
Supplementary Material

A Claim 1

A.1 Proof for Claim 1

Proof. We first show that for any γ0 > 0, any norm ‖·‖∗, and any C0 > 0, there exists a function

f ˜V
satisfying f ˜V

≡ C0 and
k+1∏
i=1

∥∥∥ṼT

i

∥∥∥
∗
≤ γ0. First assume that ‖(1, 0, · · · , 0)‖∗ = a0. Note that

a0 > 0 by the definition of the norm. To prove this, we could set an arbitrary Ṽ1 satisfying that∥∥∥ṼT

1

∥∥∥
∗

= γ0
a0C0

, the arbitrary Ṽis satisfying that
∥∥∥Ṽi

∥∥∥
∗

= 1 for i = 2, · · · , k, and the output layer

as Tk+1(u) = C0. Then f ˜V
≡ C0, and

k+1∏
i=1

∥∥∥Ṽi

∥∥∥
∗
≤ γ0
a0C0

∗ 1k−1 ∗ a0C0 = γ0.

Then

R̂S(N k,d
γ∗≤γ) = Eε

[
sup
f∈F

(
1

n

n∑
i=1

εif(zi)

)]

≥ P(

n∑
i=1

εi 6= 0)Eε

 sup

f∈Nk,d
γ∗≤γ

(
1

n

n∑
i=1

εif(zi)

)
|
n∑
i=1

εi 6= 0


≥ 1

2
Eε

 sup

f∈Nk,d
γ∗≤γ

(
1

n

n∑
i=1

εif(zi)

)
|
n∑
i=1

εi 6= 0

 (7a)

≥ 1

2
Eε

[
sup
C0>0

(
1

n

n∑
i=1

εisgn(

n∑
i=1

εi)C0

)
|
n∑
i=1

εi 6= 0

]
=∞,

where the step in Equation (7a) follows from P(
∑n
i=1 εi 6= 0) = 1 when n is an odd number, and

P(
∑n
i=1 εi 6= 0) = 1− 1

2P(
∑n
i=2 εi = 1)− 1

2P(
∑n
i=2 εi = −1) ≥ 1

2 when n is an even number.

B Theorem 1

Proof. For Part (a), if any ‖Ti‖p,q = 0, then f = 0 ∈ N k,d
p,q,c,co . Otherwise, we will prove by

induction on depth k + 1. It is trivial when k = 0.

When k = 1, we rescale the first hidden layer by

s = c/ ‖T1‖p,q .

Equivalently, define the new affine transformation T ∗1 by

B∗1 = sB1,W
∗
1 = sW1,

such that ‖T ∗1 ‖p,q = c. For the output layer, we define

W∗
2 = W2 ‖T ∗1 ‖p,q /c,B

∗
2 = B2.

Then T ∗2 (u) = (W∗
2)Tu + B∗2 satisfies ‖T ∗2 (u)‖p,q ≤ co, as s ≥ 1. What’s more f(x) =

T ∗2 ◦ σ ◦ T ∗1 ◦ x ∈ N 1,d
p,q,c,co .

Assume the result holds when k < K. Then when k = K, consider f(x) = TK+1 ◦ σ ◦ TK ◦ · · ·σ ◦
T ∗1 ◦ x. Its Kth hidden layer

fK(x) ∈ NK−1,dK
p,q,c,c
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by induction assumption, where dK = (d0, d1 · · · , dK). In other words, there exists a series of affine
transformations {T ∗i }i=1,··· ,K , such that

fK(x) = T ∗K ◦ σ ◦ T ∗K−1 ◦ · · · ◦ σ ◦ T ∗1 ◦ x,

‖T ∗i ‖ = c for i = 1, · · · ,K − 1, and ‖T ∗K‖ ≤ c. Thus

f(x) = TK+1 ◦ σ ◦ T ∗K ◦ σ ◦ T ∗K−1 ◦ · · · ◦ σ ◦ T ∗1 ◦ x.

We rescale T ∗K by s = c/ ‖T ∗K‖p,q. Equivalently, define a new affine transformation T ∗∗K by T ∗∗K =

sT ∗K , such that ‖T ∗∗K ‖p,q = c. For the output layer, we define

W∗
K+1 = WK+1/s,B

∗
K+1 = BK+1.

Then T ∗K+1(u) = (W∗
K+1)Tu+B∗K+1 satisfies

∥∥T ∗K+1(u)
∥∥
p,q
≤ co, as s ≥ 1. Thus f ∈ NK,d

p,q,c,co .

For Part (b), it is a direct conclusion from Part (a) that N k,d
p,q,c1,co ⊆ N

k,d
p,q,c2,co if c1 ≤ c2, and

N k,d
p,q,c,c1o

⊆ N k,d
p,q,c,c2o

if c1o ≤ c2o. If g ∈ N k,d
p,q,c,1, then by definition, cog ∈ N k,d

p,q,c,co .

For Part (c), note that ‖·‖p1 ≥ ‖·‖p2 when p1 ≤ p2, hence

{v : ‖v‖p1 ≤ C} ⊆ {v : ‖v‖p2 ≤ C}.

Then the first line of Part (c) follows from the observation above as well as the conclusion of Part (a).
As for the second line, for any h ∈ N k,d

p,∞,c,co , we could write

h = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1 ◦ x,

where Ti(u) : Rdi−1 → Rdi = W T
i u + Bi, satisfies that ‖Ti‖p,∞ = c for i = 1, · · · , k, and

‖Tk+1‖p,∞ ≤ co. Note that

‖Ti‖p,∞ ≤ ‖Ti‖p,q ≤ d
1
q

i ‖Ti‖p,∞ ≤
1
q

max(d−1) ‖Ti‖p,∞

for i = 1, 2, · · · , k, and ‖Tk+1‖p,q ≤ d
1
q

k+1 ‖Tk+1‖p,∞. Thus we get the desired result by Part (a).

Regarding Part (d), we first show the result holds when k1 = k2. For any g ∈ N k1,d
1

p,q,c,co , we could add
d2i − d1i neurons in each hidden layer with no connection to other neurons, thus not increasing the
norm of each layer. Note that this neural network belongs to N k1,d

2

p,q,c,co .

For the general case when k1 ≤ k2, we could add k2 − k1 identity layers of width 1 with their Lp,q
norm equals 1 ≤ c. Then the new neural network represents the same function as the original one.
Combining the conclusion of Part (a), we have

N k1,d
1

p,q,c,co ⊆ N
k2,

˜d
1

p,q,c,co ,

where d̃1i = d1i for i = 0, 1, · · · , k1, and d̃1i = d1k1+1 for i = k1 + 1, · · · , k2 + 1. Note that

N k2,
˜d

1

p,q,c,co ⊆ N
k2,d

2

p,q,c,co by the case when k1 = k2. Thus we get what is expected.

C Radermacher Complexities

Rademacher complexity is commonly used to measure the complexity of a hypothesis class with
respect to a probability distribution or a sample and analyze generalization bounds [6].

Rademacher Complexities. The empirical Rademacher complexity of the hypothesis class F with
respect to a data set S = {z1 . . . zn} is defined as:

R̂S(F) = Eε

[
sup
f∈F

(
1

n

n∑
i=1

εif(zi)

)]
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where ε = {ε1 . . . εn} are n independent Rademacher random variables. The Rademacher complexity
of the hypothesis class F with respect to n samples is defined as:

Rn(F) = ES∼Dn
[
R̂S(F)

]
We list the following technical lemmas that will be used later in our own proofs for reference.

Lemma 2. Let F and G be two hypothesis classes and a ∈ R be a constant. Define the shorthand
notation:

aF = {af | f ∈ F}
F + G = {f + g | f ∈ F and g ∈ G}

We have:

i. R̂S(aF) = |a| R̂S(F)

ii. F ⊆ G ⇒ R̂S(F) ≤ R̂S(G)

iii. R̂S(F + G) ≤ R̂S(F) + R̂S(G)

Proof. By definition.

Lemma 3. [15] Assume that the hypothesis class F ⊆ {f |f : X → R} and x1, · · · ,xn ∈ X . Let
G : R→ R be convex and increasing. Assume that the function φ : R→ R is L-Lipschitz continuous
and satisfies that φ(0) = 0. We have:

Eε

[
G

(
sup
f∈F

(
1

n

n∑
i=1

εiφ(f(xi))

))]
≤ Eε

[
G

(
L sup
f∈F

(
1

n

n∑
i=1

εif(xi)

))]
Lemma 4 (Massart’s finite lemma). Let A be some finite subset of Rm and ε1, ε2, · · · , εm be
independent Radermacher random variables. Let r = supa∈A ‖a‖2, then we have

E

[
sup
a∈A

1

m

m∑
i=1

εiai

]
=
r
√

2 log |A|
m

The theorem below is a more general version of [17, Theorem 3.1], where they assume a = 0, of
which the proof is very similar to the original one.

Theorem 3. Let z be a random variable of support Z and distribution D. Let S = {z1 . . . zn}
be a data set of n i.i.d. samples drawn from D. Let F be a hypothesis class satisfying
F ⊆ {f | f : Z → [a, a+ 1]}. Fix δ ∈ (0, 1). With probability at least 1− δ over the choice of
S, the following holds for all h ∈ F:

ED[h] ≤ ÊS [h] + 2Rn(F) +

√
log (1/δ)

2n

D Propositions 1, 2, 3

In this section, define σ(u) = uI{u > 0} for u ∈ R and σ ◦ z = (σ(z1), · · · , σ(zm)) for any vector
z ∈ Rm.

D.1 Proof for Proposition 1

Proof. By Theorem 1, N k,d
1,q,c,co

⊆ N k,d
1,∞,c,co . Therefore it is sufficient to show that the result holds

for N k,d
1,∞,c,co .

In order to get the first term inside the minimum operator, we will show that N k,d
1,∞,c,co belongs to

some DNN class with only bias neuron in the input layer. Then the result follows from Theorem

13



2[10]. Define N k,d+

γ1,∞≤γ as a function class that contains all functions representable by f = Tk+1 ◦
σ ◦ Tk ◦ · · · ◦ σ ◦ T1 ◦ x satisfying that

γ1,∞ =

k+1∏
i=1

‖Wi‖1,∞ ≤ γ,

where d+ = (m1 + 1, d1 + 1, d2 + 1, · · · , dk + 1, 1), Ti(u) = W T
i u, and W i ∈ Rd

+
i−1×d

+
i for

i = 1, · · · , k + 1.

The next step is to prove that N k,d
1,∞,c,co ⊆ N

k,d+

γ1,∞≤max(1,c)kco
. Following the notations in Section

2, for any Ṽi ∈ R(di−1+1)×di satisfying that
∥∥∥Ṽi

∥∥∥
1,∞

= c, we have ‖Vi‖1,∞ = max(1, c), where

Vi = (e1i, Ṽi) and e1i = (1, 0, · · · , 0)T ∈ Rdi−1+1. Equivalently, the bias neuron in the ith hidden
layer can be regarded as a hidden neuron computed from the i− 1th layer by σ(eT1if

∗
i−1(x)) = 1,

while the new affine transformation could be parameterized by Vi, such that ‖Vi‖1,∞ = max(1, c).

Finally, we get the first term inside the minimum operator by applying Theorem 2[10], and the second
term is the bound of Proposition 2 when p = 1.

D.2 Proposition 2

We first introduce two technical lemmas, which will be used later to prove Proposition 2.
Lemma 5. zi ∈ Rm1 , ‖zi‖∞ ≤ 1 for i = 1, 2, · · · , n. For p ∈ (1, 2],

1

n
E

∥∥∥∥∥
n∑
i=1

εizi

∥∥∥∥∥
p∗

≤ m
1
p∗

1√
n

min
(

(
√
p∗ − 1,

√
2 log(2m1)

)
,

and for p = 1 ∪ (2,∞),
1

n
E

∥∥∥∥∥
n∑
i=1

εizi

∥∥∥∥∥
p∗

≤
√

2 log(2m1)

n
m

1
p∗

1 .

Lemma 6. ∀p, q ≥ 1, s1, s2 ≥ 1, ε ∈ {−1,+1}n and for all functions g : Rm1 → Rs1 , we have

sup
V∈Rs1×s2

1

‖V‖p,q

∥∥∥∥∥
n∑
i=1

εiσ ◦
(
VT g(xi)

)∥∥∥∥∥
p∗

= s
[ 1
p∗− 1

q ]+
2 sup

v∈Rs1

1

‖v‖p

∣∣∣∣∣
n∑
i=1

εiσ (〈v, g(xi)〉)

∣∣∣∣∣ ,
where 1

p + 1
p∗ = 1.

D.3 Proof of Proposition 2

Proof. The proof has two main steps.

Fixing the sample S, p ≥ 1 and the architecture of the DNN, define a series of random variables
{Z0, Z1, · · · , Zk} as

Z0 =

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p∗

and

Zj = sup

f∈Nk,dp,q,c,co

∥∥∥∥∥
n∑
i=1

εiσ ◦ fj(xi)

∥∥∥∥∥
p∗

,

for j = 1, · · · , k, where {ε1, · · · , εn} are n independent Rademacher random variables, and fj
denotes the jth hidden layer of the WN-DNN f .

In the first step, we prove by induction that for j = 1, · · · , k and any t ∈ R

Eε exp(tZj) ≤ 4j exp

(
t2ns2j

2
+ tcj

j∏
i=1

d
[ 1
p∗− 1

q ]+

i Apm1,S

)
,
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where

sj =

j∑
i=2

cj−i+1

j∏
l=i

d
[ 1
p∗− 1

q ]+

l + (m
1
p∗

1 + 1)cj
j∏
l=1

d
[ 1
p∗− 1

q ]+

l

and

Apm1,S
=


√
nmin

(
(
√
p∗ − 1m

1
p∗

1 ,
√

2 log(2m1)m
1
p∗

1

)
if p ∈ (1, 2]√

2n log(2m1)m
1
p∗

1 if p ∈ 1 ∪ (2,∞)

Note that sj+1 = cd
[ 1
p∗− 1

q ]+

j (sj + 1).

When j = 0, by Lemma 5, EεZ0 ≤ Apm1,S
. Note that Z0 is a deterministic function of the

i.i.d.random variables ε1, · · · , εn, satisfying that

|Z0(ε1, · · · , εi, · · · , εn)− Z0(ε1, · · · ,−εi, · · · , εn)| ≤ 2 max ‖xi‖p∗ ≤ 2m
1
p∗

1

by Minkowski inequality. By the proof of Theorem 6.2 [7], Z0 satisfies that

logEε exp (t(Z0 − EεZ0)) ≤ t2nm
2
p∗

1 /2, thus

Eε exp (tZ0) = Eε exp (t(Z0 − EεZ0)) ∗ exp (tEεZ0)

≤ exp

 t2nm 2
p∗

1

2
+ tApm1,S


for any t ∈ R.

For the case when j = 1, · · · , k,

Eε exp (tZj) = Eε exp

t sup∥∥∥ ˜Vj

∥∥∥
p,q
≤c

∥∥∥∥∥
n∑
i=1

εiσ ◦
(
Ṽ
T

j σ ◦ f∗j−1(xi)
)∥∥∥∥∥

p∗


= Eε exp

(
tcd

[ 1
p∗− 1

q ]+

j sup
v,f

∣∣∣∣∣
n∑
i=1

εiσ(vTσ ◦ f∗j−1(xi))/ ‖v‖p

∣∣∣∣∣
)

(8a)

≤ 2Eε exp

(
tcd

[ 1
p∗− 1

q ]+

j sup
v,f

n∑
i=1

εiσ(vTσ ◦ f∗j−1(xi))/ ‖v‖p

)
(8b)

≤ 2Eε exp

(
tcd

[ 1
p∗− 1

q ]+

j sup
v,f

vT
n∑
i=1

εiσ ◦ f∗j−1(xi)/ ‖v‖p

)
(8c)

≤ 2Eε exp

tcd[ 1
p∗− 1

q ]+

j sup
f

∥∥∥∥∥
n∑
i=1

εi(1, σ ◦ fj−1(xi))

∥∥∥∥∥
p∗


≤ 2Eε exp

tcd[ 1
p∗− 1

q ]+

j (|
n∑
i=1

εi|+ sup
f

∥∥∥∥∥
n∑
i=1

εiσ ◦ fj−1(xi)

∥∥∥∥∥
p∗

)


≤ 2

[
Eε exp

(
rjtcd

[ 1
p∗− 1

q ]+

j |
n∑
i=1

εi|

)] 1
rj

Eε exp

r∗j tcd[ 1
p∗− 1

q ]+

j sup
f

∥∥∥∥∥
n∑
i=1

εiσ ◦ fj−1(xi)

∥∥∥∥∥
p∗

 1
r∗
j

(8d)

≤ 2

[
2Eε exp

(
rjtcd

[ 1
p∗− 1

q ]+

j

n∑
i=1

εi

)] 1
rj
[
Eε exp

(
r∗j tcd

[ 1
p∗− 1

q ]+

j Zj−1

)] 1
r∗
j

, (8e)

≤ 4
1+ j−1

r∗
j exp

nt2c2d2[ 1
p∗− 1

q ]+

j (1 + sj−1)2

2
+ tcj

j∏
i=1

d
[ 1
p∗− 1

q ]+

i Apm1,S
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≤ 4j exp

(
nt2s2j

2
+ tcj

j∏
i=1

d
[ 1
p∗− 1

q ]+

i Apm1,S

)
The step in Equation (8a) follows from Lemma 6. The step in Equation (8b) follows from the
observation that

Eε exp

(
sup
v

∣∣∣∣∣
n∑
i=1

εi
σ(vT f∗j−1(xi))

‖v‖p

∣∣∣∣∣
)
≤ Eε exp

(
sup
v

n∑
i=1

εi
σ(vT f∗j−1(xi))

‖v‖p

)
+

Eε exp

(
sup
v

n∑
i=1

(−εi)
σ(vT f∗j−1(xi))

‖v‖p

)
= 2Eε exp

(
sup
v

n∑
i=1

εi
σ(vT f∗j−1(xi))

‖v‖p

)
.

The step in Equation (8c) follows from Lemma 3. Note that Equation (8d) holds for any r > 1

and r∗ = r
r−1 by Hölder’s inequality E(|XY |) ≤ E(|X|r) 1

rE(|Y |r∗) 1
r∗ . An optimal rj = sj−1 +

1 is chosen in our case. The step in Equation (8e) follows from Eε exp (|X|) ≤ Eε exp (X) +
Eε exp (−X).

Note that
n∑
i=1

εi is also a deterministic function of the i.i.d.random variables ε1, · · · , εn, satisfying

that Eε
n∑
i=1

εi = 0 and

|
∑
i6=j

εi + εj − (
∑
i 6=j

εi − εj)| ≤ 2.

Then by the proof of Theorem 6.2 [7],

Eε exp(t

n∑
i=1

εi) ≤ exp(
t2n

2
)

for any t ∈ R. Then we get the desired result by choosing the optimal rj while following the
induction assumption.

The second step is based on the idea of [10] using Jensen’s inequality. For any λ > 0,

nR̂S(N k,d
p,q,c,co) = Eε

 sup

f∈Nk,dp,q,c,co

(
n∑
i=1

εif(xi)

)
≤ 1

λ
logEε exp

λ sup

f∈Nk,dp,q,c,co

(
n∑
i=1

εif(xi)

)
≤ 1

λ
logEε exp

λco sup

f∈Nk,dp,q,c,co

∥∥∥∥∥
n∑
i=1

εi(1, σ ◦ fk(xi))

∥∥∥∥∥
p∗


≤ 1

λ

[
(k + 1) log 4 +

λ2c2on(sk + 1)2

2
+ λApm1,S

coc
k

k∏
i=1

d
[ 1
p∗− 1

q ]+

i

]
(9a)

=
(k + 1) log 4

λ
+
λc2on(sk + 1)2

2
+ coc

k
k∏
i=1

d
[ 1
p∗− 1

q ]+

i Apm1,S
,

where the step in Equation (9a) is derived using a similar techinique as in Equations (8a) to (8e) By

choosing the optimal λ =

√
(k+1) log 16

co(sk+1)
√
n

, we have

R̂S(N k,d
p,q,c) ≤ co

√
(k + 1) log 16

n

(
k∑
i=2

ck−i+1
k∏
l=i

d
[ 1
p∗− 1

q ]+

l + (m
1
p∗

1 + 1)ck
k∏
i=1

d
[ 1
p∗− 1

q ]+

i + 1

)
+

1√
n
coc

k
k∏
i=1

d
[ 1
p∗− 1

q ]+

i Apm1,S

16



D.4 Proof of Lemma 5

Proof. For p ∈ (1, 2], or equivalently p∗ ∈ [2,∞), ‖· ‖p∗ is 2(p∗ − 1)-strongly convex with respect

to itself on Rm1+1 [24] and ‖zi‖p∗ ≤ m
1
p∗

1 ‖zi‖∞, thus 1
nE
∥∥∥∥ n∑
i=1

εizi

∥∥∥∥
p∗
≤
√

p∗−1
n m

1
p∗

1 [14].

For p ∈ [1,∞) or equivalently p∗ ∈ (1,∞], let z[j] = (z1[j], z2[j], · · · , zn[j])T , where zi[j] is the
jth element of the vector zi ∈ Rm1 .

1

n
E

∥∥∥∥∥
n∑
i=1

εizi

∥∥∥∥∥
p∗

≤ m
1
p∗

1

n
E

∥∥∥∥∥
n∑
i=1

εizi

∥∥∥∥∥
∞

≤
m

1
p∗

1

√
2 log(2m1)

n
sup
j
‖z[j]‖2 (10)

≤
m

1
p∗

1

√
2 log(2m1)

n

√
n sup

j
‖z[j]‖∞

≤
m

1
p∗

1

√
2 log(2m1)√
n

The step in Equation (10) follows from Lemma 4.

D.5 Proof of Lemma 6

Proof. The proof is based on the ideas of [19, Lemma 17]

The right hand side (RHS) is always less than or equal to the left hand side (LHS), since given any
vector v we could create a corresponding matrix V of which each row is v.

Then we will show that (LHS) is always less than or equal to (RHS). Let V[, j] be the jth column
of the matrix V. We have ‖V‖p,p∗ ≤ ‖V‖p,q when q ≤ p∗ and by Hölder’s inequality, ‖V‖p,p∗ ≤

s
[ 1
p∗− 1

q ]

2 ‖V‖p,q when q > p∗. Thus

(LHS) ≤ sup
V∈Rs1×s2

s
[ 1
p∗− 1

q ]+
2

‖V‖p,p∗

∥∥∥∥∥
n∑
i=1

εiσ ◦
(
VT g(xi)

)∥∥∥∥∥
p∗

= s
[ 1
p∗− 1

q ]+
2 sup

V∈Rs1×s2

1

‖V‖p,p∗

 s2∑
j=1

∣∣∣∣∣
n∑
i=1

εiσ (〈V[, j], g(xi)〉)

∣∣∣∣∣
p∗
1/p∗

≤ s
[ 1
p∗− 1

q ]+
2 sup

V∈Rs1×s2

1

‖V‖p,p∗

 s2∑
j=1

‖V[, j]‖p
(RHS)

s
[ 1
p∗− 1

q ]+
2

p∗


1/p∗

= (RHS) sup
V∈Rs1×s2

1

‖V‖p,p∗

 s2∑
j=1

(‖V[, j]‖p)p
∗

1/p∗

= (RHS)

D.6 Proposition 3

Proof. Define N k,d
γp,q≤γ as a function class that contains all functions representable by some neural

network f = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1 ◦ x satisfying that

γp,q =

k+1∏
i=1

‖Wi‖p,q ≤ γ,
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where d = (m1, d, · · · , d, 1), Ti(u) = W T
i u, and W i ∈ Rdi−1×di for i = 1, · · · , k + 1. In order

to use the conclusion of [19, Theorem 3] for DNNs with no bias neuron, it is sufficient to show that

N k,d
γp,q≤γ ⊆ N

k,d
p,q,c,co ,

for any c, co satisfying that ckco ≥ γ.

If any ‖Ti‖p,q = 0, then f = 0 ∈ N k,d
p,q,c,co . Otherwise, for any c, co satisfying that ckco ≥ γ ≥

k+1∏
i=1

‖Ti‖p,q , we rescale each hidden layer by

si = c/ ‖Ti‖p,q ,

that is, define T ∗i by B∗i = 0 and W∗
i = siWi, such that ‖T ∗i ‖p,q = c and T ∗i = siTi. Cor-

respondingly, rescale the output layer by 1/
k∏
i=1

si and
∥∥T ∗k+1

∥∥
p,q
≤ co as si ≥ 1. Therefore,

f ∈ N k,d
p,q,c,co .

E Generalization Bounds

In this section, we provide a generalization bound that holds for any data distribution for regression
as an extension of Section 3.

The Regression Problem. Assume that (x1, y1), . . . , (xn, yn) are n i.i.d samples on X × Y ⊆
Rm1 × R, satisfying that

yi = f(xi) + εi, (11)

where f : X → Y ⊆ R is an unknown function and εi an independent noise.

E.1 Generalization Bounds

Assume that d : Y × Y → [0, 1] is a 1-Lipschitz function related to the prediction problem. For
example, we could define d(y, y′) = min(1, (y − y′)2/2). Let z = (x, y) ∈ Z , where Z = X × Y .
Furthermore, for each f ∈ N k,d

p,q,c,co , define a corresponding hf such that hf (z) = d(y, f(x)). Let

Hk,dp,q,c,co be a hypothesis class satisfying

Hk,dp,q,c,co =
⋃

f∈Nk,dp,q,c,co

hf .

For every h ∈ Hk,dp,q,c,co , define the true and empirical risks as

ED[h] = Ez∼D[h(z)], ÊS [h] =
1

n

n∑
i=1

h(zi).

Theorem 4. Let z = (x, y) be a random variable of support Z and distribution D. Let
S = {z1 . . . zn} be a dataset of n i.i.d. samples drawn from D. Fix δ ∈ (0, 1), k ∈ [0,∞) and
di ∈ N+ for i = 1, · · · , k. With probability at least 1− δ over the choice of S,

(a) for p = 1 and q ∈ [1,∞], we have ∀h ∈ Hk,d1,q,c,co
:

ED[h] ≤ ÊS [h] +

√
log(1/δ)

2n
+

2co√
n
∗min

(
2 max(1, ck)

√
k + 2 + log(m1 + 1),

√
(k + 1) log 16

k∑
i=0

ci + ck(
√

2 log(2m1) +
√

(k + 1) log 16)

)
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(b) for p ∈ (1, 2] and q ∈ [1,∞], we have ∀h ∈ Hk,dp,q,c,co :

ED[h] ≤ ÊS [h] +

√
log(1/δ)

2n
+

1√
n
coc

k
k∏
i=1

d
[ 1
p∗− 1

q ]+

i

√
2 log(2m1)m

1
p∗

1 +

co

√
(k + 1) log 16

n

(
k+1∑
i=1

ck−i+1
k∏
l=i

d
[ 1
p∗− 1

q ]+

l +m
1
p∗

1 ck
k∏
i=1

d
[ 1
p∗− 1

q ]+

i

)
.

(c) for p ∈ (2,∞) and q ∈ [1,∞], we have ∀h ∈ Hk,dp,q,c,co :

ED[h] ≤ ÊS [h] +

√
log(1/δ)

2n
+

1√
n
coc

k
k∏
i=1

d
[ 1
p∗− 1

q ]+

i m
1
p∗

1 min
(

(
√
p∗ − 1,

√
2 log(2m1)

)
+

co

√
(k + 1) log 16

n

(
k+1∑
i=1

ck−i+1
k∏
l=i

d
[ 1
p∗− 1

q ]+

l +m
1
p∗

1 ck
k∏
i=1

d
[ 1
p∗− 1

q ]+

i

)
.

The corollary below gives a generalization bound for the L1,∞ WN-DNNs.
Corollary 1. Let z = (x, y) be a random variable of support Z and distribution D. Let
S = {z1 . . . zn} be a dataset of n i.i.d. samples drawn from D. Fix δ ∈ (0, 1), k ∈ [0,∞) and
di ∈ N+ for i = 1, · · · , k. Assume that ck ≤ a0 for some a0 ≥ 1. With probability at least 1− δ
over the choice of S, for any h ∈ Hk,dp,q,c,co , we have:

ED[h] ≤ ÊS [h] +

√
log(1/δ)

2n
+

4coa0√
n

√
k + 2 + log(m1 + 1).

For instance, we could define c as 1+ v0
k with some constant v0 ≥ 0 for ResNet [12], then c(k)k ≤ ev0 .

The case with v0 = 0 leads to a specific case where the normalization constant c = 1.

E.2 Proof of Theorem 4

Proof. By applying Theorem 3, with probability at least 1− δ over the choice of S, ∀h ∈ Hk,dp,q,c,co ,
we have:

ED[h]− ÊS [h] ≤ 2Rn(Hk,dp,q,c,co) +

√
log (1/δ)

2n
.

Thus it is equivalent to bound Rn(Hk,dp,q,c,co) in order to bound the absolute value of the generalization
error. By Lemma 3, we have:

Rn(Hk,dp,q,c,co) ≤ Rn(N k,d
p,q,c,co).

Finally, (a) follows from
Rn(N k,d

p,q,c,co) ≤ sup
S

R̂S(N k,d
p,q,c,co)

and Proposition 1, while

Rn(N k,d
p,q,c,co) = Rn(N k,d

p,q,c,co) ≤ sup
S

R̂S(N k,d
p,q,c,co)

and Proposition 2 lead to (b) and (c).

F Theorem 2

F.1 Proof of Lemma 1

Proof.
∥∥(bi,w

T
i )
∥∥
1

= 1 implies
∥∥(bi, 2w

T
i )
∥∥
1
≤ 2, thus by Theorem 1 Part (b), it is sufficient to

show that g could be represented by some neural network inN k,dk

p,q,wid
1/q
k ,co

if instead
∥∥(bi, 2w

T
i )
∥∥
1

=
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1. In addition, by Theorem 1 Parts (b), (c) and (d), it is equivalent to show that when
r∑
i=1

|ci| = 1,

g could be represented by some neural network in N k,d
1,∞,1,1 where di ≤ [r/k] + 2m1 + 3 for

i = 1, · · · , k.

Decompose the shallow neural network as

g(x) =

(
r1∑
i=1

c+i

)
g+(x)−

(
r2∑
i=1

c−i

)
g−(x),

where

g+(x) =

r1∑
i=1

c+i σ
(
(w+

i )Tx + b+i
)
/

r1∑
i=1

c+i , g−(x) =

r2∑
i=1

c−i σ
(
(w−i )Tx + b−i

)
/

r2∑
i=1

c−i

for some c+i , c
−
i > 0. Note that

∥∥αTAT∥∥
1
≤ 1 if α ∈ Rs satisfies that ‖α‖1 ≤ 1, and A ∈ Rt×s

satisfies that ‖A‖1,∞ ≤ 1. Additionally

r1∑
i=1

c+i +

r2∑
i=1

c−i =

r∑
i=1

|ci| = 1.

Thus it is sufficient to show that
(g+(x), g−(x))

could be represented by some neural network in N k,d
1,∞,1,1, where each hidden layer contains both

σ ◦ x and σ ◦ (−x), while satisfying that di ≤ [r1/k] + [r2/k] + 2m1 + 2 for i = 1, · · · , k and
dk+1 = 2.

When k = 1, it is trivial.

When k = 2, we construct the first hidden layer consisting of [r1/2] + [r2/2] + 2m1 hidden neurons:

{(w+
i )Tx + b+i : i = 1, · · · , [r1/2]}, {(w−i )Tx + b−i : i = 1, · · · , [r2/2]},x,−x.

For the second hidden layer, there are 2 + r − ([r1/2] + [r2/2]) + 2m1 hidden neurons. The first
neuron

η1 =

[r1/2]∑
i=1

c+i σ
(
(w+

i )Tx + b+i
)
/

[r1/2]∑
i=1

c+i ,

the second neuron

η2 =

[r2/2]∑
i=1

c−i σ
(
(w−i )Tx + b−i

)
/

[r2/2]∑
i=1

c−i ,

then follows σ ◦ x , σ ◦ (−x) and the left r − ([r1/2] + [r2/2]) hidden neurons

{η+i = (w+
i )Tσ ◦ x− (w+

i )Tσ ◦ (−x) + b+i : i = [r1/2] + 1, · · · , r1},

{η−i = (w−i )Tσ ◦ x− (w−i )Tσ ◦ (−x) + b−i : i = [r2/2] + 1, · · · , r2}.
The output layer only contains two hidden neurons (g+, g−), which could be computed respectively
by

[r1/2]∑
i=1

c+i

r1∑
i=1

c+i

σ(η1) +

r1∑
i=[r1/2]+1

c+i
r1∑
i=1

c+i

σ(η+i ) and

[r2/2]∑
i=1

c−i

r2∑
i=1

c−i

σ(η2) +

r2∑
i=[r2/2]+1

c−i
r2∑
i=1

c−i

σ(η−i ).

Thus, we find a neural network in N 2,d
1,∞,1,co representing (g+, g−), where di ≤ [r1/2] + [r2/2] +

2m1 + 2.
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When k = K, define r∗1 = (K − 1)[r1/K], r∗2 = (K − 1)[r2/K], r∗ = r1 + r2 and

g∗(x) = (g∗+(x), g∗−(x)) =

 1
r∗1∑
i=1

c+i

r∗1∑
i=1

c+i σ
(
(w+

i )Tx + b+i
)
,

1
r∗2∑
i=1

c−i

r∗2∑
i=1

c−i σ
(
(w−i )Tx + b−i

)
 .

By induction assumption, g∗ could be represented h∗ ∈ NK−1,d∗
1,∞,1,1 , where d∗i ≤ [r∗1/(K − 1)] +

[r∗2/(K − 1)] + 2m1 + 2. In order to construct a WN-DNN representing (g+, g−), we keep the first
K − 1 hidden layers of h∗ and build the Kth hidden layer based on the output layer of h∗. Since the
(K − 1)th hidden layer contains both σ ◦ x and σ ◦ (−x). Thus except the original two neurons, we
could add

{(w+
i )T (σ ◦ x− σ ◦ (−x)) + b+i : i = r∗1 + 1, · · · , r1},

{(w−i )T (σ ◦ x− σ ◦ (−x)) + b−i : i = r∗2 + 1, · · · , r2}, σ ◦ x), σ ◦ (−x)

to the Kth hidden layer. Note that
∥∥(bi, 2w

T
i )
∥∥
1

= 1, thus we does not increase the L1,∞ norm of
the Kth transformation by adding these neurons.

We finally construct the output layer by

r∗1∑
i=1

c+i

r1∑
i=1

c+i

σ(g∗+(x)) +

r1∑
i=r∗1+1

c+i
r1∑
i=1

c+i

σ
(
(w+

i )Tx + b+i
)
,

r∗2∑
i=1

c−i

r2∑
i=1

c−i

σ(g∗−(x)) +

r2∑
i=r∗2+1

c−i
r2∑
i=1

c−i

σ
(
(w−i )Tx + b−i

)
.

Thus, we build a neural network inNK,d
1,∞,1,1 representing (g+, g−). The width of the ith hidden layer

di ≤ [r1/K] + [r2/K] + 2m1 + 3.

F.2 Proof for Theorem 2

Proof. Assume f is an arbitrary function defined on Rm1 → R, satisfying that ‖x1‖∞ ≤ 1,
‖x2‖∞ ≤ 1, f(x1) ≤ L and |f(x1) − f(x2)| ≤ L ‖x1 − x2‖∞. Following [3, Propositions 1
& 6], for co greater than a constant depending only on m1, a fixed γ > 0, , there exists some

function h(x) : Rm1 → R =
r∑
i=1

ciσ(wT
i x+ bi), satisfying that

r∑
i=1

|ci| ≤ co,
∥∥(bi,w

T
i )
∥∥
1

= 1 and

r ≤ c2(m1)γ−
2(m1+1)
m1+4 , such that

sup
‖x‖∞≤1

|f(x)− h(x)| ≤ coγ + c1(m1)L(
co
L

)−
2

m1+1 log
co
L
,

where c1(m1) and c2(m1) are some constants depending only on m1.

By taking γ = c1(m1)(co/L)−1−2/(m1+1) log co
L , we have some function h(x) =

r∑
i=1

ciσ(wT
i x +

bi), satisfying that
r∑
i=1

|ci| ≤ co,
∥∥(bi, 2w

T
i )
∥∥
1

= 1 and

r ≤ Cr(m1)(log
co
L

)−2(m1+1)/(m1+4)
(co
L

)2(m1+3)/(m1+4)

,

such that
sup

‖x‖∞≤1
|f(x)− h(x)| ≤ C(m1)L(

co
L

)−
2

m1+1 log
co
L
,
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where Cr(m1) and C(m1) denote some constants that depend only on m1.

By Lemma 1, for any integer k ∈ [1, r], this h could be represented by a neural network inN k,dk
p,∞,1,co ,

where dk0 = m1, dki = [r/k] + 2m1 + 3 for i = 1, · · · , k and dkk+1 = 1.
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