
In section B which deals with finite random processes and which serves as the basic foundation of
chaining, the known results of maximal inequality (Proposition 1) and its improvement via mutual
information (Theorem 7) are reviewed. Then we give a condition for a random process in Corollary
3, for which the result of Theorem 7 can be improved by upper and lower bounding E[XW ]. The
aforementioned results concern E[XW ]; in Theorem 8 we obtain inequalities for the tail behavior of
XW .

In the next step of building upon the results of section B, to be able to handle infinite processes,
in section C we introduce the notion of ε-nets (see Definition 8) and its related definitions, and
in Theorem 9 we upper bound E[XW ] for Lipschitz processes (see Definition 7) using mutual
information. This is the strengthened version of the so-called ε-net argument, with the usage of
mutual information. Remark 9 discusses upper bounding |E[XW ]| for Lipschitz processes.

In the last step, in section D, we loosen the “almost sure” Lipschitz condition of the dependencies of
the random variables of a process to a “in probability” condition, defined as subgaussian processes
(see Definition 9). After reviewing the classical chaining result of Dudley’s inequality (Theorem 10),
we combine the mutual information method and the chaining method in Theorem 11 for subgaussian
processes, and in Thoerem 12 for more general processes.

A Preliminaries

Definition 4 (Cumulant generating function). Let X be a real valued random variable. The cumulant
generating function of X is defined as ΛX(λ) , logE[eλX ] for all λ ∈ R.

The following lemma is a well known fact about the cumulant generating function:

Lemma 1. Let X be a random variable. Then its cumulant generating function ΛX is convex,
ΛX(0) = 0 and Λ′X(0) = E[X].

An important and widely used class of random variables is the class of subgaussian random variables:

Definition 5 (Subgaussian random variables). The random variable X is called σ2-subgaussian if
E[eλ(X−EX)] ≤ e

λ2σ2

2 for all λ ∈ R. In particular, if X is σ2-subgaussian and E[X] = 0, then its
cumulant generating function satisfies ΛX(λ) ≤ λ2σ2

2 for all λ ∈ R. The constant σ2 is called the
variance proxy.

We will use the notion of Legendre dual, defined as follows, in our bounds.

Definition 6 (Legendre dual). For a convex function ψ : R+ → R, the Legendre dual ψ∗ : R→ R is
defined as

ψ∗(x) , sup
λ≥0
{λx− ψ(λ)} for all x ∈ R. (44)

For a proof of the next lemma see [9, p. 115]:

Lemma 2 (Legendre dual properties). Let ψ : R+ → R be a convex function and ψ(0) = ψ′(0) = 0.
Then ψ∗(x) is a convex, strictly increasing, nonnegative and unbounded function for x ≥ 0, and
ψ∗(0) = 0. Therefore its inverse ψ∗−1(y) is well defined for y ≥ 0.

From Definition 5, ifX is σ2-subgaussian and E[X] = 0 then ΛXt(λ) ≤ λ2σ2

2 . The following lemma
gives the Legendre dual inverse of ψ(λ) , λ2σ2

2 .

Lemma 3. Let ψ(λ) , λ2σ2

2 for all λ ≥ 0. Then ψ∗−1(x) =
√

2σ2x for all x ∈ R.

The following is the well-known Chernoff bound:

Lemma 4 (Chernoff). Let X be a random variable, and ψ be a function such that ΛX(λ) ≤ ψ(λ)
for all λ ≥ 0. Then

P[X ≥ x] ≤ e−ψ
∗(x) for all x ∈ R. (45)

The variational representation of relative entropy is a useful information theoretic tool:
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Theorem 6 (Variational representation of relative entropy). Let X and Y be random variables taking
values on A with distributions PX and PY , respectively. Then

D(PX‖PY ) = max
f∈F

{
E [f(X)]− logE

[
ef(Y )

]}
, (46)

where the maximum is with respect to F =
{
f : A → R s.t. E[ef(Y )] <∞

}
, and is achieved by

f∗(a) = ıX‖Y (a).

B Finite processes (random vectors)

In this section we consider a random process {Xt}t∈T where T is a finite set. The following is a well
known result (see [12, Theorem 2.5]):
Proposition 1 (Maximal inequality). Let {Xt}t∈T be a random process and T a finite set. Assume
that ΛXt(λ) ≤ ψ(λ) for all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) = 0. Then

E
[
sup
t∈T

Xt

]
≤ ψ∗−1(log |T |). (47)

In particular, if Xt is σ2-subgaussian and E[Xt] = 0 for every t ∈ T , then

E
[
sup
t∈T

Xt

]
≤
√

2σ2 log |T |. (48)

Remark 6. Note that based on Lemma 1, for all t ∈ T , the condition ΛXt(λ) ≤ ψ(λ) for all λ ≥ 0
and ψ′(0) = 0 implies that E[Xt] = 0.
Proposition 2. If in addition to the assumptions of Proposition 1, we assume that ΛXt(−λ) ≤ ψ(λ)
for all λ ≥ 0 and t ∈ T , then we have

E
[
sup
t∈T
|Xt|

]
≤ ψ∗−1 (log(2|T |)) . (49)

In particular, if Xt is σ2-subgaussian and E[Xt] = 0 for every t ∈ T , then

E
[
sup
t∈T
|Xt|

]
≤
√

2σ2 log (2|T |). (50)

Proof. Apply Proposition 1 on the random process {Xt}t∈T ∪ {−Xt}t∈T .

The next result bounds E[XW ], where W is a random variable taking values on T :
Theorem 7. [8], [16] Let {Xt}t∈T be a random process and T a finite set. Assume that ΛXt(λ) ≤
ψ(λ) for all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) = 0, and let W be a random
variable taking values on T . Then

E[XW ] ≤ ψ∗−1(I(W ;XT )). (51)
In particular, if Xt is σ2-subgaussian and E[Xt] = 0 for every t ∈ T , then

E[XW ] ≤
√

2σ2I(W ;XT ). (52)

Based on Lemma 2, ψ∗−1 is an increasing function. Therefore one can replace I(W ;XT ) with any
larger quantity in the right side of (51). For example,

E[XW ] ≤ ψ∗−1(I(W ;XT ))

≤ ψ∗−1(H(W )). (53)
Since W takes values on T , we have H(W ) ≤ log |T |. Therefore the right side of (51) is not larger
than the right side of (47).

Based on Lemma 2, the right side of (51) is zero if and only if I(W ;XT ) = 0, i.e. W is independent
of XT . In this case, (51) turns into an equality: based on Remark 6 we have E[Xt] = 0 for all t ∈ T ,
hence E[XW ] = E[E[XW |W ]] = 0.

Now, by adding an assumption, we prove upper and lower bounds for E[XW ], and an upper bound
for E[|XW |]. We should mention that the proof of part (b) of the following proposition is similar to
the proof of Theorem 4 in [18].
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Proposition 3. If in addition to the assumptions of Theorem 7, we assume that ΛXt(−λ) ≤ ψ(λ)
for all λ ≥ 0 and t ∈ T , then we have

(a)
|E[XW ]| ≤ ψ∗−1(I(W ;XT )), (54)

(b)
E[|XW |] ≤ ψ∗−1 (I(W ;XT ) + log 2) . (55)

Proof.

(a) Apply Theorem 7 to the process {−Xt}t∈T , while noting that Λ−Xt(λ) = ΛXt(−λ) for all
λ ≥ 0 and t ∈ T , and I(W ;−XT ) = I(W ;XT ), since mutual information is invariant to
one-to-one functions.

(b) Define the random process X = {Xt,w} t∈T
w∈{0,1}

such that

Xt,w ,

{
Xt t ∈ T,w = 0

−Xt t ∈ T,w = 1

and let R be a random variable taking values on {0, 1} such that

R =

{
0 if XW ≥ 0

1 if XW < 0
·

Based on Theorem 7 applied on the random process X and random variables W and R, and
based on the chain rule of entropy, we get

E[|XW |] = E[XW,R] (56)

≤ ψ∗−1(I(W,R;X)) (57)

= ψ∗−1(H(W,R)−H(W,R|X)) (58)

= ψ∗−1((H(W ) +H(R|W ))− (H(W |X) +H(R|W,X))) (59)

= ψ∗−1((H(W ) +H(R|W ))−H(W |X)) (60)

= ψ∗−1(H(W )−H(W |XT ) +H(R|W )) (61)

= ψ∗−1(I(W ;XT ) +H(R|W )) (62)

≤ ψ∗−1(I(W ;XT ) +H(R)) (63)

≤ ψ∗−1(I(W ;XT ) + log 2). (64)

Corollary 1. If T is a finite set, ψ(λ) , λ2σ2

2 , and for all t ∈ T ,Xt is σ2-subgaussian and E[Xt] = 0,
then the conditions of Theorem 3 is satisfied, and (52) can be improved to

|E[XW ]| ≤
√

2σ2I(W ;XT ), (65)

as was shown in [8].

The previous results concerned E[supt∈T Xt] and E[XW ]. We now state a result for estimating the
tail probability of supt∈T Xt:
Proposition 4. [9] Let {Xt}t∈T be a random process and T a finite set. Assume that ΛXt(λ) ≤ ψ(λ)
for all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) = 0. Then

P
[
sup
t∈T

Xt ≥ ψ∗−1(log |T |+ u)

]
≤ e−u for all u ≥ 0. (66)

In particular, if Xt is σ2-subgaussian and E[Xt] = 0 for every t ∈ T , then

P
[
sup
t∈T

Xt ≥
√

2σ2 log |T |+ x

]
≤ e−

x2

2σ2 for all x ≥ 0. (67)
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We estimate the tail probability of XW in the following theorem:
Theorem 8. Let {Xt}t∈T be a random process and T a finite set. Assume that ΛXt(λ) ≤ ψ(λ) for
all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) = 0, and let W be a random variable
taking values on T . Then for all u ≥ 0,

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u)

]
≤ min

{
I(W ;XT ) + log

(
2− e−I(W ;XT )−u

)
I(W ;XT ) + u

, elog |T |−I(W ;XT )−u

}
. (68)

In particular, if Xt is σ2-subgaussian and E[Xt] = 0 for every t ∈ T , then for all x ≥ 0,

P
[
XW ≥

√
2σ2I(W ;XT ) + x

]
≤ min


I(W ;XT ) + log

(
2− e−I(W ;XT )− x2

2σ2

)
I(W ;XT ) + x2

2σ2

, elog |T |−I(W ;XT )− x2

2σ2

 . (69)

Proof. Analogous to the proof of Theorem 7 in [8], [16], we invoke the variational representation of
relative entropy (Theorem 6) in our proof.

Define n , |T | and without loss of generality, let T , {1, 2, ..., n}. Note that

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u)

]
=

n∑
i=1

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u)

∣∣∣W = i
]
P [W = i] (70)

=

n∑
i=1

P
[
Xi ≥ ψ∗−1(I(W ;XT ) + u)

∣∣∣W = i
]
P[W = i]. (71)

Define
f(a) , ζ1{a≥ψ∗−1(I(W ;XT )+u)}, (72)

where ζ > 0 is an arbitrary real number. Choose an arbitrary 1 ≤ i ≤ n, and define random variable
X such that PX = PXi|W=i. We have

ζP
[
Xi ≥ ψ∗−1(I(W ;XT ) + u)

∣∣∣W = i
]

= E[f(X)] (73)

≤ D(PX‖PXi) + logE[ef(Xi)] (74)

= D(PXi|W=i‖PXi) + logE[ef(Xi)] (75)

= D(PXi|W=i‖PXi) + log
(
eζP

[
Xi ≥ ψ∗−1(I(W ;XT ) + u)

]
+P
[
Xi < ψ∗−1(I(W ;XT ) + u)

])
(76)

= D(PXi|W=i‖PXi)

+ log
(

(eζ − 1)P
[
Xi ≥ ψ∗−1(I(W ;XT ) + u)

]
+ 1
)

(77)

≤ D(PXi|W=i‖PXi) + log
(

(eζ − 1)e−I(W ;XT )−u + 1
)

(78)

≤ D(PXT |W=i‖PXT ) + log
(

(eζ − 1)e−I(W ;XT )−u + 1
)
, (79)

where (74) is based on Theorem 6, (78) is based on Lemma 4 and (79) is based on the data processing
inequality for relative entropy. Therefore

P
[
Xi ≥ ψ∗−1(I(W ;XT ) + u)

∣∣∣W = i
]

≤ 1

ζ

(
D(PXT |W=i‖PXT ) + log

(
(eζ − 1)e−I(W ;XT )−u + 1

))
. (80)
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Since i was chosen arbitrarily, (80) holds for all i = 1, 2, ..., n. Thus, based on (70) and (71) we have

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u)

]
≤ 1

ζ

(
n∑
i=1

D(PXT |W=i‖PXT )P[W = i]

+ log
(

(eζ − 1)e−I(W ;XT )−u + 1
))

(81)

=
1

ζ

(
I(W ;XT ) + log

(
(eζ − 1)e−I(W ;XT )−u + 1

))
.

(82)

Since (82) holds for arbitrary ζ > 0, we can infimize the right side of (82) over ζ to obtain

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u)

]
≤ inf
ζ>0

{
1

ζ

(
I(W ;XT ) + log

(
(eζ − 1)e−I(W ;XT )−u + 1

))}
. (83)

Now, we upper bound the right side of (83) by choosing ζ ← I(W ;XT ) + u, to get

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u)

]
≤
I(W ;XT ) + log

(
2− e−I(W ;XT )−u

)
I(W ;XT ) + u

, (84)

which is one of the terms in the right side of (68). To prove the other upper bound in (68), note that

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u)

]
=

n∑
i=1

P
[
XW ≥ ψ∗−1(I(W ;XT ) + u),W = i

]
(85)

=

n∑
i=1

P
[
Xi ≥ ψ∗−1(I(W ;XT ) + u),W = i

]
(86)

≤
n∑
i=1

P
[
Xi ≥ ψ∗−1(I(W ;XT ) + u)

]
(87)

≤ ne−I(W ;XT )−u (88)

= elog |T |−I(W ;XT )−u, (89)

where (88) is based on Lemma 4.

For the subgaussian case, note that

ψ∗−1(log |T |+ u) =
√

2σ2(log |T |+ u) (90)

≤
√

2σ2 log |T |+
√

2σ2u, (91)

therefore, based on (84) and (89), we get (69).

Note that our upper bound in (84) is slightly stronger than Lemma 4.1 in [20], and our method of
proving (84) shows that Lemma 4.1 in [20] is a corollary of the well known variational representation
of relative entropy (Theorem 6).
Remark 7. If the assumptions of Proposition 3 hold, then by applying Theorem 8 on {−Xt}t∈T , it
is straightforward to obtain analogous lower tail bounds for XW .

C Lipschitz processes and the ε-net argument

The generalization of the maximal inequality (Proposition 1) to random processes with infinite
number of random variables is not useful, since its upper bound blows up. But in many applications,
there exists some dependence structure between the random variables of the random process which
can be exploited to give better bounds. In this section we define Lipschitz structure and mention the
ε-net argument. Then we show how to tighten that by using mutual information.
Definition 7 (Lipschitz process). The random process {Xt}t∈T is called Lipschitz for a metric d on
T if there exists a random variable C such that |Xt −Xs| ≤ Cd(t, s) for all t, s ∈ T .
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Here we give the definitions of ε-net and covering number N(T, d, ε):
Definition 8 (ε-net and covering number). Let d be a metric on the set T .

(a) A finite set N is called an ε-net for (T, d) if there exists a function πN which maps every point
t ∈ T to πN (t) ∈ N such that d(t, πN (t)) ≤ ε.

(b) The covering number for a metric space (T, d) is the smallest cardinality of an ε-net for that
space, where we denote it by N(T, d, ε). In other words,

N(T, d, ε) , inf{|N | : N is an ε-net for (T, d)}. (92)

(c) An ε-net N for the metric space (T, d) is called minimal if |N | = N(T, d, ε).

For Lipschitz processes, the following inequality usually gives better bounds than the maximal
inequality (Proposition 1), and it is also referred to as the ε-net argument:
Proposition 5 (Lipschitz maximal inequality). Assume that {Xt}t∈T is a Lispschitz process for the
metric d on T , and ΛXt(λ) ≤ ψ(λ) for all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) =
0. Then

E
[
sup
t∈T

Xt

]
≤ inf
ε>0

{
εE[C] + ψ∗−1 (logN(T, d, ε)

}
. (93)

For a proof of Proposition 5 see [9]. The following theorem tightens Proposition 5 by using the
mutual information method:
Theorem 9. Assume that {Xt}t∈T is a Lipschitz process for the metric d on T , and ΛXt(λ) ≤ ψ(λ)
for all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) = 0. If for all ε > 0, Nε is an ε-net
for (T, d), then

E[XW ] ≤ inf
ε>0
Nε

{
εE[C] + ψ∗−1(I(πNε(W );XNε))

}
, (94)

where the infimum is over all ε > 0 and all ε-nets Nε of (T, d).

Proof. We have XW = (XW − XπNε (W )) + XπNε (W ). Therefore, based on Theorem 7 and
Definition 7, we have

E[XW ] = E[XW −XπNε (W )] + E[XπNε (W )] (95)

≤ E[|XW −XπNε (W )|] + E[XπNε (W )] (96)

≤ εE[C] + ψ∗−1 (I(πNε(W );XNε)) (97)

Remark 8. Note that in the infimum in (94), for all ε > 0 one can restrict Nε to be a minimal ε-net
to conclude that the right side of (94) is no larger than the right side of (93), due to Lemma 2 and the
following inequalities:

I(πNε(W );XNε) ≤ H(πNε(W )) (98)
≤ logN(T, d, ε). (99)

Proposition 6. With the assumptions of Theorem 9, we have

inf
ε>0
Nε

{
εE[C] + ψ∗−1 (I(πNε(W );XNε))

}
≤ ψ∗−1(I(W ;XT )). (100)

Therefore the bound on E[XW ] given in Theorem 9 is no larger than the bound given in Theorem 7.

Proof. For all ε > 0, based on the chain rule of mutual information (or the data processing inequality),
we have

I(πNε(W );XNε) ≤ I(πNε(W );XT ). (101)
Furthermore, the Markov chain πNε(W )↔W ↔ XT and the data processing inequality for mutual
information yield

I(πNε(W );XT ) ≤ I(W ;XT ). (102)
Lemma 2 along with (101) and (102) conclude

εE[C] + ψ∗−1(I(πNε(W );XNε)) ≤ εE[C] + ψ∗−1(I(W ;XT )). (103)
Letting ε→ 0 completes the proof.

16



Remark 9. If in addition to the assumptions of Theorem 9, we have ΛXt(−λ) ≤ ψ(λ) for all λ ≥ 0
and t ∈ T (see Corollary 1 for an example), then similar to the proof of Proposition 3, we can prove

|E[XW ]| ≤ εE[C] + ψ∗−1(I(πN (W );XN )). (104)

D Chaining mutual information

We loosen the “almost sure” Lipschitz condition of the dependencies of the random variables of a
process to a “in probability” condition, defined as subgaussian processes:
Definition 9 (Subgaussian process). The random process {Xt}t∈T on the metric space (T, d) is
called subgaussian if E[Xt] = 0 for all t ∈ T and

E
[
eλ(Xt−Xs)

]
≤ e 1

2λ
2d2(t,s) for all t, s ∈ T, λ ≥ 0. (105)

We now state a classical chaining result:
Theorem 10 (Dudley). [13]. Assume that {Xt}t∈T is a separable subgaussian process on the
bounded metric space (T, d). Then

E
[
sup
t∈T

Xt

]
≤ 6

∑
k∈Z

2−k
√

logN(T, d, 2−k). (106)

By combining the mutual information method and the chaining method, we obtain the following
result:
Theorem 11. Assume that {Xt}t∈T is a separable subgaussian process on the bounded metric space
(T, d) and let k0 be an integer such that 2−k0 ≥ diam(T ). Let {Nk}∞k=k0+1 be a sequence of sets,
where for each k > k0,Nk is a 2−k-net for (T, d). For an arbitrary t0 ∈ T , letNk0 , {t0}. Assume
that W is a random variable which takes values on T . We have

(a)

E[XW ] ≤ 3
√

2

∞∑
k=k0+1

2−k
√
I(πNk(W ), πNk−1

(W );XT ). (107)

(b)

E [|XW −Xt0 |] ≤ 3
√

2

∞∑
k=k0+1

2−k
√
I(πNk(W ), πNk−1

(W );XT ) + log 2. (108)

Proof.

(a) Since 2−k0 ≥ diam(T ), we have N(T, d, 2−k0) = 1, therefore Nk0 is a 2−k0-net for (T, d).
Note that for any integer n > k0 we can write

XW = Xt0 +

n∑
k=k0+1

(XπNk (W ) −XπNk−1
(W )) + (XW −XπNn (W )). (109)

Since by the definition of subgaussian processes the process is centered, we have E[Xt0 ] = 0.
Thus

E[XW ]− E[XW −XπNn (W )] =

n∑
k=k0+1

E[XπNk (W ) −XπNk−1
(W )]. (110)

Note that for every k > k0, {XπNk (t)
−XπNk−1

(t)}t∈T is a subgaussian process with at most
|Nk||Nk−1| distinct terms, hence a finite process. Based on triangle inequality,

d(πNk(t), πNk−1
(t)) ≤ d(t, πNk(t)) + d(t, πNk−1

(t))

≤ 3× 2−k. (111)
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Note that knowing the value of (πNk(W ), πNk−1
(W )) is enough to determine which one of

the random variables of {XπNk (t)
− XπNk−1

(t)}t∈T is chosen according to W . Therefore
(πNk(W ), πNk−1

(W )) is playing the role of the random index, and since XπNk (t)
−XπNk−1

(t)

is d2(πNk(t), πNk−1
(t))-subgaussian, based on Theorem 7, we have

E
[
XπNk (W ) −XπNk−1

(W )

]
≤ 3
√

2× 2−k
(
I(πNk(W ), πNk−1

(W ); {XNk(t) −XNk−1(t)}t∈T )
) 1

2 . (112)
Based on the chain rule of mutual information, adding random variables to one side of mutual
information does not decrease its value. Thus

E[XπNk (W )−XπNk−1
(W )] ≤ 3

√
2×2−k

(
I(πNk(W ), πNk−1

(W );XNk −XNk−1
)
) 1

2 . (113)

From (110) and by using (113) for each k = k0 + 1, . . . , n, we conclude

E[XW ]−E[XW−XπNn (W )] ≤
n∑

k=k0+1

3
√

2×2−k
(
I(πNk(W ), πNk−1

(W );XNk −XNk−1
)
) 1

2 .

(114)
Note that |E[XW −XπNn (W )]| ≤ E[supt∈T (Xt−XπNn (t)

)], and since the process is separable,
we have

lim
n→∞

E[sup
t∈T

(Xt −XπNn (t)
)] = 0, (115)

(see proof of Theorem 5.24 in [9].) Hence
lim
n→∞

E[XW −XπNn (W )] = 0. (116)

Based on (114) and (116), we get

E[XW ] ≤ 3
√

2

∞∑
k=k0+1

2−k
(
I(πNk(W ), πNk−1

(W );XNk −XNk−1
)
) 1

2 . (117)

By further upper bounding the right side of (117), we obtain

E[XW ] ≤ 3
√

2

∞∑
k=k0+1

2−k
(
I(πNk(W ), πNk−1

(W );XNk −XNk−1
)
) 1

2

≤ 3
√

2

∞∑
k=k0+1

2−k
(
I(πNk(W ), πNk−1

(W );XNk −XNk−1
, XNk−1

)
) 1

2 (118)

= 3
√

2

∞∑
k=k0+1

2−k
(
I(πNk(W ), πNk−1

(W );XNk∪Nk−1
)
) 1

2 (119)

≤ 3
√

2

∞∑
k=k0+1

2−k
(
I(πNk(W ), πNk−1

(W );XT )
) 1

2 , (120)

where (118) and (120) follow from the chain rule of mutual information, and (119) follows from
the fact that mutual information is invariant to one-to-one functions.

(b) From (109) we conclude that

|XW −Xt0 | ≤
n∑

k=k0+1

|XπNk (W ) −XπNk−1
(W )|+ |XW −XπNn (W )|. (121)

Hence

E[|XW −Xt0 |]− E[|XW −XπNn (W )|] ≤
n∑

k=k0+1

E[|XπNk (W ) −XπNk−1
(W )|]. (122)

The rest of the proof is similar to previous part, with the difference of instead of using Theorem 7
to obtain (112), we use Proposition 3 (b) with ψ(λ) , λ2σ2

2 to obtain

E
[
|XπNk (W ) −XπNk−1

(W )|
]

≤ 3
√

2× 2−k
(
I(πNk(W ), πNk−1

(W ); {XNk(t) −XNk−1(t)}t∈T ) + log 2
) 1

2 . (123)
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Remark 10. Note that for all k > k0,

I(πNk(W ), πNk−1
(W );XT ) ≤ H(πNk(W ), πNk−1

(W )) (124)

≤ H (πNk(W )) +H
(
πNk−1

(W )
)

(125)

≤ log |Nk|+ log |Nk−1| (126)
≤ 2 log |Nk|. (127)

Therefore, if we assume that for each k > k0, Nk is a minimal 2−k-net for (T, d), then we have
replaced the Hartley entropy in Dudley’s inequality (Theorem 10) with Shannon entropy (because
log |Nk| = logN(T, d, 2−k)) and further with mutual information.

We are now able to present the proof of the small subset property theorem:

Proof of Theoerem 5. For each k ≥ k1(T ), let N (1)
k and N (2)

k be minimal 2−k-nets for T1 and T2,
respectively. It is clear that Nk , N (1)

k ∪N (2)
k , is a 2−k-net for T . Let

πNk(t) ,

{
πN (1)

k

(t) if t ∈ T1
πN (2)

k

(t) if t ∈ T2
·

Based on Theorem 11 and Remark 10, we have

E[XW ] ≤ 3
√

2

∞∑
k=k1(T )

2−k
(
H(πNk(W )) +H(πNk−1

(W )
) 1

2

≤ 3
√

2

∞∑
k=k1(T )

2−k
(
α log |N (1)

k |+ (1− α) log |N (2)
k |

+α log |N (1)
k−1|+ (1− α) log |N (2)

k−1|+ 2H(α)
) 1

2

≤ 3
√

2

∞∑
k=k1(T )

2−k
(
α log |N (1)

k |
2 + (1− α) log |N (2)

k |
2 + 2H(α)

) 1
2

≤ 6

∞∑
k=k1(T )

2−k
(
α log |N (1)

k |+ (1− α) log |N (2)
k |+H(α)

) 1
2

= 6

∞∑
k=k1(T )

2−k
(
α logN(T1, d, 2

−k) + (1− α) logN(T2, d, 2
−k) +H(α)

) 1
2 . (128)

For random processes other than subgaussian processes, where the tail of increments are controlled
by a function ψ, we have the following result whose proof is similar to the proof of Theorem 11:
Theorem 12. Assume that {Xt}t∈T is a separable process defined on the bounded metric space
(T, d), with E[Xt] = 0 for all t ∈ T and

logE
[
e
λ(Xt−Xs)
d(t,s)

]
≤ ψ(λ) for all t, s ∈ T, λ ≥ 0, (129)

where ψ is convex and ψ(0) = ψ′(0) = 0. Let k0 be an integer such that 2−k0 ≥ diam(T ) and
{Nk}∞k=k0+1 be a sequence of sets, where for each k > k0, Nk is a 2−k-net for (T, d). For an
arbitrary t0 ∈ T , let Nk0 , {t0}. Assume that W is a random variable which takes values on T . We
have

(a)

E[XW ] ≤ 3
√

2

∞∑
k=k0+1

2−kψ∗−1
(
I(πNk(W ), πNk−1

(W );XT )
)
. (130)
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(b)

E [|XW −Xt0 |] ≤ 3
√

2

∞∑
k=k0+1

2−kψ∗−1
(
I(πNk(W ), πNk−1

(W );XT ) + log 2
)
. (131)
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