
A Discussions on Tuning β

In this section, we discuss the challenges in tuning β via other approaches. Recall that by
the calculation shown after Theorem 1, a β such that 1

2αT (u∗) ≤ β ≤ αT (u∗) where u∗ ,

argminu∈∆̄N

∑T
t=1 ft(u) ensures a regret bound of O(N2(lnT )3). We first show the existence of

such β when the environment is oblivious, that is, r1, . . . , rT are all fixed ahead of time. (However,
we emphasize that our adaptive tuning method introduced in Section 3 does not rely on the existence
of such β at all and works even against non-oblivious environments.)

When r1, r2, . . . , rT are fixed and thus u∗ is also fixed, one can view αT (u∗) as a (complicated)
function of β. It is not hard to see that this function is continuous: note that xt+1 is a continuous
function with respect to β,At, ηt, xt,∇t because xt+1 is the minimizer of a strongly convex function
parameterized by these quantities. Also, At, ηt,∇t are continuous functions of {x1, . . . , xt}.4 So
overall, xt+1 is a continuous function of {β, x1, . . . , xt}. By induction, we know that xt is a
continuous function of β for all t. Finally, since αT (u∗) continuously depends on {x1, . . . , xT }, it is
also a continuous function of β.

Next note that the range of αT (u∗) is
[

1
16NT ,

1
2

]
because 8|∇>t (u∗−xt)| ≤ 8 ‖∇t‖∞ ‖u∗ − xt‖1 ≤

16NT . Thus by intermediate value theorem, if we vary β from 1
32NT to 1

2 , there must exist a β such
that 1

2αT (u∗) ≤ β ≤ αT (u∗), which completes our argument. In fact, by αT (u∗)’s continuity, the
set of β’s satisfying the inequality will form an interval or a union of intervals.

Given that such β does exist but is unknown, a natural idea is to instantiateM copies of BARRONS’s
with different β’s forming a grid on [ 1

32NT ,
1
2 ], then use Hedge to learn over these copies, which only

introduces an additional lnM regret since the loss is exp-concave. If any of these β’s happens to fall
into one of the intervals described above, then the algorithm has overall regretO(N2(lnT )3 + lnM).

However, the challenge is to figure out how dense the grid has to be, which depends on the slope (i.e.
Lipschitzness) of αT (u∗) with respect to β. The larger the slope, the denser the grid needs to be.
Trivial analysis only shows that the Lipschitzness is exponential in T , which is far from satisfactory.
Also note that the running time per round of this algorithm is (MN3.5). Therefore even if M is
polynomial in T which is good for the regret, it still defeats our purpose of deriving more efficient
algorithms.

B Omitted Proofs

We first show that competing with smooth CRP from ∆̄N is enough.

Lemma 10. For any u′ ∈ ∆N , with u =
(
1− 1

T

)
u′ + 1

NT ∈ ∆̄N we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(u
′) ≤

T∑
t=1

ft(xt)−
T∑
t=1

ft(u) + 2.

Proof. By convexity of ft, we have

T∑
t=1

ft(u)−
T∑
t=1

ft(u
′) ≤

T∑
t=1

∇ft(u)>(u− u′) ≤
T∑
t=1

(u′ − u)>rt
u>rt

≤
T∑
t=1

(
u

1− 1
T

− u
)>

rt

u>rt
=

1

1− 1
T

≤ 2.

Next we provide the omitted proofs for several lemmas.

4The fact that ηt is continuous with respect to {x1, . . . , xt} depends on our new increasing learning rate
scheme and is not true for the scheme used in previous works [2, 21] based on doubling trick.
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Proof of Lemma 5. Note that the function ht(x) = e−2βft(x) = 〈x, rt〉2β is concave since
0 ≤ 2β ≤ 1. Therefore we have ht(u) ≤ ht(xt) + 〈∇ht(xt), u− xt〉 . Plugging in ∇ht(x) =
−2βe−2βft(x)∇ft(x) gives

e−2βft(u) ≤ e−2βft(xt) (1− 2β 〈∇t, u− xt〉) ,

or equivalently

ft(u) ≥ ft(xt)−
1

2β
ln (1− 2β 〈∇t, u− xt〉)

By the condition on β we also have
∣∣2β 〈∇t, u− xt〉∣∣ ≤ 1

4 . Using the fact − ln(1− z) ≥ z + 1
4z

2

for |z| ≤ 1
4 gives:

ft(xt)− ft(u) ≤ 〈∇t, xt − u〉 −
β

2
〈∇t, xt − u〉2

= 〈∇t, xt − xt+1〉+ 〈∇t, xt+1 − u〉 −
β

2
〈∇t, xt − u〉2

≤ 〈∇t, xt − xt+1〉+Dψt(u, xt)−Dψt(u, xt+1)− β

2
〈∇t, xt − u〉2 ,

where the last step follows standard OMD analysis. More specifically, since xt+1 is the minimizer
of the function Ft(x) , 〈∇t, x〉 + Dψt(x, xt), by the first-order optimality condition, we have
〈u− xt+1,∇Ft(xt+1)〉 ≥ 0 for all u ∈ ∆̄N . Note ∇Ft(xt+1) = ∇t + ∇ψt(xt+1) − ∇ψt(xt).
Rearranging the condition gives 〈∇t, xt+1 − u〉 ≤ 〈∇ψt(xt+1)−∇ψt(xt), u− xt+1〉. Directly
using the definition of Bregman divergence, one can verify 〈∇ψt(xt+1)−∇ψt(xt), u− xt+1〉 =
Dψt(u, xt)−Dψt(u, xt+1)−Dψt(xt+1, xt), which is further bounded byDψt(u, xt)−Dψt(u, xt+1)
by the nonnegativity of Bregman divergence. This concludes the proof.

Proof of Lemma 8. Define Ψt(u) =
∑t
s=1 fs(u) + 1

γ

∑N
i=1 ln 1

ui
. We first show that if

‖ut − ut+1‖∇2Ψt+1(ut)
≤ 1

2 holds, then the conclusion follows.

Indeed, note that ∇2Ψt+1(ut) =
∑t+1
s=1

rsr
>
s

〈ut,rs〉2
+ 1

γ

[
1
u2
t,i

]
diag
� 1

γ

[
1
u2
t,i

]
diag

, where
[

1
u2
t,i

]
diag

represents the N dimensional diagonal matrix whose i-th diagonal element is 1
u2
t,i

. We thus have

‖ut − ut+1‖ 1
γ [1/u2

t,i]diag
≤ ‖ut − ut+1‖∇2Ψt+1(ut)

≤ 1/2,

which implies (ut,i−ut+1,i)
2

γu2
t,i

≤ 1
4 , or 1−

√
γ

2 ≤
ut+1,i

ut,i
≤ 1 +

√
γ

2 for all i ∈ [N ].

Next, we prove the inequality ‖ut − ut+1‖∇2Ψt+1(ut)
≤ 1

2 . Note ut+1 = argminx∈∆̄N
Ψt+1(x).

If we can prove Ψt+1(u′) > Ψt+1(ut) for any u′ that satisfies ‖u′ − ut‖∇2Ψt+1(ut)
= 1

2 , then we
obtain the desired inequality ‖ut − ut+1‖∇2Ψt+1(ut)

≤ 1
2 by the convexity of Ψt+1.

By Taylor’s expansion, we know there exists some ξ in the line segment joining u′ and ut, such that

Ψt+1(u′) = Ψt+1(ut) +∇Ψt+1(ut)
>(u′ − ut) +

1

2
(u′ − ut)>∇2Ψt+1(ξ)(u′ − ut)

= Ψt+1(ut) +∇ft+1(ut)
>(u′ − ut) +∇Ψt(ut)

>(u′ − ut) +
1

2
‖u′ − ut‖

2
∇2Ψt+1(ξ)

≥ Ψt+1(ut) +∇ft+1(ut)
>(u′ − ut) +

1

2
‖u′ − ut‖

2
∇2Ψt+1(ξ)

≥ Ψt+1(ut)− ‖∇ft+1(ut)‖∇−2Ψt+1(ut)
‖u′ − ut‖∇2Ψt+1(ut)

+
1

2
‖u′ − ut‖

2
∇2Ψt+1(ξ)

= Ψt+1(ut)−
1

2
‖∇ft+1(ut)‖∇−2Ψt+1(ut)

+
1

2
‖u′ − ut‖

2
∇2Ψt+1(ξ) (9)
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where the first inequality is by the optimality of ut. As ∇2Ψt+1(ut) � 1
γ

[
1
u2
t,i

]
diag

implies

∇−2Ψt+1(ut) � γ
[
u2
t,i

]
diag

, we continue with

‖∇ft+1(ut)‖2∇−2Ψt+1(ut)
≤ ‖∇ft+1(ut)‖2γ[u2

t,i]diag
=
γr>t+1

[
u2
t,i

]
diag

rt+1

〈ut, rt+1〉2
=
γ
∑N
i=1 u

2
t,ir

2
t+1,i

〈ut, rt+1〉2
≤ γ.

(10)

Note ξ is between ut and u′, so ‖ξ − ut‖∇2Ψt+1(ut)
≤ 1

2 and thus ξi
ut,i
≤ 1 +

√
γ

2 6 11
10 according to

previous discussions. Therefore, we have

∇2Ψt+1(ξ) =

t+1∑
s=1

rsr
>
s

(r>s ξ)
2

+
1

γ

[
1

ξ2
i

]
diag
� 100

121

t+1∑
s=1

rsr
>
s

(r>s ut)
2

+
1

γ

[
1

u2
t,i

]
diag

 =
100

121
∇2Ψt+1(ut).

(11)
Now combining inequalities (9), (10) and (11), we arrive at

Ψt+1(u′) ≥ Ψt+1(ut)−
√
γ

2
+

50

121
‖u′ − ut‖

2
∇2Ψt+1(ut)

= Ψt+1(ut)−
√
γ

2
+

25

242
≥ Ψt+1(ut),

which finishes the proof.

Proof of Lemma 9. The proof is similar to the proof of Lemma 8. Denote Ft(x) = 〈x,∇t〉 +
Dψt(x, xt). We again first prove that if ‖xt − xt+1‖∇2Ft(xt)

≤ 1
2 , then the conclusion follows.

Note ∇2Ft(xt) = βAt +
[

1
ηt,ix2

t,i

]
diag

�
[

1
ηt,ix2

t,i

]
diag

�
[

1
3ηx2

t,i

]
diag

, because ηt,i ≤

η exp
(
logT (NTN )

)
≤ 3η. Thus we have

‖xt − xt+1‖ 1
3η [1/x2

t,i]diag
≤ ‖xt − xt+1‖∇2Ft(xt)

≤ 1/2,

which implies (xt,i−xt+1,i)
2

3ηx2
t,i

≤ 1
4 and thus 1−

√
3η
2 ≤ xt+1,i

xt,i
≤ 1 +

√
3η
2 for all i ∈ [N ].

It remains to prove the inequality ‖xt − xt+1‖∇2Ft(xt)
≤ 1

2 . Since xt+1 = argminx∈∆̄N
Ft(x), if

we can prove Ft(x′) > Ft(xt) for all x′ that satisfies ‖x′ − xt‖∇2Ft(xt)
= 1

2 , then we obtain the
desired inequality ‖xt − xt+1‖∇2Ft(xt)

≤ 1
2 by the convexity of Ft. By Taylor’s expansion, there

exists some ζ on the line segment joining x′ and xt, such that

Ft(x
′) = Ft(xt) +∇Ft(xt)>(x′ − xt) +

1

2
(x′ − xt)>∇2Ft(ζ)(x′ − xt)

= Ft(xt) +∇>t (x′ − xt) +
1

2
‖x′ − xt‖

2
∇2Ft(ζ)

≥ Ft(xt)− ‖∇t‖∇−2Ft(xt)
‖x′ − xt‖∇2Ft(xt)

+
1

2
‖x′ − xt‖

2
∇2Ft(ζ)

= Ft(xt)−
1

2
‖∇t‖∇−2Ft(xt)

+
1

2
‖x′ − xt‖

2
∇2Ft(ζ)

. (12)

As∇2Ft(xt) = βAt +
[

1
ηt,ix2

t,i

]
diag
� 1

3η

[
1
x2
t,i

]
diag

, we have∇−2Ft(xt) � 3η
[
x2
t,i

]
diag

. Therefore

‖∇t‖2∇−2Ft(xt)
≤ ‖∇t‖23η[x2

t,i]diag
=

3ηr>t
[
x2
t,i

]
diag

rt

〈xt, rt〉2
=

3η
∑N
i=1 x

2
t,ir

2
t,i

〈xt, rt〉2
≤ 3η. (13)
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Since ζ is between xt and x′, we have ‖ζ − xt‖∇2Ft(xt)
< 1

2 and thus ζi
xt,i
≤ 1 +

√
3η
2 ≤ 21

20

according to previous discussions and the fact η 6 1
300 . Therefore, we have

∇2Ft(ζ) =

t∑
s=1

rsr
>
s

(r>s ζ)2
+

[
1

ηt,iζ2
i

]
diag
� 400

441

 t∑
s=1

rsr
>
s

(r>s xt)
2

+

[
1

ηt,ix2
t,i

]
diag

 =
400

441
∇2Ft(xt).

(14)
Now combining inequalities (12), (13) and (14), we get

Ft(x
′) ≥ Ft(xt)−

√
3η

2
+

200

441
‖x′ − xt‖

2
∇2Ft(xt)

= Ft(xt)−
√

3η

2
+

50

441
≥ Ft(ut),

which finishes the proof.
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