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1 Proof of Theorem 1

Theorem 1. The solution of the cross-entropy minimization in Eq. (9) for softmax distributions has
the following closed form:

f(dm = j|u(t+1)
m ) =

P∑
p=1

I{d(p)m =j}

P
. (1)

where p refers to the promising placements and P = ρN is the total number of promising placements.

Proof. Our goal is to optimally set each parameter of softmax distributions so that the objective in
Eq. (9) is minimized. For a particular parameter umj , the gradient of objective in Eq. (9) with respect
to umj can be written as,
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For those placements with training times larger than γt, the indicator function would not be enabled.
We use notation p to index the promising placements with indicator functions enabled. Thus, Eq. A-(2)
(Equation 2 in Appendix) can be written as,
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where we consider only P = ρN promising placements in Eq. (9). Eq. A-(3) can be written as,
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which is equivalent to,
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log f(d(p)m |u(t)m ). (5)

The gradient of the logarithm of a softmax distribution can be divided into two cases,

5umj
log f(d(p)m |u(t)m ) =

{
1− f(dm = j|u(t)m ) if d(p)m = j;

−f(dm = j|u(t)m ) if d(p)m 6= j,
(6)
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which can be reduced to a neat form,

5umj log f(d
(p)
m |u(t)m ) = I{d(p)m =j} − f(dm = j|u(t)m ). (7)

We plug Eq. A-(7) into Eq. A-(5) and let it be zero, to solve cross-entropy minimization, due to its
convexity. As a result, we obtain the following probability distribution under the new parameters
u
(t+1)
m ,

f(dm = j|u(t+1)
m ) =

P∑
p=1

I{d(p)m =j}

P
. (8)

2 Parameter Updates

In the proof, we have derived the target distribution f(dm|u(t+1)
m ) as a function of parameters. Since

we need to perform SGA steps to update parameters towards the proximal policy optimization (PPO)
objective, we also need to obtain parameters u(t+1)

m by inverting the softmax function as follows,

u
(t+1)
mj = log f(dm = j|u(t+1)

m ) + C, ∀j, (9)

where C =
∑D
i=1 e

u
(t+1)
mi is a normalization constant. We observe that softmax distributions have

the constant shift invariant property, namely, f(dm = j|u(t+1)
m ) = f(dm = j|u(t+1)

m + C),∀C ∈ R.
Therefore, we can compute the optimal parameters by

u
(t+1)
mj = log f(dm = j|u(t+1)

m ),∀j, (10)

without changing the probability distribution. Our joint learning algorithm uses Eq. A-(8) and
Eq. A-(10) to directly solve the global minimum of cross-entropy minimization. In general, the
minimization can be efficiently solved by convex optimization techniques, such as gradient descent
or Newton’s method.

For each PPO update, several SGA steps are performed with respect to the PPO objective in Eq. (11).
u
(t+1)
m is first initialized as the value of u(t)m , and then updated by SGA steps as follows,
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(11)
where α is the learning rate. For softmax distributions, the gradients in Eq. A-(11) can be derived as
closed-form expressions.

3 Additional Evaluation

We have conducted complementary experiments to compare with a classic scheduling algorithm —
Heterogeneous Earliest Finish Time (HEFT), and simple search algorithms including random search,
hill climbing and genetic algorithms. To add the HEFT baseline, for each neural network, we generate
a cost graph where node weight is the computation time of an operation and edge weight is the
communication time (tensor size/bandwidth) between two operations. We then feed the cost graph
into a HEFT scheduler to generate a schedule of operations on devices.

We compare Post with these additional baselines, each given 12 machines on Google Cloud with
2400 placement evaluations. For ResNet-50 on 2 GPUs (Inception-V3 on 4 GPUs), the best per-step
training times (in seconds) are 1.64 (1.92) by random search, 1.52 (1.86) by hill climbing, 1.56
(2.03) by genetic algorithm, 3.41 (3.31) by HEFT and 0.86 (1.19) by Post. These complementary
results have clearly demonstrated that more advanced optimization as Post is required and exhibits
advantages in addressing the device placement challenge, where traditional algorithms fall short.

2


	Proof of Theorem 1
	Parameter Updates
	Additional Evaluation

