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1 Proofs

1.1 Proofs of Theorems 2 and 3

We first provide some preliminaries. According to the model, with probability p(u,v) that u can
successfully activate v. We use ģ to denote a random subgraph sampled from G where each edge
(u, v) appears in ģ with probability p(u,v). Each edge in ģ then has the propagation probability of
1. We use G to denote the set of all possible random graphs and use Pr[ģ] to denote the probability
that ģ can be sampled. Let f ģ(τ(P∗)) be the number of M-active nodes in ģ under τ(P∗). Because
the randomness of the diffusion process comes from that if each edge (u, v) can be “passed”, each
graph in G is actually one possible outcome of the spreading process. Therefore, f(τ(P∗)) can be
represented as

f(τ(P∗)) =
∑
ģ∈G

Pr[ģ] · f ģ(τ(P∗)). (1)

Because the properties of monotone nondecreasing and submodular are preserved under addition, to
prove Theorem 2 or 3, it suffices to prove that f ģ(τ(P∗)) is monotone nondecreasing and submodular.

Let us first consider under which condition a node can be M-active or M-active. For each u, v ∈ V
and V

′ ⊆ V , we use disģ(u, v) to denote the length of the shortest path from u to v in ģ, and define
that disģ(V

′
, v) = minu∈V ′ disģ(u, v). Let τ(M) = ∪M∈Mτ(M) be the union of the seed sets of

misinformation cascades, and define τ(M) = (∪P∈Pτ(P )) ∪ τ(P∗) for the positive cascades. Note
that τ(M) is fixed while τ(M) depends on τ(P∗). Two important lemmas are given below.

Lemma 1. Under any cascade priority setting, a node u ∈ V is M-active in ģ if disģ(τ(M), u) <
disģ(τ(M), u).

Proof. Let a ∈ τ(M) be a node such that disģ(a, u) = disģ(τ(M), u), and (v0, ..., vl) be the shortest
path from a to u, where v0 = a and vl = u. Assuming disģ(τ(M), u) < disģ(τ(M), u), we prove that
v0, ..., vl are all M-active and vi will be activated at time step i. We prove this by induction. Because
disģ(a, u) = disģ(τ(M), u) < disģ(τ(M), u), v0 = a is not a seed node of any misinformation
cascade, and therefore v0 is M-active at time step 0. Suppose that, for some i with 0 < i < l,
v0, ..., vi are all M-active and vi is activated at time step i. Now we prove that vi+1 will be M-active
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at time step i + 1. Because i + 1 is the length of the shortest path from any seed node to u, u
cannot be activated before time step i+ 1. Furthermore, by the inductive hypothesis, vi will activate
vi+1 at time step i + 1, so vi+1 will be activated at time step i + 1 by vi or other in-neighbors.
Finally, because disģ(τ(M), u) < disģ(τ(M), u) and vi+1 is on the shortest path from a to u, we
have disģ(τ(M), vi+1) < disģ(τ(M), vi+1), which means any path from any misinformation seed
node to vi+1 must have a length larger than i+ 1. Therefore, vi+1 cannot be M -active at time step
i+ 1 for any M ∈M and it must be M-active. By induction, u = vl will be M-active and it will be
activated at time step l.

We can prove the following lemma in a similar way.
Lemma 2. Under any cascade priority setting, a node u ∈ V is M-active if disģ(M, u) <

disģ(τ(M), u).

Lemma 1 and 2 give the necessary conditions for a node to be M-active or M-active.

1.1.1 M-dominant cascade priority

Now let us consider the M-dominant cascade priority. The following lemma shows a necessary and
sufficient condition for a node to be M-active under the M-dominant cascade priority.

Lemma 3. Under the M-dominant cascade priority, given the seed sets, a node u is M-active in ģ if
and only if disģ(τ(M), u) < disģ(τ(M), u).

Proof. =⇒ : Let a ∈ τ(M) be a node such that disģ(a, u) = disģ(τ(M), u), and (v0, ..., vl) be
the shortest path from a to u, where v0 = a and vl = u. We prove the contrapositive. That is,
assuming disģ(τ(M), u) ≥ disģ(τ(M), u), we prove that v0, ..., vl are all M-active and vi will be
activated at time step i. Again, we prove this by induction. Because v0 = a is a seed node of some
misinformation cascade and the cascade setting is M-dominant, v0 will be M-active at time step 0.
Suppose that, for some i with 0 < i < l, v0, ..., vi are all M-active and vi is activated at time step
i. Now we prove that vi+1 will be M-active at time step i + 1. Because i + 1 is the length of the
shortest path from any seed node to vi, vi cannot be activated before time step i+ 1. Furthermore,
by the inductive hypothesis, vi will activate vi+1 at time step i+ 1 so vi+1 will be activated at time
step i+ 1 by vi or other in-neighbors. Finally, because the cascade priority is M-dominant and vi is
M-active, vi must be M-active. By induction, u = vl will be M-active and it will be activated at time
step l.

⇐= : This part is exactly the Lemma 1.

Now we are ready to prove that f ģ(τ(P∗)) is monotone nondecreasing and submodular. According
to Lemma 3, f ģ(τ(P∗)) can be expressed as

f ģ(τ(P∗)) =
∑
u∈V

f ģ(τ(P∗), u),

where f ģ(τ(P∗), u) is defined as

f ģ(τ(P∗), u) =

{
1 if disģ(τ(M), u) < disģ(τ(M), u)

0 else
, (2)

where τ(M) depends on τ(P∗). Now it suffices to prove that f ģ(τ(P∗), u) is monotone nondecreasing
and submodular with respect to τ(P∗).
Lemma 4. f ģ(τ(P∗), u) is monotone nondecreasing and submodular for each ģ ∈ G and u ∈ V .

Proof. It is clear monotone nondecreasing because adding one node to τ(P∗) will not increase
disģ(τ(M), u). To prove the submodularity, it suffices to prove that for each S1 ⊆ S2 ⊆ V ∗ and
x /∈ S2,

f ģ(S1 ∪ {x}, u)− f ģ(S1, u) ≥ f ģ(S2 ∪ {x}, u)− f ģ(S2, u).
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Because f ģ(τ(P∗), u) is monotone nondecreasing and it can be only 0 or 1, it suffices to show
that f ģ(S1 ∪ {x}, u) − f ģ(S1, u) = 1 whenever f ģ(S2 ∪ {x}, u) − f ģ(S2, u) = 1. If f ģ(S2 ∪
{x}, u)− f ģ(S2, u) = 1, then f ģ(S2 ∪ {x}, u) = 1 and f ģ(S2, u) = 0. Because f ģ(S2, u) = 0 and
disģ(S1, u) ≥ disģ(S2, u), we have f ģ(S1, u) = 0 . Because f ģ(S2∪{x}, u) = 1 and f ģ(S2, u) = 0,
by Eq. (2), we have disģ(x, u) < disģ(τ(M), u). Therefore, disģ(S1 ∪ {x}, u) < disģ(τ(M), u) and
f ģ(S1 ∪ {x}, u) = 1. So f ģ(S1 ∪ {x}, u)− f ģ(S1, u) is also equal to 1.

1.1.2 P-dominant cascade priority

Now we prove the P-dominant case. The proof is similar to that of the M-dominant case. We use the
following lemma analogous to Lemma 3.

Lemma 5. Under the P-dominant cascade priority, a node u is M-active in ģ if and only if
disģ(τ(M), u) ≤ disģ(τ(M), u).

Proof. ⇐= : Let a ∈ τ(M) be the node such that disģ(a, u) = disģ(τ(M), u), and (v0, ..., vl) be
the shortest path from a to u where v0 = a and vl = u. Assuming disģ(τ(M), u) ≤ disģ(τ(M), u),
we can prove that v0, ..., vl are all M-active and vi will be activated at time step i. This is similar to
the “ =⇒ ” part in the proof of Lemma 3.

=⇒ : This part follows from Lemma 2.

Therefore, for the P-dominant case, f ģ(τ(P∗)) can be represented as f ģ(τ(P∗)) =∑
u∈V ·f ģ(τ(P∗), u), where f ģ(τ(P∗), u) is defined as

f ģ(τ(P∗), u) =

{
1 if disģ(τ(M), u) ≤ disģ(τ(M), u)

0 else
. (3)

Now it suffices to prove that f ģ(τ(P∗), u) is monotone nondecreasing and submodular.
Lemma 6. f ģ(τ(P∗), u) is monotone nondecreasing and submodular for each ģ ∈ G and u ∈ V .

Proof. It is clear monotone nondecreasing as adding one node to τ(P∗) will not increase
disģ(τ(M), u). To prove submodularity, it suffices to prove that for each S1 ⊆ S2 ⊆ V ∗ and
x /∈ S2,

f ģ(S1 ∪ {x}, u)− f ģ(S1, u) ≥ f ģ(S2 ∪ {x}, u)− f ģ(S2, u).

It suffices to show that f ģ(S1 ∪{x}, u)− f ģ(S1, u) = 1 whenever f ģ(S2 ∪{x}, u)− f ģ(S2, u) = 1.
If f ģ(S2 ∪ {x}, u) − f ģ(S2, u) = 1, then f ģ(S2 ∪ {x}, u) = 1 and f ģ(S2, u) = 0. Because
f ģ(S2, u) = 0 and disģ(S1, u) ≥ disģ(S2, u), we have f ģ(S1, u) = 0. Because f ģ(S2 ∪ {x}, u) = 1
and f ģ(S2, u) = 0, by Eq. (3), disģ(x, u) ≤ disģ(τ(M), u). Therefore, disģ(S1 ∪ {x}, u) ≤
disģ(τ(M), u) and f ģ(S1 ∪ {x}, u) = 1. So f ģ(S1 ∪ {x}, u)− f ģ(S1, u) is also equal to 1.

1.1.3 Homogeneous cascade priority

Since we are considering the homogeneous cascade priority, we denote Fv() as F() without mention-
ing any node. For each u ∈ V , ģ ∈ G and τ(P∗) ⊆ V ∗, let

Aģ(τ(P∗), u) = {v ∈ τ(M) ∪ τ(M)|dis
ģ
(v, u) = dis

ģ
(τ(M) ∪ τ(M), u)}

be the set of the node v such that disģ(v, u) = disģ(τ(M) ∪ τ(M), u). Let

Cģ(τ(P∗), u) = {C|C ∈M∪P∪{P∗}, τ(C) ∩Aģ(τ(P∗), u) 6= ∅}

be set of the cascade(s) with a seed node in Aģ(τ(P∗), u). Let Cģ(τ(P∗), u) ∈ Cģ(τ(P∗), u) be the
cascade such that

Cģ(τ(P∗), u) = argmax
C∈Cģ(τ(P∗),u)

F(C).

Lemma 7. Under the homogeneous cascade priority, each node u ∈ V will be Cģ(τ(P∗), u)-active
in ģ under τ(P∗).
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Proof. Let a be an arbitrary node in τ(Cģ(τ(P∗), u)) ∩Aģ(τ(P∗), u),1 and (v0 = a, ..., vl = u) be
the shortest path from a to u where v0 = a and vl = u. We prove that v0, ..., vl are all Cģ(τ(P∗), u)-
active and vi will be activated at time step i. We prove this by induction.

Basic step: Because a belongs to Aģ(τ(P∗), u), any cascade selecting a as a seed node must
in Cģ(τ(P∗), u). Since Cģ(τ(P∗), u) has the highest priority among Cģ(τ(P∗), u), a = v0 will be
Cģ(τ(P∗), u)-active at time step 0.

Inductive step: Suppose that, for some 0 < i < l, v0, ..., vi are all Cģ(τ(P∗), u)-active and vi
is activated at time step i. Now we prove that vi+1 will be Cģ(τ(P∗), u)-active at time step i + 1.
Because i+ 1 is the length of the shortest path from any seed node to vi+1, vi+1 cannot be activated
before time step i+ 1. Furthermore, vi will activate vi+1 at time step i+ 1, so vi+1 will be activated
at time step i + 1 by vi or other in-neighbors. Note that only the cascades with seed nodes in
Aģ(τ(P∗), u) are able to activate vi+1 at time step i + 1. Because vi is Cģ(τ(P∗), u)-active and
Cģ(τ(P∗), u) has the highest priority among Aģ(τ(P∗), u), vi+1 will be activated by vi at time step
i+ 1 and it will be Cģ(τ(P∗), u)-active.

According to Lemma 7, a node u is M-active in ģ under τ(P∗) if and only ifCģ(τ(P∗), u) ∈ P∪{P∗}.
Therefore, under the homogeneous cascade setting, f ģ(τ(P∗)) can be represented as f ģ(τ(P∗)) =∑

u∈V f
ģ(τ(P∗), u), where f ģ(τ(P∗), u) is defined as

f ģ(τ(P∗), u) =

{
1 if Cģ(τ(P∗), u) ∈ P∪{P∗}
0 else, Cģ(τ(P∗), u) ∈M .

Now it suffices to prove that f ģ(S, u) is monotone nondecreasing and submodular.
Lemma 8. f ģ(τ(P∗), u) is monotone nondecreasing for each ģ ∈ G and u ∈ V .

Proof. When a new node x is added to τ(P∗), disģ(τ(C), u) remains unchanged for C 6= P∗, and
disģ(τ(P∗), u) either decreases or remains unchanged. Therefore, after adding a new node to τ(P∗),
there are three possible cases. First, P∗ becomes a new cascade in Cģ(τ(P∗), u). Second, P∗ is
the only cascade in Cģ(τ(P∗), u). Third, Cģ(τ(P∗), u) remains unchanged. In either of the three
cases, Cģ(τ(P∗), u) cannot change to a misinformation cascade from a positive cascade. Therefore,
f ģ(τ(P∗), u) is monotone nondecreasing.

Lemma 9. f ģ(τ(P∗), u) is submodular for each ģ ∈ G and u ∈ V .

Proof. Again, it suffices to prove that for each ģ, S1 ⊆ S2 ⊆ V ∗ and x /∈ S2,

f ģ(S1 ∪ {x}, u)− f ģ((S1, u)) ≥ f ģ(S2 ∪ {x}, u)− f ģ(S2, u).

Furthermore, it suffices to show that f ģ(S1 ∪ {x}, u)− f ģ(S1, u) = 1 whenever f ģ(S2 ∪ {x}, u)−
f ģ(S2, u) = 1. If f ģ(S2 ∪ {x}, u) − f ģ(S2, u) = 1, then f ģ(S2 ∪ {x}, u) = 1 and f ģ(S2, u) = 0.
Because f ģ(S2, u) = 0, we have Cģ(S2, u) ∈M. Since S1 ⊆ S2, by the discussion in the proof of
Lemma 8, Cģ(S1, u) also belongs M and therefore f ģ(S1, u) = 0. Because f ģ(S2 ∪ {x}, u) = 1
and f ģ(S2, u) = 0, we have Cģ(S2, u) ∈M and Cģ(S2 ∪ {x}, u) ∈ P. According to the three cases
in the proof of Lemma 8, Cģ(S2 ∪ {x}, u) must be P∗. Therefore, Cģ(S1 ∪ {x}, u) is also P∗ and
f ģ(S1 ∪ {x}, u) = 1. So f ģ(S1 ∪ {x}, u)− f ģ(S1, u) is also equal to 1.

1.2 Proof of Theorem 4

The proof of Theorem 4 requires the preliminaries given in the last subsection. For each ģ ∈ G and
u ∈ V , let us define

f ģ(τ(P∗), u) =

{
1 if u is M-active under τ(P∗) in ģ with cascade priority Fv for each v
0 else

,

f
ģ
(τ(P∗), u) =

{
1 if u is M-active under τ(P∗) in ģ with cascade priority Fv for each v
0 else

,

1By definition, τ(Cģ(τ(P∗), u)) ∩Aģ(τ(P∗), u) cannot be empty.
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and

f ģ(τ(P∗), u) =

{
1 if u is M-active under τ(P∗) in ģ with cascade priority Fv for each v
0 else

.

According to Eq. (1), it suffices to show that f
ģ
(τ(P∗), u) ≥ f ģ(τ(P∗), u) ≥ f ģ(τ(P∗), u).

When f ģ(τ(P∗), u) = 1, by Lemma 3, we have disģ(τ(M), u) < disģ(τ(M), u). According to
Lemma 1, u will be M-active under Fv and thus f ģ(τ(P∗), u) must be 1. Therefore, f ģ(τ(P∗), u) ≥
f ģ(τ(P∗), u).

When f
ģ
(τ(P∗), u) = 0, by Lemma 5, we have disģ(τ(M), u) > disģ(τ(M), u). According to

Lemma 2, u will be M-active under Fv and thus f ģ(τ(P∗), u) must be 0. Therefore, f
ģ
(τ(P∗), u) ≥

f ģ(τ(P∗), u).

2 Experiments

The statistics of the datasets are listed in Table 1

Table 1: Datasets
Dataset Node Edge

Higgs-10K 10,000 22,482
Higgs-100K 100,000 193,484
HepPh 34,000 421,578

2.1 Experimental setting

For the case of five cascades, we deploy two existing misinformation cascades and two existing
positive cascades. For the case of ten cascades, we deploy four existing misinformation cascades
and five existing positive cascades. For each existing cascade, the size of the seed set is set as 20 and
the seed nodes are selected from the node with the highest single-node influence. The seed sets of
different cascades do not overlap with each other. The budget of P∗ is enumerated from {1, 2, ..., 20}.
The cascade priority at each node is assigned randomly, by generating random permutations. The
lists of the used random permutations over {1, 2, 3}, {1, ..., 5} and {1, ..., 10} are provided in the
supplementary material. For each dataset, the list of the nodes ordered by single-node influence is
provided in the supplementary material.

2.2 More experimental results

The performance of ALG. 1 on f , f and f on each dataset is shown in Figs. 1, 2 and 3. As we
can see in the figures, maximizing the upper or lower bound may provide a better solution that just
maximizing the objective function. Therefore, the sandwich algorithm is effective than the naive
greedy algorithm on f .
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Figure 1: Results on Higgs-10K.
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Figure 2: Results on Higgs-100K.
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Figure 3: Results on HepPh.
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