Optimal Algorithms for Non-Smooth Distributed Optimization in Networks

SUPPLEMENTARY MATERIAL

Kevin Scaman¹ Francis Bach² Sébastien Bubeck³ Yin Tat Lee^{3,4} Laurent Massoulié^{2,5} ¹ Huawei Noah's Ark Lab, ² INRIA, Ecole Normale Supérieure, PSL Research University, ³ Microsoft Research, ⁴ University of Washington, ⁵ MSR-INRIA Joint Centre

Abstract

This supplementary document contains complete proofs of the theorems presented in the article "Optimal Algorithms for Non-Smooth Distributed Optimization in Networks".

1 Proof of the convergence rate of DRS (Theorem 1)

Corollary 2.4 of [1] gives, with the appropriate choice of gradient step η_t and smoothing γ_t ,

$$\mathbb{E}\left[\bar{f}(\theta_T)\right] - \min_{\theta \in \mathcal{K}} \bar{f}(\theta) \le \frac{10RL_g d^{1/4}}{T} + \frac{5RL_g}{\sqrt{TK}}.$$
(1)

Thus, to reach a precision $\varepsilon > 0$, we may set $T = \left\lceil \frac{20RL_g d^{1/4}}{\varepsilon} \right\rceil$ and $K = \left\lceil \frac{5RL_g d^{-1/4}}{\varepsilon} \right\rceil$, leading to the desired bound on the time $T_{\varepsilon} = T(2\Delta \tau + K)$ to reach ε .

2 Proof of the lower bound under global regularity (Theorem 2)

Let $i_0 \in \mathcal{V}$ and $i_1 \in \mathcal{V}$ be two nodes at distance Δ . The function used by [2] to prove the oracle complexity for Lipschitz and bounded functions is

$$g_1(\theta) = \delta \max_{i \in \{1,...,t\}} \theta_i + \frac{\alpha}{2} \|\theta\|_2^2.$$
 (2)

By considering this function on a single node (e.g. i_0), at least $O\left(\left(\frac{RL}{\varepsilon}\right)^2\right)$ subgradients will be necessary to obtain a precision ε . Moreover, we also split the difficult function used in [3]

$$g_2(\theta) = \gamma \sum_{i=1}^t |\theta_{i+1} - \theta_i| - \beta \theta_1 + \frac{\alpha}{2} ||\theta||_2^2,$$
(3)

on the two extremal nodes i_0 and i_1 in order to ensure that communication is necessary between the most distant nodes of the network. The final function that we consider is, for all $i \in \{1, ..., n\}$,

$$f_{i}(\theta) = \begin{cases} \gamma \sum_{i=1}^{k} |\theta_{2i} - \theta_{2i-1}| + \delta \max_{i \in \{2k+2,\dots,2k+1+l\}} \theta_{i} & \text{if } i = i_{0} \\ \gamma \sum_{i=1}^{k} |\theta_{2i+1} - \theta_{2i}| - \beta \theta_{1} + \frac{\alpha}{2} \|\theta\|_{2}^{2} & \text{if } i = i_{1} \\ 0 & \text{otherwise} \end{cases}$$
(4)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

where $\gamma, \delta, \beta, \alpha > 0$ and $k, l \ge 0$ are parameters of the function satisfying 2k + l < d. The objective function is thus

$$\bar{f}(\theta) = \frac{1}{n} \left[\gamma \sum_{i=1}^{2k} |\theta_{i+1} - \theta_i| - \beta \theta_1 + \delta \max_{i \in \{2k+2,\dots,2k+1+l\}} \theta_i + \frac{\alpha}{2} \|\theta\|_2^2 \right]$$
(5)

First, note that reordering the coordinates of θ between θ_2 and θ_{2k+1} in a decreasing order can only decrease the value function $\overline{f}(\theta)$. Hence, the optimal value θ^* verifies this constraint and

$$\bar{f}(\theta^*) = \frac{1}{n} \left[-\gamma \theta^*_{2k+1} - (\beta - \gamma) \theta^*_1 + \delta \max_{i \in \{2k+2,\dots,2k+1+l\}} \theta^*_i + \frac{\alpha}{2} \|\theta^*\|_2^2 \right].$$
(6)

Moreover, at the optimum, all the coordinates between θ_2 and θ_{2k+1} are equal, all the coordinates between θ_{2k+2} and θ_{2k+1+l} are also equal, and all the coordinates after θ_{2k+1+l} are zero. Hence

$$\bar{f}(\theta^*) = \frac{1}{n} \left[-\gamma \theta^*_{2k+1} - (\beta - \gamma) \theta^*_1 + \delta \theta^*_{2k+2} + \frac{\alpha}{2} \left(\theta^{*2}_1 + 2k \theta^{*2}_{2k+1} + l \theta^{*2}_{2k+2} \right) \right],$$
(7)

and optimizing over $\theta_1^* \ge \theta_{2k+1}^* \ge 0 \ge \theta_{2k+2}^*$ leads to, when $\beta \ge \gamma(1 + \frac{1}{2k})$,

$$\bar{f}(\theta^*) = \frac{-1}{2\alpha n} \left[(\beta - \gamma)^2 + \frac{\gamma^2}{2k} + \frac{\delta^2}{l} \right].$$
(8)

Now note that, starting from $\theta_0 = 0$, each subgradient step can only increase the number of non-zero coordinates between θ_{2k+2} and θ_{2k+1+l} by at most one. Thus, when t < l, we have

$$\max_{i \in \{2k+2,\dots,2k+1+l\}} \theta_{t,i} \ge 0.$$
(9)

Moreover, increasing the number of non-zero coordinates between θ_1 and θ_{2k+1} requires at least one subgradient step and Δ communication steps. As a result, when $t < \min\{l, 2k\Delta\tau\}$, we have $\theta_{t,2k+1} = 0$ and

$$\bar{f}(\theta_t) \geq \min_{\theta \in \mathbb{R}^d} \frac{1}{n} \left[-(\beta - \gamma)\theta_1 + \frac{\alpha}{2} \|\theta\|_2^2 \right] \\
\geq \frac{-(\beta - \gamma)^2}{2\alpha n} .$$
(10)

Hence, we have, for $t < \min\{l, 2k\Delta\tau\}$,

$$\bar{f}(\theta_t) - \bar{f}(\theta^*) \ge \frac{1}{2\alpha n} \left[\frac{\gamma^2}{2k} + \frac{\delta^2}{l} \right].$$
(11)

Optimizing \bar{f} over a ball of radius $R \ge \|\theta^*\|_2$ thus leads to the previous approximation error bound, and we choose

$$R = \|\theta^*\|_2 = \frac{1}{\alpha^2} \left[(\beta - \gamma)^2 + \frac{\gamma^2}{2k} + \frac{\delta^2}{l} \right].$$
 (12)

Finally, the Lipschitz constant of the objective function \overline{f} is

$$L_g = \frac{1}{n} \left[\beta + 2\sqrt{2k+1}\gamma + \delta + \alpha R \right], \tag{13}$$

and setting the parameters of \bar{f} to $\beta = \gamma(1 + \frac{1}{\sqrt{2k}})$, $\delta = \frac{L_g n}{9}$, $\gamma = \frac{L_g n}{9\sqrt{k}}$, $l = \lfloor t \rfloor + 1$, and $k = \lfloor \frac{t}{2\Delta\tau} \rfloor + 1$ leads to $t < \min\{l, 2k\Delta\tau\}$ and

$$\bar{f}(\theta_t) - \bar{f}(\theta^*) \ge \frac{RL_g}{36} \sqrt{\frac{1}{(1 + \frac{t}{2\Delta\tau})^2} + \frac{1}{1+t}},$$
(14)

while \bar{f} is *L*-Lipschitz and $\|\theta^*\|_2 \leq R$.

3 Proof of the lower bound under local regularity (Theorem 3)

Following the idea introduced in [4], we prove Theorem 3 by applying Theorem 2 on linear graphs and splitting the local functions of Eq. (4) on multiple nodes to obtain $L_q \approx L_{\ell}$.

Lemma 1. Let $\gamma \in (0, 1]$. There exists a graph \mathcal{G}_{γ} of size n_{γ} and a gossip matrix $W_{\gamma} \in \mathbb{R}^{n_{\gamma} \times n_{\gamma}}$ on this graph such that $\gamma(W_{\gamma}) = \gamma$ and

$$\gamma \ge \frac{2}{(n_{\gamma}+1)^2}.\tag{15}$$

When $\gamma \geq 1/3$, \mathcal{G}_{γ} is a totally connected graph of size $n_{\gamma} = 3$. Otherwise, \mathcal{G}_{γ} is a linear graph of size $n_{\gamma} \geq 3$.

Proof. First of all, when $\gamma \geq 1/3$, we consider the totally connected network of 3 nodes, reweight only the edge (v_1, v_3) by $a \in [0, 1]$, and let W_a be its Laplacian matrix. If a = 1, then the network is totally connected and $\gamma(W_a) = 1$. If, on the contrary, a = 0, then the network is a linear graph and $\gamma(W_a) = 1/3$. Thus, by continuity of the eigenvalues of a matrix, there exists a value $a \in [0, 1]$ such that $\gamma(W_a) = \gamma$ and Eq. (15) is trivially verified. Otherwise, let $x_n = \frac{1-\cos(\frac{\pi}{n})}{1+\cos(\frac{\pi}{n})}$ be a decreasing sequence of positive numbers. Since $x_3 = 1/3$ and $\lim_n x_n = 0$, there exists $n_{\gamma} \geq 3$ such that $x_{n_{\gamma}} \geq \gamma > x_{n_{\gamma}+1}$. Let \mathcal{G}_{γ} be the linear graph of size n_{γ} ordered from node v_1 to $v_{n_{\gamma}}$, and weighted with $w_{i,i+1} = 1 - a\mathbb{1}\{i = 1\}$. If we take W_a as the Laplacian of the weighted graph \mathcal{G}_{γ} , a simple calculation gives that, if a = 0, $\gamma(W_a) = x_{n_{\gamma}}$ and, if a = 1, the network is disconnected and $\gamma(W_a) = 0$. Thus, there exists a value $a \in [0, 1]$ such that $\gamma(W_a) = \gamma \cdot x_{n_{\gamma}+1} \geq \frac{2}{(n_{\gamma}+1)^2}$.

Let $\gamma \in (0,1]$ and \mathcal{G}_{γ} the graph of Lemma 1. We now consider $I_0 = \{1,...,m\}$ and $I_1 = \{n_{\gamma} - m + 1,...,n_{\gamma}\}$ where $m = \lfloor \frac{n_{\gamma}+1}{3} \rfloor$. When $\gamma < 1/3$, the distance $d(I_0, I_1)$ between the two sets I_0 and I_1 is thus bounded by

$$d(I_0, I_1) = n_\gamma - 2m + 1 \ge \frac{n_\gamma + 1}{3},$$
(16)

and we have

$$\frac{1}{\sqrt{\gamma}} \le \frac{3d(I_0, I_1)}{\sqrt{2}}.\tag{17}$$

Moreover, Eq. (17) also trivially holds when $\gamma \ge 1/3$. We now consider the local functions of Eq. (4) splitted on I_0 and I_1 :

$$f_{i}(\theta) = \begin{cases} \frac{1}{m} \left[\gamma \sum_{i=1}^{k} |\theta_{2i} - \theta_{2i-1}| + \delta \max_{i \in \{2k+2,\dots,2k+1+l\}} \theta_{i} \right] & \text{if } i \in I_{0} \\ \frac{1}{m} \left[\gamma \sum_{i=1}^{k} |\theta_{2i+1} - \theta_{2i}| - \beta \theta_{1} + \frac{\alpha}{2} ||\theta||_{2}^{2} \right] & \text{if } i \in I_{1} \\ 0 & \text{otherwise} \end{cases}$$
(18)

The average function \overline{f} remains unchanged and the time to communicate a vector between a node of I_0 and a node of I_1 is at least $d(I_0, I_1)\tau$. Thus, the same result as Theorem 2 holds with $\Delta = d(I_0, I_1)$. We thus have

$$\bar{f}(\theta_{i,t}) - \min_{\theta \in B_2(R)} \bar{f}(\theta) \ge \frac{RL_g}{36} \sqrt{\frac{1}{(1 + \frac{t}{2d(I_0, I_1)\tau})^2} + \frac{1}{1+t}}.$$
(19)

Finally, the local Lipschitz constant L_{ℓ} is bounded by

$$L_{\ell} \le \sqrt{\frac{n_{\gamma}}{m}} L_g \le 3L_g,\tag{20}$$

and Eq. (17), Eq. (19) and Eq. (20) lead to the desired result.

4 **Proof of the convergence rate of MSPD (Theorem 4 and Theorem 5)**

Theorem 1 (b) in [5] implies that, provided $\tau \sigma \lambda_1(W) < 1$, the algorithm with exact proximal step leads to a restricted primal-dual gap

$$\sup_{\|\Lambda'\|_F \le c} \left\{ \frac{1}{n} \sum_{i=1}^n f_i(\theta_i) - \operatorname{tr} \Lambda'^\top \Theta A \right\} - \inf_{\Theta' \in \mathcal{K}^n} \left\{ \frac{1}{n} \sum_{i=1}^n f_i(\theta'_i) - \operatorname{tr} \Lambda^\top \Theta' A \right\}$$

$$\varepsilon = \frac{1}{2t} \left(\frac{nR^2}{\eta} + \frac{c^2}{\sigma} \right)$$

This implies that our candidate Θ is such that

$$\frac{1}{n}\sum_{i=1}^{n}f_{i}(\theta_{i})+c\|\Theta A\|_{F}\leq \inf_{\Theta'\in\mathcal{K}^{n}}\Big\{\frac{1}{n}\sum_{i=1}^{n}f_{i}(\theta'_{i})+c\|\Theta'A\|_{F}+\varepsilon\Big\}.$$

Let θ be the average of all θ_i . We have:

$$\begin{aligned} \frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta) &\leq \frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta_{i}) + \frac{1}{n} \sum_{i=1}^{n} L_{i} \|\theta_{i} - \theta\| \leq \frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta_{i}) + \frac{1}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} L_{i}^{2}} \\ &\leq \frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta_{i}) + \frac{1}{\sqrt{n}} \sqrt{\frac{\frac{1}{n} \sum_{i=1}^{n} L_{i}^{2}}{\lambda_{n-1}(W)}} \cdot \|\Theta A\|_{F}. \end{aligned}$$

Thus, if we take $c = \frac{1}{\sqrt{n}} \sqrt{\frac{\frac{1}{n} \sum_{i=1}^{n} L_{i}^{2}}{\lambda_{n-1}(W)}}$, we obtain

$$\frac{1}{n}\sum_{i=1}^{n}f_{i}(\theta) \leq \frac{1}{n}\sum_{i=1}^{n}f_{i}(\theta_{*}) + \varepsilon,$$

and we thus obtain a $\varepsilon\text{-minimizer}$ of the original problem.

We have

$$\varepsilon \leq \frac{1}{2T} \left(\frac{nR^2}{\eta} + \frac{\frac{1}{\lambda_{n-1}(W)} \frac{1}{n^2} \sum_{i=1}^n L_i^2}{\sigma} \right)$$

with the constraint $\sigma \eta \lambda_1(W) < 1$. This leads to, with the choice

$$\eta = nR \sqrt{\frac{\lambda_{n-1}(W)/\lambda_1(W)}{\sum_{i=1}^n L_i^2/n}}$$

and taking σ to the limit $\sigma \eta \lambda_1(W) = 1$, to a convergence rate of

$$\varepsilon = \frac{1}{T} R \sqrt{\frac{1}{n} \sum_{i=1}^{n} L_i^2 \sqrt{\frac{\lambda_1(W)}{\lambda_{n-1}(W)}}}.$$

Since we cannot use the exact proximal operator of f_i , we instead approximate it. If we approximate (with the proper notion of gap [5, Eq. (11)]) each $\operatorname{argmin}_{\theta_i \in \mathcal{K}} f_i(\theta_i) + \frac{n}{2\eta} \|\theta_i - z\|^2$ up to δ_i , then the overall added gap is $\frac{1}{n} \sum_{i=1}^n \delta_i$. If we do M steps of subgradient steps then the associated gap is $\delta_i = \frac{L_i^2 \eta}{nM}$ (standard result for strongly-convex subgradient [6]). Therefore the added gap is

$$\frac{1}{M}R\sqrt{\frac{1}{n}\sum_{i=1}^{n}L_{i}^{2}\sqrt{\frac{\lambda_{1}(W)}{\lambda_{n-1}(W)}}}$$

Therefore after T communication steps, i.e., communication time $T\tau$ plus MT subgradient evaluations, i.e., time MT, we get an error of

$$\Bigl(\frac{1}{T}+\frac{1}{M}\Bigr)\frac{RL_\ell}{\sqrt{\gamma}},$$

where $\gamma = \gamma(W) = \lambda_{n-1}(W)/\lambda_1(W)$. Thus to reach ε , it takes

$$\left[\frac{2RL_{\ell}}{\varepsilon}\frac{1}{\sqrt{\gamma}}\right]\tau + \left[\frac{4RL_{\ell}}{\varepsilon}\frac{1}{\sqrt{\gamma}}\right]^{2}$$

The second term is optimal, while the first term is not. We therefore do accelerated gossip instead of plain gossip. By performing K steps of gossip instead of one, with $K = \lfloor 1/\sqrt{\gamma} \rfloor$, the eigengap is lower bounded by $\gamma(P_K(W)) \ge 1/4$, and the overall time to obtain an error below ε becomes

$$\left\lceil \frac{4RL_{\ell}}{\varepsilon} \right\rceil \frac{\tau}{\sqrt{\gamma(W)}} + \left\lceil \frac{4RL_{\ell}}{\varepsilon} \right\rceil^2,$$

as announced.

of

References

- [1] John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. Randomized smoothing for stochastic optimization. *SIAM Journal on Optimization*, 22(2):674–701, 2012.
- [2] Sébastien Bubeck. Convex optimization: Algorithms and complexity. *Foundations and Trends in Machine Learning*, 8(3-4):231–357, 2015.
- [3] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and optimization. In Advances in Neural Information Processing Systems 28, pages 1756–1764, 2015.
- [4] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal algorithms for smooth and strongly convex distributed optimization in networks. In *Proceedings* of the 34th International Conference on Machine Learning ICML, pages 3027–3036, 2017.
- [5] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of Mathematical Imaging and Vision*, 40(1):120–145, May 2011.
- [6] Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method. Technical Report 1212.2002, arXiv, 2012.