Lemma 7.4 this means that p̃t = p̃f(t) and

∣p̃t − pt∣ ≤ 4(⌊log(T )⌋ + 2)

√
ln(12nT /δ)

2`
.

a contradiction.
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8 Missing Proofs from Section 5.2

We start with full pseudocode for HEAVYTHRESH.

Next, we prove a lemma guaranteeing the privacy of theR subroutine.

Lemma 8.1. R is ε-locally DP.

Proof. Choose a possible output z ofR. Let h1 and h2 be two arbitrary input hashes. It suffices to
show

P [R(h1) = z]

P [R(h2) = z]
≤ eε.

Case 1: h1 and h2 are zero vectors. ThenR(h1) andR(h2) have identical output distributions and
the result is immediate.

Case 2: Exactly one (WLOG h1) hash is a nonzero vector. Then

P [R(h2) = z] =
1

2w
.

Similarly,

P [R(h1) = z] ≤
1

w
⋅ (

1

2
+

1

2cε
) .

Therefore
P [R(h1) = z]

P [R(h2) = z]
≤ 1 +

1

cε
= 1 +

eε − 1

eε + 1
≤ eε.

Case 3: Neither h1 nor h2 is a zero vector. Then by the logic above

P [R(h1) = z]

P [R(h2) = z]
≤

1 + eε−1
eε+1

1 − eε−1
eε+1

=
eε + 1 + eε − 1

eε + 1 − eε + 1
= eε.

9 Missing Proofs From Section 5.3

First, recall that we set

a =
4
√

2n ln(12mT /δ)

L − 3
√

2

√
n ln(12mT /δ)

and

b =
2(

√
ln(16wT /δ)

nw
+

ln(16wT /δ)
√
w

n2 )

2(log(T ) + 2)
√

2 ln(16wnT /δ)
w`

− 2
√

ln(16dT /δ)
2wn

−
ln(16wT /δ)

√
w

n2

We start with a result aboutR.

Lemma 9.1. For all ε > 0 and x ∈ [− 1
√
w
, 1
√
w
]w, E [R(x, ε)] = x.

Proof. In the case where x = 0, we get

E [R(x)]j =
1

w
⋅ (−

cε
√
w

2
+
cε

√
w

2
) = 0,

and for x ≠ 0

E [R(x)]j =
1

w
[(

1

2
+
xj

√
w

2cε
) cε

√
w + (

1

2
−
xj

√
w

2cε
)(−cε

√
w)] = xj .
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Algorithm 4 Global Algorithm: HEAVYTHRESH

Require: number of users n, number of epochs T , minimum subgroup size L, number of subgroups
m, epoch length `, privacy parameter ε, failure parameter δ

1: Initialize global estimate ỹ0 ← −1
2: Initialize update counters c1, . . . , cn ← 0,0, . . . ,0

3: Initialize vote noise level a← 4
√

2n ln(12mT /δ)

L− 3
√

2

√

n ln(12mT /δ)

4: Initialize estimate noise level b←
2(

√
ln(16wT /δ)

nw +
ln(16wT /δ)

√
w

n2 )

2(log(T )+2)
√

2 ln(16wnT /δ)
w` −2

√
ln(16dT /δ)

2wn −
ln(16wT /δ)

√
w

n2

5: w ← 20n
6: Initialize JL matrix Φ← GenProj(w,d)
7: for each epoch t ∈ [T ] do
8: for each user i ∈ [n] do
9: User i publishes ati ← HEAVYVOTE(i, t)

10: end for
11: GlobalUpdatet ← ( 1

n ∑
n
i=1 a

t
i >

1
ea+1

+

√
ln(16T /δ)

2n
)

12: if GlobalUpdatet then
13: f(t)← t
14: for each i ∈ [n] do
15: User i publishes z̃ti ← HEAVYEST(i, t)
16: end for
17: Aggregate user estimates into global estimate:

ỹt ← 1
n ∑

n
i=1 z̃

t
i

18: else
19: f(t)← f(t − 1)
20: for each i ∈ [n] do
21: User i publishes z̃ti ←R(0, b)
22: end for
23: ỹt ← ỹt−1

24: end if
25: Analyst publishes ỹt
26: Analyst publishes FOt ← (Φ, ỹt)
27: end for

Algorithm 5 Local Subroutine: HEAVYVOTE

Require: user i, epoch t
1: Compute local estimate p̂ti ←

1
` ∑

t`
r=(t−1)`+1 v

r
i

2: Compute local hash ŷti ← Φp̂ti
3: b∗ ← highest b such that ∣∣ŷti − ŷ

f(t)
i ∣∣∞ > τb

4: VoteYesti ← (cVi < ε/4a and 2⌊logT ⌋−b∗ divides t)
5: if VoteYesti then
6: cVi ← cVi + a

7: ati ← Ber( ea

ea+1
)

8: else
9: ati ← Ber( 1

ea+1
)

10: end if
11: Output ati

Algorithm 6 Frequency Oracle: AFO

Require: Frequency oracle (Φ, 1
n ∑

n
i=1 zi), dictionary value to be estimated v ∈ [d]

1: Output f̂(v) = ⟨Φev, z̄⟩

17



Algorithm 7 Local Subroutine: HEAVYEST

Require: user i, epoch t
1: SendEstimateti ← {cEi < ε/4b}
2: if SendEstimateti then
3: ci ← cEi + b
4: z̃ti ←R(ŷti , b)
5: else
6: z̃ti ←R(0, b)
7: end if
8: Output z̃ti

Algorithm 8 Client Randomizer: R

Require: Hashed histogram h = Φp̂ti, privacy parameter ε
1: Sample j ∈ [w] uniformly at random
2: cε ←

eb+1
eb−1

3: z ← 0 ∈ Rw
4: if h ≠ 0 then
5: Draw x ∼ Uni(0,1)

6: if x < 1
2
+
hj

√
w

2cε
then

7: zj ← cε
√
w

8: else
9: zj ← −cε

√
w

10: end if
11: else
12: zj ← cε

√
w or − cε

√
w u.a.r

13: end if
14: Output z

Lemmas 7.1 and 7.2, since they cover portions of the voting process shared between VOTE and
HEAVYVOTE, apply here with only their failure probabilities changed to δ/8 and δ/4. We start with
an analogue of Lemma 7.3.

Lemma 9.2. With probability at least 1 − δ
8

, for every epoch t and user i, defining by ptg(i) the
d-dimensional vector where ptg(i)(q) = P

t
g(i)(q),

∥Φp̂ti −Φptg(i)∥
∞
<

√
2 ln(16wnT /δ)

w`
.

Proof. Φp̂ti is a vector with entries in ± 1
√
w

, so setting X =

√
w(Φp̂ti+

1
√
w
)

2
we get X ∈ [0,1]m where

each index Xj has E [Xj] =

√
w((Φptg(i))j+

1
√
w
)

2
. A Chernoff bound then says that, with probability at

least 1 − δ
8

, for every user i and every epoch t

∥X −E [Xj]∥∞ <

√
ln(16wnT /δ)

2`
.

Scaling this result by 2
√
w

and transforming X back into Φp̂ti yields the claim.

This brings us to an analogue of Lemma 7.4.

Lemma 9.3. With probability at least 1 − 3δ
8

, for every epoch t where every user i sets
SendEstimateti ← True,

∥ỹt −Φpt∥
∞
< 2(log(T ) + 2)

√
2 ln(16wnT /δ)

w`
.

Proof. By Lemma 9.1, E [ỹt] = 1
n ∑

n
i=1 Φp̂ti, and we want to begin by bounding ∥ỹt − 1

n ∑
n
i=1 Φp̂ti∥.

First, since each of the n random variables ẑti that make up ỹt = 1
n ∑

n
i=1 ẑ

t
i is a zero vector except for

18



an independently randomly chosen index s ∈ [w], for each s ∈ [w] we can bound the number N t
j of

vectors ẑti that are nonzero in index s by an additive Chernoff bound:

P
⎡
⎢
⎢
⎢
⎢
⎣

N t
s >

n

w
+

√
n ln(8wT /δ)

2

⎤
⎥
⎥
⎥
⎥
⎦

≤
δ

8wT
.

Union bounding over w indices, since ỹt is normalized by 1/n, we get that

ỹt ∈

⎡
⎢
⎢
⎢
⎢
⎣

−cε
√
w

⎛

⎝

1

w
+

√
ln(8wT /δ)

2n

⎞

⎠
, cε

√
w

⎛

⎝

1

w
+

√
ln(8wT /δ)

2n

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

w

.

Thus scaling, applying a Chernoff bound to each index, then re-scaling and union bounding over
all w indices and T epochs gives us that with probability at least 1 − δ

8
in every epoch t where

GlobalUpdatet ← True

∥ỹt −
1

n

n

∑
i=1

Φp̂ti∥
∞

< 2cε
⎛

⎝

1

w
+

√
ln(8wT /δ)

2n

⎞

⎠

√
w ln(16wT /δ)

2n

< cε
⎛

⎝

√
2 ln(16wT /δ)

wn
+

ln(16T /δ)
√
w

n

⎞

⎠
.

Similarly,

∥Φpt −
1

n

n

∑
i=1

Φp̂ti∥
∞

= ∥Φ∥
∞
⋅ ∥pt −

1

n

n

∑
i=1

p̂ti∥
∞

≤
1

√
w
⋅

√
ln(16dT /δ)

2n

=

√
ln(16dT /δ)

2wn

where the inequality holds with probability at least 1 − δ
8

in every epoch t by the definition of Φ and
a Chernoff bound on the sampling error of n samples from Pt, union bounded over d dictionary
elements and T epochs. By triangle inequality,

∥ỹt −Φpt∥
∞
< cε

⎛

⎝

√
ln(16wT /δ)

nw
+

ln(16wT /δ)
√
w

n

⎞

⎠
+

√
ln(16dT /δ)

2wn

andsince cε = eb+1
eb−1

< b+2
b

, it is enough to set b such that

b + 2

b

⎛

⎝

√
ln(16wT /δ)

nw
+

ln(16wT /δ)
√
w

n

⎞

⎠
+

√
ln(16dT /δ)

2wn
≤ 2(log(T )+2)

√
2 ln(16wnT /δ)

w`
.

Substituting in our value

b =
2(

√
ln(16wT /δ)

nw
+

ln(16wT /δ)
√
w

n2 )

2(log(T ) + 2)
√

2 ln(16wnT /δ)
w`

− 2
√

ln(16dT /δ)
2wn

−
ln(16wT /δ)

√
w

n2

yields the claim.

We’ll need the following result to translate bounds on ∥ỹt −Φpt∥ into accuracy bounds relative to Pt.

Lemma 9.4. With probability at least 1 − δ
8

, in every epoch t if

∥ỹt −Φpt∥
∞
< B

then, denoting by f̂ t the frequency oracle induced by (Φ, ỹt),

max
v∈[d]

∣f̂ t(v) −Pt(v)∣ ≤ B
√
w + 2

√
ln(16ndT /δ)

n
.
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Proof. The outline of our proof is similar (and in some steps identical) to that of Theorem 2.5
in Bassily and Smith [3], but we provide it here for completeness. First,

max
v∈[d]

∣f̂ t(v) −Pt(v)∣ = max
v∈[d]

∣⟨ỹt,Φev⟩ − ⟨pt, ev⟩∣

= max
v∈[d]

∣⟨ỹt −Φpt,Φev⟩ + ⟨Φpt,Φev⟩ − ⟨pt, ev⟩∣

≤ max
v∈[d]

∣⟨ỹt −Φpt,Φev⟩∣ +max
v∈[d]

∣⟨Φpt,Φev⟩ − ⟨pt, ev⟩∣ .

Then by Corollary 6.4 from Blum et al. [7], since γ =
√

ln(16ndT /δ)
n

and w = 20n =
20 ln(16ndT /δ)

γ2 ,
we get that with probability at least 1 − δ

8T
we can bound the second term by

max
v∈[d]

∣⟨Φpt,Φev⟩ − ⟨pt, ev⟩∣ ≤ γ (∥pt∥
2

2
+ ∥ev∥

2
2) ≤ 2γ.

By our assumption we can bound the first term by

∥ỹt −Φpt∥
∞
⋅ ∥Φev∥1 ≤ B

√
w.

Together with a union bound over the T epochs, these yield the claim.

We can use these lemmas to prove an analogue of Corollary 7.6. First, we specify our setting-specific
redefinition of change.

Definition 9.5. We say a change ∆t occurs in epoch t ∈ [T ] if there exists subgroup j ∈ [m] such
that Ptj ≠ P

t−1
j .

This lets us state the necessary result.

Lemma 9.6. With probability at least 1 − δ, given adjacent changes ∆t1 and ∆t2 , GlobalUpdatet ←
True in at most one epoch t ∈ [t1, t2).

Proof. The proof is identical to that of Lemma 7.6, only replacing Lemma 7.3 with Lemma 9.2.

Lemmas 7.7 and 7.8 apply in this setting unmodified, which finally lets us prove the following
accuracy guarantee.

Theorem 9.7 (Accuracy Guarantee). With probability at least 1 − δ, in every epoch t ∈ [T ] such that
fewer than

ε

4
⋅min

⎛
⎜
⎜
⎝

L

8
√

2n ln(12mT /δ)
− 1,

log(T )

√
n ln(320n2T /δ)

10`
−

√
ln(16dT /δ)

10
− 2 ln(320nT /δ)

√
5
n

√
ln(320nT /δ) (1 + 20

√
n
)

⎞
⎟
⎟
⎠

changes have occurred in epochs 1,2, . . . , t,

∣f̂ t(v) −Pt(v)∣ < 4(log(T ) + 2)

√
2 ln(320n2T /δ)

`
+

¿
Á
ÁÀ ln( 16ndT

δ
)

n
.

Proof. The proof is nearly identical to that of Theorem 4.3, replacing all lemmas with their heavy-
hitter analogues proven above. We provide it here for completeness.
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First, with probability at least 1 − δ all of the preceding lemmas and corollaries in this section apply,
and we condition on them for the remainder of this proof. In particular, since

min(
ε

8a
,
ε

4b
) =

ε

4
⋅min(

1

2a
,
1

b
)

=
ε

4
⋅min

⎛
⎜
⎜
⎜
⎝

L − 3
√

2

√
n ln(12mT /δ)

8
√

2n ln(12mT /δ)
,
2(log(T ) + 2)

√
2 ln(16wnT /δ)

w`
− 2

√
ln(16dT /δ)

2wn
−

ln(16wT /δ)
√
w

n2

2(

√
ln(16wT /δ)

nw
+

ln(16wT /δ)
√
w

n2 )

⎞
⎟
⎟
⎟
⎠

>
ε

4
⋅min

⎛
⎜
⎝

L

8
√

2n ln(12mT /δ)
−

3

16
,
(log(T ) + 2)

√
2 ln(320n2T /δ)

20n`
−

√
ln(16dT /δ)

40n2 −
ln(320nT /δ)

√

20n
n2

√
ln(320nT /δ) ( 1

n
+ 20
n3/2 )

⎞
⎟
⎠

=
ε

4
⋅min

⎛
⎜
⎜
⎝

L

8
√

2n ln(12mT /δ)
−

3

16
,
(log(T ) + 2)

√
n ln(320n2T /δ)

10`
− 1

2

√
ln(16dT /δ)

10
− 2 ln(320nT /δ)

√
5
n

√
ln(320nT /δ) (1 + 20

√
n
)

⎞
⎟
⎟
⎠

>
ε

4
⋅min

⎛
⎜
⎜
⎝

L

8
√

2n ln(12mT /δ)
− 1,

log(T )

√
n ln(320n2T /δ)

10`
−

√
ln(16dT /δ)

10
− 2 ln(320nT /δ)

√
5
n

√
ln(320nT /δ) (1 + 20

√
n
)

⎞
⎟
⎟
⎠

we know that the number of changes thus far is less than min ( ε
8a
, ε

4b
), and by Lemma 7.8 for every

user i, cVi < ε/4 and cEi < ε/4, i.e. no user has exceeded their voting or estimation privacy budget.

Now suppose for contradiction that in epoch t

∣Φpt − ỹt−1
∣ > 4(log(T ) + 2)

√
2 ln(16wnT /δ)

w`
.

By Lemma 9.3 this means GlobalUpdatet ← False, so by Lemma 7.2 for every subgroup j ∈ [m]

there exists user i ∈ Sj such that

∣∣Φp̂ti −Φp̂
f(t)
i ∣∣∞ ≤ 2(log(T ) + 1)

√
2 ln(16wnT /δ)

w`
.

Lemma 9.2 then implies that

∣∣Φptg(i) −Φp
f(t)

g(i)
∣∣∞ ≤ 2(log(T ) + 2)

√
2 ln(16wnT /δ)

w`
.

Since this holds for every subgroup j, we get that

∣∣Φpt −Φpf(t)∣∣∞ ≤ 2(log(T ) + 2)

√
2 ln(16wnT /δ)

w`
,

and since GlobalUpdatet ← False, by Lemma 9.3 this means that ỹt = ỹf(t), so

∣∣ỹt −Φpt∣∣∣∞ ≤ 2(log(T ) + 2)

√
2 ln(16wnT /δ)

w`
.

Plugging this quantity into Lemma 9.4 as B gives that for all v ∈ [d]

∣f̂ t(v) −Pt(v)∣ < 2(log(T ) + 2)

√
2 ln(16wnT /δ)

`
+

¿
Á
ÁÀ ln( 16ndT

δ
)

n
.

Substituting w = 20n yields the claim.
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