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1 Estimating covariance matrix by Hessian matrix

The MLEs ŝ follow a multivariate Gaussian distribution. The covariance matrix of Σ̂ could be
estimated using the Hessian matrix of the logL, i.e.,

H =


∂2logL
∂s21

· · · ∂2logL
∂s1∂sn

· · ·
. . . · · ·

∂2logL
∂sn∂s1

· · · ∂2logL
∂s2n

 (1)

Following [1][2], we construct a matrix C, which has the following form by augmenting the negative
H a column and a row vector of ones and a zero in the bottom right corner:

C =

[
−H 1
1′ 0

]−1
(2)

The first n columns and rows of C form the estimated covariance matrix of ŝ, i.e., Σ̂.

2 Simplification of Utility function

In our work, the EIG can be writen as:

Uij =

∫ ∑
yij

log

{
p(yij |sij)
p(yij)

}
p(yij |sij)p(sij)dsij (3)

In our study, yij only has two values, 1 and 0. We define p(yij = 1|sij) = pij , and p(yij = 0|sij) =
qij , thus, we have pij = 1

1+e−sij
, qij = 1− pij , then:

Uij =

∫ (
log

{
pij

p(yij = 1)

}
pij + log

{
qij

p(yij = 0)

}
qij

)
p(sij)dsij (4)
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where

p(yij = 1) =

∫
p(yij = 1|sij)p(sij)dsij

= E(p(yij = 1|sij))
= E(pij)

(5)

Similarly, we could obtain p(yij = 0) = E(qij). Thus, Equation 4 could be rewritten as:

Uij = E(log(
pij

E(pij)
)pij + log(

qij
E(qij)

)qij)

= E(pij log(pij)− pij logE(pij)) + E(qij log(qij)− qij logE(qij))

= E(pij log(pij))− E(pij)logE(pij) + E(qij log(qij))− E(qij)logE(qij)

(6)

3 Gaussian-Hermite quadrature estimation

In our paper,

E(pij log(pij)) =

∫
pij log(pij)p(sij)dsij

=

∫
1

1 + e−x
log(

1

1 + e−x
)

1√
2πσij

e
−

(x−(ŝi−ŝj))
2

2σ2
ij dx

(7)

Set y =
x−(ŝi−ŝj)√

2σij
, thus, we have x =

√
2σijy + ŝi − ŝj , Equation 7 could be rewritten as:

E(pij log(pij))

=

∫
1

1 + e(−
√
2σijy−(ŝi−ŝj))

(−log(1 + e(−
√
2σijy−(ŝi−ŝj))))

1√
π
e−y

2

dy

= f(x)e−x
2

dx

(8)

where
f(x) =

1

1 + e(−
√
2σijx−(ŝi−ŝj))

(−log(1 + e(−
√
2σijx−(ŝi−ŝj))))

1√
π

(9)

According to Gaussian-Hermite quadrature, the value of integrals with the form
∫∞
−∞ f(x)e−x

2

dx

could be estimated by
∑n
i=1 wif(xi), where n is the number of sample points used (please note that

this n is not the total number of objects in the paper), the xi are the roots of the physicists’ version of
the Hermite polynomial Hn(x)(i = 1, 2, ..., n):

Hn(x) = (−1)nex
2 ∂n

∂xn
e−x

2

(10)

and the associated weights wi are given by

wi =
2n−1n!

√
π

n2[Hn−1(xi)]2
(11)

In our study, n = 30.

4 Selection of rescale function for PLCC, Kendall and RMSE

With the increase of the trial number, the PLCC, Kendall and RMSE values increase/decrease rapidly
and look saturate when the trial number is large. As shown in Figure 1(a)1(d), the difference of the
performances of different methods is not readable. However, they are still distinguishable in the
proper scales. Thus, we consider use Fisher transformation for PLCC and Kendall in this paper, i.e.,
y′ = arctanh(y), for better visualization as this transform could augment the difference when the
value close to 1. The rescaled results are shown in Figure 1(b). Similar purpose of utilization of
function y′ = − 1

y for RMSE.
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(a) Original cardinal scale on
PLCC

(b) y′ = arctanh(y)

(d) Original cardinal scale on
RMSE

(e) y′ = − 1
y

Figure 1: Example of different re-scaling methods.

5 Complete results of Video Quality Assessment (VQA) datasets

Complete results of Kendall, PLCC and RMSE on Reference 5 - 10 of VQA dataset are shown in
Figure 2, 3 and 4.

Figure 2: Kendall results on VQA dataset. Color area represents 95% confidence intervals over 100
times iterations. y-axis is rescaled using Fisher transformation.

6 Complete results of Image quality assessment (IQA) dataset

Complete results of Kendall, PLCC and RMSE on Reference 5 - 15 of IQA dataset are shown in
Figure 5, 6 and 7.
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Figure 3: PLCC results on VQA dataset. Color area represents 95% confidence intervals over 100
times iterations. y-axis is rescaled using Fisher transformation.

Figure 4: RMSE results on VQA dataset. Color area represents 95% confidence intervals over 100
times iterations. y-axis is rescaled using function y′ = − 1

y .

References
[1] F. Wickelmaier and C. Schmid, “A Matlab function to estimate choice model parameters from

paired-comparison data,” Behavior Research Methods, Instruments, and Computers, vol. 36,
no. 1, pp. 29–40, Feb. 2004.

[2] R. A. Bradley, “Rank analysis of incomplete block designs: Iii some large-sample results on
estimation and power for a method of paired comparisons,” Biometrika, vol. 42, no. 3/4, pp.
450–470, 1955.

4



Figure 5: Kendall results on IQA dataset. Color area represents 95% confidence intervals over 100
times iterations. y-axis is rescaled using Fisher transformation.

Figure 6: PLCC results on IQA dataset. Color area represents 95% confidence intervals over 100
times iterations. y-axis is rescaled using Fisher transformation.
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Figure 7: RMSE results on IQA dataset. Color area represents 95% confidence intervals over 100
times iterations. y-axis is rescaled using function y′ = − 1

y .
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