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Abstract

Entropy estimation is one of the prototypical problems in distribution property
testing. To consistently estimate the Shannon entropy of a distribution on S ele-
ments with independent samples, the optimal sample complexity scales sublinearly
with S as @(@) as shown by Valiant and Valiant [4]. Extending the theory
and algorithms for entropy estimation to dependent data, this paper considers the
problem of estimating the entropy rate of a stationary reversible Markov chain with
S states from a sample path of n observations. We show that

e Provided the Markov chain mixes not too slowly, i.e., the relaxation time is at

most O(%), consistent estimation is achievable when n > %.
e Provided the Markov chain has some slight dependency, i.e., the relaxation

time is at least 1 + Q(h\‘/}s), consistent estimation is impossible when n <
SZ
log S
Under both assumptions, the optimal estimation accuracy is shown to be @(%).
In comparison, the empirical entropy rate requires at least £2(S?) samples to be
consistent, even when the Markov chain is memoryless. In addition to synthetic
experiments, we also apply the estimators that achieve the optimal sample complex-
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ity to estimate the entropy rate of the English language in the Penn Treebank and
the Google One Billion Words corpora, which provides a natural benchmark for
language modeling and relates it directly to the widely used perplexity measure.

1 Introduction

Consider a stationary stochastic process { X; }$2,, where each X takes values in a finite alphabet X'
of size S. The Shannon entropy rate (or simply entropy rate) of this process is defined as [1]

_ 1
H = lim —H(X"), (1)

n—,oo M

where
= Y Po)np—
Xﬂ
I"GX’L PXn (xn)

is the Shannon entropy (or entropy) of the random vector X" = (X1, Xs,..., X,,) and Pxn (z™) =
P(X; = z1,...,X, = x,) is the joint probability mass function. Since the entropy of a random

variable depends only on its distribution, we also refer to the entropy H (P) of a discrete distribution
P = (p1,pa,...,ps), defined as H(P) = ZL 1 Di ln =

The Shannon entropy rate is the fundamental limit of the expected logarithmic loss when predicting
the next symbol, given the all past symbols. It is also the fundamental limit of data compressing
for stationary stochastic processes in terms of the average number of bits required to represent each
symbol [1, 7]. Estimating the entropy rate of a stochastic process is a fundamental problem in
information theory, statistics, and machine learning; and it has diverse applications—see, for example,
[3,2,3,3,4,2].

There exists extensive literature on entropy rate estimation. It is known from data compression theory
that the normalized codelength of any universal code is a consistent estimator for the entropy rate as
the number of samples approaches infinity. This observation has inspired a large variety of entropy
rate estimators; see e.g. [4, 2, 1, 6, 1]. However, most of this work has been in the asymptotic regime
[3, 8]. Attention to non-asymptotic analysis has only been more recent, and to date, almost only
for i.i.d. data. There has been little work on the non-asymptotic performance of an entropy rate
estimator for dependent data—that is, where the alphabet size is large (making asymptotically large
datasets infeasible) and the stochastic process has memory. An understanding of this large-alphabet
regime is increasingly important in modern machine learning applications, in particular, language
modeling. There have been substantial recent advances in probabilistic language models, which have
been widely used in applications such as machine translation and search query completion. The
entropy rate of (say) the English language represents a fundamental limit on the efficacy of a language
model (measured by its perplexity), so it is of great interest to language model researchers to obtain
an accurate estimate of the entropy rate as a benchmark. However, since the alphabet size here is
exceedingly large, and Google’s One Billion Words corpus includes about two million unique words,'
it is unrealistic to assume the large-sample asymptotics especially when dealing with combinations of
words (bigrams, trigrams, etc). It is therefore of significant practical importance to investigate the
optimal entropy rate estimator with limited sample size.

In the context of non-asymptotic analysis for i.i.d. samples, Paninski [3] first showed that the Shannon
entropy can be consistently estimated with o(.S) samples when the alphabet size S approaches infinity.
The seminal work of [4] showed that when estimating the entropy rate of an i.i.d. source, n > %
samples are necessary and sufficient for consistency. The entropy estimators proposed in [4] and
refined in [4], based on linear programming, have not been shown to achieve the minimax estimation
rate. Another estimator proposed by the same authors [4] has been shown to achieve the minimax

1.0
rate in the restrictive regime of ; fs <n < SlT Using the idea of best polyn0m1a1 approximation,

~ Y~

the independent work of [4] and [1] obtained estimators that achieve the minimax mean-square error

O((57 fg 5)%+ @) for entropy estimation. The intuition for the @(%) sample complexity in the

IThis exceeds the estimated vocabulary of the English language partly because different forms of a word
count as different words in language models, and partly because of edge cases in tokenization, the automatic
splitting of text into “words”.



independent case can be interpreted as follows: as opposed to estimating the entire distribution which
has S — 1 parameters and requires ©(.S) samples, estimating the scalar functional (entropy) can be

done with a logarithmic factor reduction of samples. For Markov chains which are characterized by

. . . . . . . 2
the transition matrix consisting of S(S — 1) free parameters, it is reasonable to expect an @(k:qﬁ)

sample complexity. Indeed, we will show that this is correct provided the mixing is not too slow.

Estimating the entropy rate of a Markov chain falls in the general area of property testing and
estimation with dependent data. The prior work [2] provided a non-asymptotic analysis of maximum-
likelihood estimation of entropy rate in Markov chains and showed that it is necessary to assume
certain assumptions on the mixing time for otherwise the entropy rate is impossible to estimate. There
has been some progress in related questions of estimating the mixing time from sample path [1, 2],
estimating the transition matrix [1], and testing symmetric Markov chains [1]. The current paper
makes contribution to this growing field. In particular, the main results of this paper are highlighted
as follows:

e We provide a tight analysis of the sample complexity of the empirical entropy rate for
Markov chains when the mixing time is not too large. This refines results in [2] and shows
that when mixing is not too slow, the sample complexity of the empirical entropy does
not depend on the mixing time. Precisely, the bias of the empirical entropy rate vanishes
uniformly over all Markov chains regardless of mixing time and reversibility as long as the
number of samples grows faster than the number of parameters. It is its variance that may
explode when the mixing time becomes gigantic.

e We obtain a characterization of the optimal sample complexity for estimating the entropy
rate of a stationary reversible Markov chain in terms of the sample size, state space size,
and mixing time, and partially resolve one of the open questions raised in [2]. In particular,
we show that when the mixing is neither too fast nor too slow, the sample complexity
(up to a constant) does not depend on mixing time. In this regime, the performance of the
optimal estimator with n samples is essentially that of the empirical entropy rate with n logn
samples. As opposed to the lower bound for estimating the mixing time in [1] obtained by
applying Le Cam’s method to two Markov chains which are statistically indistinguishable,
the minimax lower bound in the current paper is much more involved, which, in addition to a
series of reductions by means of simulation, relies on constructing two stationary reversible
Markov chains with random transition matrices [4], so that the marginal distributions of the
sample paths are statistically indistinguishable.

e We construct estimators that are efficiently computable and achieve the minimax sample
complexity. The key step is to connect the entropy rate estimation problem to Shannon
entropy estimation on large alphabets with i.i.d. samples. The analysis uses the idea of
simulating Markov chains from independent samples by Billingsley [3] and concentration
inequalities for Markov chains.

e We compare the empirical performance of various estimators for entropy rate on a vari-
ety of synthetic data sets, and demonstrate the superior performances of the information-
theoretically optimal estimators compared to the empirical entropy rate.

e We apply the information-theoretically optimal estimators to estimate the entropy rate of the
Penn Treebank (PTB) and the Google One Billion Words (1BW) datasets. We show that
even only with estimates using up to 4-grams, there may exist language models that achieve
better perplexity than the current state-of-the-art.

The rest of the paper is organized as follows. After setting up preliminary definitions in Section 2,
we summarize our main findings in Section 3, with proofs sketched in Section 4. Section 5 provides
empirical results on estimating the entropy rate of the Penn Treebank (PTB) and the Google One
Billion Words (1BW) datasets. Detailed proofs and more experiments are deferred to the appendices.

2 Preliminaries

Consider a first-order Markov chain X, X1, Xo, ... on a finite state space X = [S] with transition
kernel T'. We denote the entries of T as Tjj, that is, T;; = Px,|x, (j|i) for4,j € X'. Let T; denote
the ith row of T', which is the conditional law of X5 given X; = ¢. Throughout the paper, we focus



on first-order Markov chains, since any finite-order Markov chain can be converted to a first-order
one by extending the state space [3].

We say that a Markov chain is stationary if the distribution of X, denoted by 7 £ Px,, satisfies
7wl = m. We say that a Markov chain is reversible if it satisfies the detailed balance equations,
m; 1y = m;1y; forall 4, 7 € A, If a Markov chain is reversible, the (left) spectrum of its transition
matrix 7" contains .S real eigenvalues, which we denoteas 1 = Ay > Ao > --- > Ag > —1. We define
the spectral gap and the absolute spectral gap of T as y(T') = 1 — Ay and v*(T') = 1 —max;>2 |\
respectively, and the relaxation time of a reversible Markov chain as

The relaxation time of a reversible Markov chain (approximately) captures its mixing time, which
roughly speaking is the smallest n for which the marginal distribution of X, is close to the Markov
chain’s stationary distribution. We refer to [3] for a survey.

)
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We consider the following observation model. We observe a sample path of a stationary finite-state

Markov chain Xy, X1, ..., X,,, whose Shannon entropy rate H in (1) reduces to
- s S 1
H= ;m;ﬂjlnfj:H(Xl,Xg)—H(Xl) (3)

where 7 is the stationary distribution of this Markov chain. Let M3 (S) be the set of transition
matrices of all stationary Markov chains on a state space of size S. Let Ma ., (S) be the set of
transition matrices of all stationary reversible Markov chains on a state space of size S. We define
the following class of stationary Markov reversible chains whose relaxation time is at most 7%:

Mz e (5,77) = {T € Mareu(5),7"(T) 2 7"} )

The goal is to characterize the sample complexity of entropy rate estimation as a function of S, v*,
and the estimation accuracy.

Note that the entropy rate of a first-order Markov chain can be written as

s
i=1
Given a sample path X = (Xy, X1, ..., X,), let 7 denote the empirical distribution of states, and

the subsequence of X containing elements following any occurrence of the state i as X(?) = {X i
X; € X,X,_1 =1,j € [n]}. Anatural idea to estimate the entropy rate H is to use 7; to estimate 7;
and an appropriate Shannon entropy estimator to estimate H (X2|X; = 7). We define two estimators:

1. The empirical entropy rate: Hemp = 35| 7t Hemp (X)) Note that Hemp(Y) computes
the Shannon entropy of the empirical distribution of its argument Y = (Y7,Y5,...,Y},).

2. Our entropy rate estimator: H'Opt = Zf 1 ﬁiﬁopt (X(i)), where H'Opt is any minimax

rate-optimal Shannon entropy estimator designed for i.i.d. data, such as those in [4, 4, 1].

3 Main results

Our first result provides performance guarantees for the empirical entropy rate I_{emp and our entropy
rate estimator Hqp::

Theorem 1. Suppose (Xo, X1, ...,X,,) is a sample path from a stationary reversible Markov chain
. 3 .
with spectral gap ~. If SO < n < §299 and % < h”fnz A nlniln3 g, there exists some constant

C > 0 independent of n, S, such that the entropy rate estimator Hop satisfies:> as S — oo,

_ _ 92
—H|<
P<|HOpt H|_Cnln5> —1 (6)

The asymptotic results in this section are interpreted by parameterizing n = ns and v = vs and S — oo
subject to the conditions of each theorem.



Under the same conditions, there exists some constant C' > 0 independent of n, S,y such that the
empirical entropy rate Hem, satisfies: as S — 0o,

2
P <|Hemp _H) < ci) S )

Theorem 1 shows that when the sample size is not too large, and the mixing is not too slow, it suffices

2 . 7 . . . . .
to take n > lf—s for the estimator H, to achieve a vanishing error, and n > S 2 for the empirical
entropy rate. Theorem 1 improves over [2] in the analysis of the empirical entropy rate in the sense

. 2 L. 2 .. .
that unlike the error term O(;%), our dominating term O(‘%) does not depend on the mixing time.

Note that we have made mixing time assumptions in the upper bound analysis of the empirical
entropy rate in Theorem 1, which is natural since [2] showed that it is necessary to impose mixing
time assumptions to provide meaningful statistical guarantees for entropy rate estimation in Markov
chains. The following result shows that mixing assumptions are only needed to control the variance of
the empirical entropy rate: the bias of the empirical entropy rate vanishes uniformly over all Markov
chains regardless of reversibility and mixing time assumptions as long as n > S2.

Theorem 2. Letn,S > 1. Then,
_ _ 252 n 5?2 +2)In?2
sup  |H — E[Hemp]| < = In (—2 +1) L (57+2)In2 ®)
TeMs(S) n S
Theorem 2 implies that if n > S2, the bias of the empirical entropy rate estimator universally
vanishes for any stationary Markov chains.

Now we turn to the lower bounds, which show that the scalings in Theorem 1 are in fact tight. The
next result shows that the bias of the empirical entropy rate Hep,, is non-vanishing unless n > 52,
even when the data are independent.

Theorem 3. If { Xy, X1, ..., X} are mutually independent and uniformly distributed, then
_ _ 52
|H — E[Hemp]| > In (W> . (©))
The following corollary is immediate.
Corollary 1. There exists a universal constant ¢ > 0 such that when n < ¢S?, the absolute value of

the bias of f_Iemp is bounded away from zero even if the Markov chain is memoryless.

The next theorem presents a minimax lower bound for entropy rate estimation which applies to any
estimation scheme regardless of its computational cost. In particular, it shows that Hgp; is minimax
rate-optimal under mild assumptions on the mixing time.

Theorem 4. Forn > %,lnn < ﬁ,’y* <1—Cs4/ Slrjs, we have

2
. _ 1
lim inf inf sup P (|H —H|>C &l > > —, (10)
S—oo  f TEMa 0 (S,7*) nilnS 2

Here C1, Cy are universal constants from Theorem 6.

The following corollary, which follows from Theorem 1 and 4, presents the critical scaling that
determines whether consistent estimation of the entropy rate is possible.

Corollary 2. If % Ky <1-0CY4 % there exists an estimator H which estimates the entropy

rate with a uniformly vanishing error over Markov chains Ms ,,,(S,v*) if and only if n > %

To conclude this section we summarize our result in terms of the sample complexity for estimating
the entropy rate within a few bits (e = ©(1)), classified according to the relaxation time:

® T, = 1: this is the i.i.d. case and the sample complexity is O( h;gS );



. . . . . 2
): in this narrow regime the sample complexity is at most O(lf—s)

o 1< T <<1+Q(“j§s

and no matching lower bound is known;

o 1+ Q(“\ljgs) < Trel K %: the sample complexity is @(%);

. . 2 . .
® Tiol 2 % the sample complexity is Q(li—s) and no matching upper bound is known. In

this case the chain mixes very slowly and it is likely that the variance will dominate.

4 Sketch of the proof

In this section we sketch the proof of Theorems 1, 2 and 4, and defer the details to the appendix.

4.1 Proof of Theorem 1

A key step in the analysis of H, emp and H opt 1s the idea of simulating a finite-state Markov chain from
independent samples [3, p. 19]: consider an independent collection of random variables X and W,
(t=1,2,...,5n=1,2,...) such that Px (i) = m;, Pw,, (j) = T;;. Imagine the variables W,
set out in the following array:

in

Wi Wi ... Wi,
War Way ... Wy,

First, X is sampled. If Xy = i, then the first variable in the ith row of the array is sampled,
and the result is assigned by definition to X;. If X; = j, then the first variable in the jth row
is sampled, unless 7 = 4, in which case the second variable is sampled. In any case, the result
of the sampling is by definition X». The next variable sampled is the first one in row X9 which
has not yet been sampled. This process thus continues. After collecting { X, X1,..., X, } from
the model, we assume that the last variable sampled from row ¢ is W;,,,. It can be shown that
observing a Markov chain {Xo, X1,..., X,,} is equivalent to observing {Xo, {Wi;}icrs),jemi }s

and consequently 7; = n;/n, X = (Wi, ..., Wi,,).

The main reason to introduce the above framework is to analyze Hemp(X®) and Hop: (X (?) as if the

argument X is an i.i.d. vector. Specifically, although Wy, - - - , W, conditioned on n; = m are
not i.i.d., they are i.i.d. as 7; for any fixed m. Hence, using the fact that each n; concentrates around

n; (cf. Definition 2 and Lemma 4 for details), we may use the concentration properties of ﬁemp and
ﬁopt (cf. Lemma 3) on i.i.d. data for each fixed m ~ nm; and apply the union bound in the end.

Based on this alternative view, we have the following theorem, which implies Theorem 1.

Theorem 5. Suppose (Xo, X1,...,X,) comes from a stationary reversible Markov chain with
spectral gap ~. Then, with probability tending to one, the entropy rate estimators satisfy

|[Hop — H| 5

§2__(S\"  SmS  SmShn o [Shnk’s
nlnS

_ 92 S\’*®  SmS SInSlan Slnnln® S
IHemp—H|§n+<n) toge T e (12)

4.2 Proof of Theorem 2

11
n n0.999 ny ny ’ an

By the concavity of entropy, the empirical entropy rate Hemp underestimates the truth H in expectation.
On the other hand, the average codelength L of any lossless source code is at least 4 by Shannon’s
source coding theorem. As a result, H — E[Hemp| < L — E[Hemp], and we may find a good lossless
code to make the RHS small.



Since the conditional empirical distributions maximizes the likelihood for Markov chains (Lemma 13),
we have

1
EP 7111—” ZEP n n
no Qxypix, (X7 Xo) n o Pxpixo (X7 Xo)

1 1] a 13

1 1
ZEPl min —1

n—— | —E[d,, (14)
PeMs(S) N PXIL|X0(X{L‘X0) [ € p]

where M (S) denotes the space of all first-order Markov chains with state [S]. Hence,

1. Pa}
|H —E[Hemp]| <inf sup —In w. (15)
Q pPeMy(s)aen M QaT|m0)
The following lemma provides a non-asymptotic upper bound on the RHS of (15) and completes the
proof of Theorem 2.

Lemma 1. [3] Let M5 (S) denote the space of Markov chains with alphabet size S for each symbol.
Then, the worst case minimax redundancy is bounded as
1. P} 252 242)In2
mf osup L 2@l iln(ﬁﬂ) M Caltilrd

- < (16)
Q peMay(s)aen Qa7 |z0) n 52

n

4.3 Proof of Theorem 4

To prove the lower bound for Markov chains, we first introduce an auxiliary model, namely, the
independent Poisson model and show that the sample complexity of the Markov chain model is lower
bounded by that of the independent Poisson model. Then we apply the so-called method of fuzzy
hypotheses [4, Theorem 2.15] (see also [1, Lemma 11]) to prove a lower bound for the independent
Poisson model. We introduce the independent Poisson model below, which is parametrized by an
S x S symmetric matrix R, an integer n and a parameter A > 0.

Definition 1 (Independent Poisson model). Given an S x S symmetric matrix R = (R;;) with
R;; > 0 and a parameter \ > 0, under the independent Poisson model, we observe X ~ m = m(R),
and an S x S matrix C' = (C;) with independent entries distributed as C;; ~ Poi (AR;;), where

S S
Wizﬂi(R)Z%, Ti:ZRija ’I“:Zm. (17)
j=1 =1

For each symmetric matrix R, by normalizing the rows we can define a transition matrix 7' = T'(R)
of a reversible Markov chain with stationary distribution 7 = 7(R). Upon observing the Poisson
matrix C, the functional to be estimated is the entropy rate H of T'(R). Given 7 > 0 and 7, ¢ € (0, 1),
define the following collection of symmetric matrices:

R(S,v,7,q) = {R eRTS :R=R" +*(T) > ’y,ZRij > T, Tmin = q}, (18)
4,J
where m,i, = min; m;. The reduction to independent Poisson model is summarized below:
Lemma 2. [f there exists an estimator H, for the Markov chain model with parameter n such that
P(|Hy, — H| > €) < 0 under any T' € Ma ey (S,7), then there exists another estimator Hy for the
independent Poisson model with parameter \ = % such that

T

CZ
sup P (|F12 — H(T(R))| > e) < 5+ 280 e 4 /2 (19)
ReR(S,v,7,q)

provided q > 03711% where c3 > 20 is a universal constant.
To prove the lower bound for the independent Poisson model, the goal is to construct two sym-
metric random matrices (whose distributions serve as the priors), such that (a) they are suffi-

ciently concentrated near the desired parameter space R (S, ~, 7, ¢) for properly chosen parameters



v, T, q; (b) their entropy rates are separated; (c) the induced marginal laws of the sufficient statistic
C=XoU{Cij+Cji:i# 4,1 <i<j<StU{Cy : 1 <i < S} are statistically indistinguishable.
The prior construction in Definition 4 satisfies all these three properties (cf. Lemmas 10, 11, 12), and
thereby lead to the following theorem:

Theorem 6. Ifn > %,lnn<< S v <1—-0Cq SIn®S e have

(InS)2> n
e - 52 1
lim inf inf sup P(|H-H|>C > = (20)
S0 H RER(Sy*,7.q) nlnS 2

where T = S, q = Wﬁ’ and Cy,Cy > 0 are two universal constants.

5 Application: Fundamental limits of language modeling

In this section, we apply entropy rate estimators to estimate the fundamental limits of language
modeling. A language model specifies the joint probability distribution of a sequence of words,
Q xn(z™). It is common to use a (k — 1)th-order Markov assumption to train these models, using
sequences of k words (also known as k-grams,’ sometimes with Latin prefixes unigrams, bigrams,
etc.), with values of k£ of up to 5 [2]. A commonly used metric to measure the efficacy of a model
Q@ x~ is the perplexity (whose logarithm is called the cross-entropy rate):

. 1
Qxn(X™)

If a language is modeled as a stationary and ergodic stochastic process with entropy rate 4, and X™
is drawn from the language with true distribution Px~, then [2]

perplexity, (X") =

— 1 1
H< linIgiOI(l)f o log m = hnHiiOI(l)f log [perplexityQ (X”)} ,
with equality when @ = P. In this section, all logarithms are with respect to base 2 and all entropy
are measured in bits.

The entropy rate of the English language is of significant interest to language model researchers:
since 2% is a tight lower bound on perplexity, this quantity indicates how close a given language
model is to the optimum. Several researchers have presented estimates in bits per character [3, 9, 5];
because language models are trained on words, these estimates are not directly relevant to the present
task. In one of the earliest papers on this topic, Claude Shannon [3] gave an estimate of 11.82 bits
per word. This latter figure has been comprehensively beaten by recent models; for example, [2]
achieved a perplexity corresponding to a cross-entropy rate of 4.55 bits per word.

To produce an estimate of the entropy rate of English, we used two well-known linguistic corpora:
the Penn Treebank (PTB) and Google’s One Billion Words (1BW) benchmark. Results based on
these corpora are particularly relevant because of their widespread use in training models. We used
the conditional approach proposed in this paper with the JVHW estimator describe in Section D. The
PTB corpus contains about n ~ 1.2 million words, of which S ~ 47,000 are unique. The 1BW
corpus contains about n ~ 740 million words, of which S = 2.4 million are unique.

We estimate the conditional entropy H (X|X*~1) for k = 1,2,3, 4, and our results are shown in

Figure 1. The estimated conditional entropy H (X1|X*=1) provides us with a refined analysis of the
intrinsic uncertainty in language prediction with context length of only k£ — 1. For 4-grams, using the
JVHW estimator on the 1BW corpus, our estimate is 3.46 bits per word. With current state-of-the-art
models trained on the 1BW corpus having an cross-entropy rate of about 4.55 bits per word [2],
this indicates that language models are still at least 0.89 bits per word away from the fundamental
limit. (Note that since H (Xj|X*~1) is decreasing in k, H(X4|X?3) > H.) Similarly, for the much
smaller PTB corpus, we estimate an entropy rate of 1.50 bits per word, compared to state-of-the-art
models that achieve a cross-entropy rate of about 5.96 bits per word [4], at least 4.4 bits away from
the fundamental limit.

More detailed analysis, e.g., the accuracy of the JVHW estimates, is shown in the Appendix E.

3In the language modeling literature these are typically known as n-grams, but we use k to avoid conflict
with the sample size.
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Figure 1: Estimates of conditional entropy based on linguistic corpora
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