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Abstract

This supplementary document contains complete proofs of the theorems presented
in the article “Optimal Algorithms for Non-Smooth Distributed Optimization in
Networks”.

1 Proof of the convergence rate of DRS (Theorem 1)

Corollary 2.4 of [1] gives, with the appropriate choice of gradient step ηt and smoothing γt,

E
[
f̄(θT )

]
−min
θ∈K

f̄(θ) ≤ 10RLgd
1/4

T
+

5RLg√
TK

. (1)

Thus, to reach a precision ε > 0, we may set T =
⌈

20RLgd
1/4

ε

⌉
and K =

⌈
5RLgd

−1/4

ε

⌉
, leading to

the desired bound on the time Tε = T (2∆τ +K) to reach ε.

2 Proof of the lower bound under global regularity (Theorem 2)

Let i0 ∈ V and i1 ∈ V be two nodes at distance ∆. The function used by [2] to prove the oracle
complexity for Lipschitz and bounded functions is

g1(θ) = δ max
i∈{1,...,t}

θi +
α

2
‖θ‖22. (2)

By considering this function on a single node (e.g. i0), at least O
((

RL
ε

)2)
subgradients will be

necessary to obtain a precision ε. Moreover, we also split the difficult function used in [3]

g2(θ) = γ

t∑
i=1

|θi+1 − θi| − βθ1 +
α

2
‖θ‖22, (3)

on the two extremal nodes i0 and i1 in order to ensure that communication is necessary between the
most distant nodes of the network. The final function that we consider is, for all i ∈ {1, ..., n},

fi(θ) =

 γ
∑k
i=1 |θ2i − θ2i−1|+ δmaxi∈{2k+2,...,2k+1+l} θi if i = i0

γ
∑k
i=1 |θ2i+1 − θ2i| − βθ1 + α

2 ‖θ‖
2
2 if i = i1

0 otherwise
, (4)
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where γ, δ, β, α > 0 and k, l ≥ 0 are parameters of the function satisfying 2k + l < d. The objective
function is thus

f̄(θ) =
1

n

[
γ

2k∑
i=1

|θi+1 − θi| − βθ1 + δ max
i∈{2k+2,...,2k+1+l}

θi +
α

2
‖θ‖22

]
(5)

First, note that reordering the coordinates of θ between θ2 and θ2k+1 in a decreasing order can only
decrease the value function f̄(θ). Hence, the optimal value θ∗ verifies this constraint and

f̄(θ∗) =
1

n

[
−γθ∗2k+1 − (β − γ)θ∗1 + δ max

i∈{2k+2,...,2k+1+l}
θ∗i +

α

2
‖θ∗‖22

]
. (6)

Moreover, at the optimum, all the coordinates between θ2 and θ2k+1 are equal, all the coordinates
between θ2k+2 and θ2k+1+l are also equal, and all the coordinates after θ2k+1+l are zero. Hence

f̄(θ∗) =
1

n

[
−γθ∗2k+1 − (β − γ)θ∗1 + δθ∗2k+2 +

α

2

(
θ∗1

2 + 2kθ∗2k+1
2 + lθ∗2k+2

2
)]
, (7)

and optimizing over θ∗1 ≥ θ∗2k+1 ≥ 0 ≥ θ∗2k+2 leads to, when β ≥ γ(1 + 1
2k ),

f̄(θ∗) =
−1

2αn

[
(β − γ)2 +

γ2

2k
+
δ2

l

]
. (8)

Now note that, starting from θ0 = 0, each subgradient step can only increase the number of non-zero
coordinates between θ2k+2 and θ2k+1+l by at most one. Thus, when t < l, we have

max
i∈{2k+2,...,2k+1+l}

θt,i ≥ 0 . (9)

Moreover, increasing the number of non-zero coordinates between θ1 and θ2k+1 requires at least
one subgradient step and ∆ communication steps. As a result, when t < min{l, 2k∆τ}, we have
θt,2k+1 = 0 and

f̄(θt) ≥ minθ∈Rd
1
n

[
−(β − γ)θ1 + α

2 ‖θ‖
2
2

]
≥ −(β−γ)2

2αn .
(10)

Hence, we have, for t < min{l, 2k∆τ},

f̄(θt)− f̄(θ∗) ≥ 1

2αn

[
γ2

2k
+
δ2

l

]
. (11)

Optimizing f̄ over a ball of radius R ≥ ‖θ∗‖2 thus leads to the previous approximation error bound,
and we choose

R = ‖θ∗‖2 =
1

α2

[
(β − γ)2 +

γ2

2k
+
δ2

l

]
. (12)

Finally, the Lipschitz constant of the objective function f̄ is

Lg =
1

n

[
β + 2

√
2k + 1γ + δ + αR

]
, (13)

and setting the parameters of f̄ to β = γ(1 + 1√
2k

), δ =
Lgn

9 , γ =
Lgn

9
√
k

, l = btc + 1, and
k =

⌊
t

2∆τ

⌋
+ 1 leads to t < min{l, 2k∆τ} and

f̄(θt)− f̄(θ∗) ≥ RLg
36

√
1

(1 + t
2∆τ )2

+
1

1 + t
, (14)

while f̄ is L-Lipschitz and ‖θ∗‖2 ≤ R.

3 Proof of the lower bound under local regularity (Theorem 3)

Following the idea introduced in [4], we prove Theorem 3 by applying Theorem 2 on linear graphs
and splitting the local functions of Eq. (4) on multiple nodes to obtain Lg ≈ L`.
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Lemma 1. Let γ ∈ (0, 1]. There exists a graph Gγ of size nγ and a gossip matrix Wγ ∈ Rnγ×nγ on
this graph such that γ(Wγ) = γ and

γ ≥ 2

(nγ + 1)2
. (15)

When γ ≥ 1/3, Gγ is a totally connected graph of size nγ = 3. Otherwise, Gγ is a linear graph of
size nγ ≥ 3.

Proof. First of all, when γ ≥ 1/3, we consider the totally connected network of 3 nodes, reweight
only the edge (v1, v3) by a ∈ [0, 1], and let Wa be its Laplacian matrix. If a = 1, then the network
is totally connected and γ(Wa) = 1. If, on the contrary, a = 0, then the network is a linear graph
and γ(Wa) = 1/3. Thus, by continuity of the eigenvalues of a matrix, there exists a value a ∈ [0, 1]

such that γ(Wa) = γ and Eq. (15) is trivially verified. Otherwise, let xn =
1−cos(πn )

1+cos(πn ) be a decreasing
sequence of positive numbers. Since x3 = 1/3 and limn xn = 0, there exists nγ ≥ 3 such that
xnγ ≥ γ > xnγ+1. Let Gγ be the linear graph of size nγ ordered from node v1 to vnγ , and weighted
with wi,i+1 = 1− a1{i = 1}. If we take Wa as the Laplacian of the weighted graph Gγ , a simple
calculation gives that, if a = 0, γ(Wa) = xnγ and, if a = 1, the network is disconnected and
γ(Wa) = 0. Thus, there exists a value a ∈ [0, 1] such that γ(Wa) = γ. Finally, by definition of nγ ,
one has γ > xnγ+1 ≥ 2

(nγ+1)2 .

Let γ ∈ (0, 1] and Gγ the graph of Lemma 1. We now consider I0 = {1, ...,m} and I1 =

{nγ −m+ 1, ..., nγ} where m = bnγ+1
3 c. When γ < 1/3, the distance d(I0, I1) between the two

sets I0 and I1 is thus bounded by

d(I0, I1) = nγ − 2m+ 1 ≥ nγ + 1

3
, (16)

and we have
1
√
γ
≤ 3d(I0, I1)√

2
. (17)

Moreover, Eq. (17) also trivially holds when γ ≥ 1/3. We now consider the local functions of Eq. (4)
splitted on I0 and I1:

fi(θ) =


1
m

[
γ
∑k
i=1 |θ2i − θ2i−1|+ δmaxi∈{2k+2,...,2k+1+l} θi

]
if i ∈ I0

1
m

[
γ
∑k
i=1 |θ2i+1 − θ2i| − βθ1 + α

2 ‖θ‖
2
2

]
if i ∈ I1

0 otherwise

. (18)

The average function f̄ remains unchanged and the time to communicate a vector between a node of I0
and a node of I1 is at least d(I0, I1)τ . Thus, the same result as Theorem 2 holds with ∆ = d(I0, I1).
We thus have

f̄(θi,t)− min
θ∈B2(R)

f̄(θ) ≥ RLg
36

√
1

(1 + t
2d(I0,I1)τ )2

+
1

1 + t
. (19)

Finally, the local Lipschitz constant L` is bounded by

L` ≤
√
nγ
m
Lg ≤ 3Lg, (20)

and Eq. (17), Eq. (19) and Eq. (20) lead to the desired result.

4 Proof of the convergence rate of MSPD (Theorem 4 and Theorem 5)

Theorem 1 (b) in [5] implies that, provided τσλ1(W ) < 1, the algorithm with exact proximal step
leads to a restricted primal-dual gap

sup
‖Λ′‖F≤c

{ 1

n

n∑
i=1

fi(θi)− tr Λ′>ΘA
}
− inf

Θ′∈Kn

{ 1

n

n∑
i=1

fi(θ
′
i)− tr Λ>Θ′A

}
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of

ε =
1

2t

(nR2

η
+
c2

σ

)
.

This implies that our candidate Θ is such that

1

n

n∑
i=1

fi(θi) + c‖ΘA‖F ≤ inf
Θ′∈Kn

{ 1

n

n∑
i=1

fi(θ
′
i) + c‖Θ′A‖F + ε

}
.

Let θ be the average of all θi. We have:

1

n

n∑
i=1

fi(θ) ≤ 1

n

n∑
i=1

fi(θi) +
1

n

n∑
i=1

Li‖θi − θ‖ ≤
1

n

n∑
i=1

fi(θi) +
1√
n

√√√√ 1

n

n∑
i=1

L2
i ·
∥∥Θ(I − 11>/n)

∥∥
F

≤ 1

n

n∑
i=1

fi(θi) +
1√
n

√
1
n

∑n
i=1 L

2
i

λn−1(W )
·
∥∥ΘA

∥∥
F
.

Thus, if we take c = 1√
n

√
1
n

∑n
i=1 L

2
i

λn−1(W ) , we obtain

1

n

n∑
i=1

fi(θ) ≤
1

n

n∑
i=1

fi(θ∗) + ε,

and we thus obtain a ε-minimizer of the original problem.

We have

ε ≤ 1

2T

(nR2

η
+

1
λn−1(W )

1
n2

∑n
i=1 L

2
i

σ

)
with the constraint σηλ1(W ) < 1. This leads to, with the choice

η = nR

√
λn−1(W )/λ1(W )∑n

i=1 L
2
i /n

and taking σ to the limit σηλ1(W ) = 1, to a convergence rate of

ε =
1

T
R

√√√√ 1

n

n∑
i=1

L2
i

√
λ1(W )

λn−1(W )
.

Since we cannot use the exact proximal operator of fi, we instead approximate it. If we approximate
(with the proper notion of gap [5, Eq. (11)]) each argminθi∈K fi(θi) + n

2η‖θi − z‖
2 up to δi, then

the overall added gap is 1
n

∑n
i=1 δi. If we do M steps of subgradient steps then the associated gap is

δi =
L2
iη
nM (standard result for strongly-convex subgradient [6]). Therefore the added gap is

1

M
R

√√√√ 1

n

n∑
i=1

L2
i

√
λ1(W )

λn−1(W )
.

Therefore after T communication steps, i.e., communication time Tτ plus MT subgradient evalua-
tions, i.e., time MT , we get an error of ( 1

T
+

1

M

)RL`√
γ
,

where γ = γ(W ) = λn−1(W )/λ1(W ). Thus to reach ε, it takes⌈
2RL`
ε

1
√
γ

⌉
τ +

⌈
4RL`
ε

1
√
γ

⌉2

.

The second term is optimal, while the first term is not. We therefore do accelerated gossip instead of
plain gossip. By performing K steps of gossip instead of one, with K = b1/√γc, the eigengap is
lower bounded by γ(PK(W )) ≥ 1/4, and the overall time to obtain an error below ε becomes⌈

4RL`
ε

⌉
τ√
γ(W )

+

⌈
4RL`
ε

⌉2

,

as announced.
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