
NAIS-NET: Stable Deep Networks from
Non-Autonomous Differential Equations

Marco Ciccone∗
Politecnico di Milano

NNAISENSE SA
marco.ciccone@polimi.it

Marco Gallieri∗†
NNAISENSE SA

marco@nnaisense.com

Jonathan Masci
NNAISENSE SA

jonathan@nnaisense.com

Christian Osendorfer
NNAISENSE SA

christian@nnaisense.com

Faustino Gomez
NNAISENSE SA

tino@nnaisense.com

Abstract

This paper introduces Non-Autonomous Input-Output Stable Network (NAIS-Net),
a very deep architecture where each stacked processing block is derived from a
time-invariant non-autonomous dynamical system. Non-autonomy is implemented
by skip connections from the block input to each of the unrolled processing stages
and allows stability to be enforced so that blocks can be unrolled adaptively to
a pattern-dependent processing depth. NAIS-Net induces non-trivial, Lipschitz
input-output maps, even for an infinite unroll length. We prove that the network is
globally asymptotically stable so that for every initial condition there is exactly one
input-dependent equilibrium assuming tanh units, and multiple stable equilibria
for ReL units. An efficient implementation that enforces the stability under derived
conditions for both fully-connected and convolutional layers is also presented.
Experimental results show how NAIS-Net exhibits stability in practice, yielding a
significant reduction in generalization gap compared to ResNets.

1 Introduction
Deep neural networks are now the state-of-the-art in a variety of challenging tasks, ranging from
object recognition to natural language processing and graph analysis [28, 3, 52, 43, 36]. With enough
layers, they can, in principle, learn arbitrarily complex abstract representations through an iterative
process [13] where each layer transforms the output from the previous layer non-linearly until the
input pattern is embedded in a latent space where inference can be done efficiently.

Until the advent of Highway [40] and Residual (ResNet; [18]) networks, training nets beyond a certain
depth with gradient descent was limited by the vanishing gradient problem [19, 4]. These very deep
networks (VDNNs) have skip connections that provide shortcuts for the gradient to flow back through
hundreds of layers. Unfortunately, training them still requires extensive hyper-parameter tuning, and,
even if there were a principled way to determine the optimal number of layers or processing depth for
a given task, it still would be fixed for all patterns.

Recently, several researchers have started to view VDNNs from a dynamical systems perspective.
Haber and Ruthotto [15] analyzed the stability of ResNets by framing them as an Euler integration of
an ODE, and [34] showed how using other numerical integration methods induces various existing
network architectures such as PolyNet [50], FractalNet [30] and RevNet [11]. A fundamental problem
with the dynamical systems underlying these architectures is that they are autonomous: the input
pattern sets the initial condition, only directly affecting the first processing stage. This means that if
∗The authors equally contributed.
†The author derived the mathematical results.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

B1

B1

x1(1)

A1

u1
block 1

…
B1

A1 A1

B1

…

…B2

B2

A2

block 2

B2

A2

B3

C
la

ss
ifi

er

…BN

BN

AN

block N

BN

AN

BN-1

AN-1

…
AN

BN

…

…

A2

B2

…

…

u1u1 u1 u2 u2u2u2 u3 uN uNuNuN

x1(2) x1(3) x2(1) x2(K2)x2(2) x2(3) xN(1) xN(2) xN(3) xN(KN)x1(K1)

Figure 1: NAIS-Net architecture. Each block represents a time-invariant iterative process as the first layer
in the i-th block, xi(1), is unrolled into a pattern-dependent number, Ki, of processing stages, using weight
matrices Ai and Bi. The skip connections from the input, ui, to all layers in block i make the process non-
autonomous. Blocks can be chained together (each block modeling a different latent space) by passing final
latent representation, xi(Ki), of block i as the input to block i+ 1.

the system converges, there is either exactly one fixpoint or exactly one limit cycle [42]. Neither case
is desirable from a learning perspective because a dynamical system should have input-dependent
convergence properties so that representations are useful for learning. One possible approach to
achieve this is to have a non-autonomous system where, at each iteration, the system is forced by an
external input.

This paper introduces a novel network architecture, called the “Non-Autonomous Input-Output Stable
Network” (NAIS-Net), that is derived from a dynamical system that is both time-invariant (weights
are shared) and non-autonomous.3 NAIS-Net is a general residual architecture where a block (see
figure 1) is the unrolling of a time-invariant system, and non-autonomy is implemented by having the
external input applied to each of the unrolled processing stages in the block through skip connections.
ResNets are similar to NAIS-Net except that ResNets are time-varying and only receive the external
input at the first layer of the block.

With this design, we can derive sufficient conditions under which the network exhibits input-dependent
equilibria that are globally asymptotically stable for every initial condition. More specifically, in
section 3, we prove that with tanh activations, NAIS-Net has exactly one input-dependent equilibrium,
while with ReLU activations it has multiple stable equilibria per input pattern. Moreover, the
NAIS-Net architecture allows not only the internal stability of the system to be analyzed but, more
importantly, the input-output stability — the difference between the representations generated by two
different inputs belonging to a bounded set will also be bounded at each stage of the unrolling.4

In section 4, we provide an efficient implementation that enforces the stability conditions for both fully-
connected and convolutional layers in the stochastic optimization setting. These implementations are
compared experimentally with ResNets on both CIFAR-10 and CIFAR-100 datasets, in section 5,
showing that NAIS-Nets achieve comparable classification accuracy with a much better generalization
gap. NAIS-Nets can also be 10 to 20 times deeper than the original ResNet without increasing the
total number of network parameters, and, by stacking several stable NAIS-Net blocks, models that
implement pattern-dependent processing depth can be trained without requiring any normalization at
each step (except when there is a change in layer dimensionality, to speed up training).

The next section presents a more formal treatment of the dynamical systems perspective of neural
networks, and a brief overview of work to date in this area.

2 Background and Related Work
Representation learning is about finding a mapping from input patterns to encodings that disentangle
the underlying variational factors of the input set. With such an encoding, a large portion of typical
supervised learning tasks (e.g. classification and regression) should be solvable using just a simple
model like logistic regression. A key characteristic of such a mapping is its invariance to input
transformations that do not alter these factors for a given input5. In particular, random perturbations
of the input should in general not be drastically amplified in the encoding. In the field of control

3The DenseNet architecture [29, 22] is non-autonomous, but time-varying.
4In the supplementary material, we also show that these results hold both for shared and unshared weights.
5Such invariance conditions can be very powerful inductive biases on their own: For example, requiring

invariance to time transformations in the input leads to popular RNN architectures [45].

2

theory, this property is central to stability analysis which investigates the properties of dynamical
systems under which they converge to a single steady state without exhibiting chaos [25, 42, 39].

In machine learning, stability has long been central to the study of recurrent neural networks
(RNNs) with respect to the vanishing [19, 4, 37], and exploding [9, 2, 37] gradient problems,
leading to the development of Long Short-Term Memory [20] to alleviate the former. More recently,
general conditions for RNN stability have been presented [52, 24, 31, 47] based on general insights
related to Matrix Norm analysis. Input-output stability [25] has also been analyzed for simple
RNNs [41, 26, 16, 38].

Recently, the stability of deep feed-forward networks was more closely investigated, mostly due
to adversarial attacks [44] on trained networks. It turns out that sensitivity to (adversarial) input
perturbations in the inference process can be avoided by ensuring certain conditions on the spectral
norms of the weight matrices [7, 49]. Additionally, special properties of the spectral norm of weight
matrices mitigate instabilities during the training of Generative Adversarial Networks [35].

Almost all successfully trained VDNNs [20, 18, 40, 6] share the following core building block:

x(k + 1) = x(k) + f (x(k), θ(k)) , 1 ≤ k ≤ K. (1)

That is, in order to compute a vector representation at layer k + 1 (or time k + 1 for recurrent
networks), additively update x(k) with some non-linear transformation f(·) of x(k) which depends
on parameters θ(k). The reason usual given for why Eq. (1) allows VDNNs to be trained is that the
explicit identity connections avoid the vanishing gradient problem.

The semantics of the forward path are however still considered unclear. A recent interpretation is that
these feed-forward architectures implement iterative inference [13, 23]. This view is reinforced by
observing that Eq. (1) is a forward Euler discretization [1] of the ordinary differential equation (ODE)
ẋ(t) = f(x(t),Θ) if θ(k) ≡ Θ for all 1 ≤ k ≤ K in Eq. (1). This connection between dynamical
systems and feed-forward architectures was recently also observed by several other authors [48].
This point of view leads to a large family of new network architectures that are induced by various
numerical integration methods [34]. Moreover, stability problems in both the forward as well the
backward path of VDNNs have been addressed by relying on well-known analytical approaches
for continuous-time ODEs [15, 5]. In the present paper, we instead address the problem directly in
discrete-time, meaning that our stability result is preserved by the network implementation. With the
exception of [33], none of this prior research considers time-invariant, non-autonomous systems.

Conceptually, our work shares similarities with approaches that build network according to iterative
algorithms [14, 51] and recent ideas investigating pattern-dependent processing time [12, 46, 10].

3 Non-Autonomous Input-Output Stable Nets (NAIS-Nets)
This section provides stability conditions for both fully-connected and convolutional NAIS-Net layers.
We formally prove that NAIS-Net provides a non-trivial input-dependent output for each iteration k
as well as in the asymptotic case (k →∞). The following dynamical system:

x(k + 1) = x(k) + hf (x(k), u, θ) , x(0) = 0, (2)

is used throughout the paper, where x ∈ Rn is the latent state, u ∈ Rm is the network input, and
h > 0. For ease of notation, in the remainder of the paper the explicit dependence on the parameters,
θ, will be omitted.

Fully Connected NAIS-Net Layer. Our fully connected layer is defined by

x(k + 1) = x(k) + hσ

(
Ax(k) +Bu+ b

)
, (3)

where A ∈ Rn×n and B ∈ Rn×m are the state and input transfer matrices, and b ∈ Rn is a bias.
The activation σ ∈ Rn is a vector of (element-wise) instances of an activation function, denoted as
σi with i ∈ {1, . . . , n}. In this paper, we only consider the hyperbolic tangent, tanh, and Rectified
Linear Units (ReLU) activation functions. Note that by setting B = 0, and the step h = 1 the original
ResNet formulation is obtained.

Convolutional NAIS-Net Layer. The architecture can be easily extended to Convolutional Net-
works by replacing the matrix multiplications in Eq. (3) with a convolution operator:

X(k + 1) = X(k) + hσ

(
C ∗X +D ∗ U + E

)
. (4)

3

Consider the case of NC channels. The convolutional layer in Eq. (4) can be rewritten, for each latent
map c ∈ {1, 2, . . . , NC}, in the equivalent form:

Xc(k + 1) = Xc(k) + hσ

NC∑
i

Cc
i ∗Xi(k) +

NC∑
j

Dc
j ∗ U j + Ec

 , (5)

where: Xi(k) ∈ RnX×nX is the layer state matrix for channel i, U j ∈ RnU×nU is the layer input data
matrix for channel j (where an appropriate zero padding has been applied) at layer k, Cc

i ∈ RnC×nC

is the state convolution filter from state channel i to state channel c, Dc
j is its equivalent for the input,

and Ec is a bias. The activation, σ, is still applied element-wise. The convolution for X has a fixed
stride s = 1, a filter size nC and a zero padding of p ∈ N, such that nC = 2p+ 1.6

Convolutional layers can be rewritten in the same form as fully connected layers (see proof of Lemma
1 in the supplementary material). Therefore, the stability results in the next section will be formulated
for the fully connected case, but apply to both.

Stability Analysis. Here, the stability conditions for NAIS-Nets which were instrumental to their
design are laid out. We are interested in using a cascade of unrolled NAIS blocks (see Figure 1),
where each block is described by either Eq. (3) or Eq. (4). Since we are dealing with a cascade of
dynamical systems, then stability of the entire network can be enforced by having stable blocks [25].

The state-transfer Jacobian for layer k is defined as:

J(x(k), u) =
∂x(k + 1)

∂x(k)
= I + h

∂σ(∆x(k))

∂∆x(k)
A, (6)

where the argument of the activation function, σ, is denoted as ∆x(k). Take an arbitrarily small
scalar σ > 0 and define the set of pairs (x, u) for which the activations are not saturated as:

P =

{
(x, u) :

∂σi(∆x(k))

∂∆xi(k)
≥ σ, ∀i ∈ [1, 2, . . . , n]

}
. (7)

Theorem 1 below proves that the non-autonomuous residual network produces a bounded output
given a bounded, possibly noisy, input, and that the network state converges to a constant value as the
number of layers tends to infinity, if the following stability condition holds:
Condition 1. For any σ > 0, the Jacobian satisfies:

ρ̄ = sup
(x,u)∈P

ρ(J(x, u)), s.t. ρ̄ < 1, (8)

where ρ(·) is the spectral radius.

The steady states, x̄, are determined by a continuous function of u. This means that a small change in
u cannot result in a very different x̄. For tanh activation, x̄ depends linearly on u, therefore the block
needs to be unrolled for a finite number of iterations, K, for the mapping to be non-linear. That is not
the case for ReLU, which can be unrolled indefinitely and still provide a piece-wise affine mapping.

In Theorem 1, the Input-Output (IO) gain function, γ(·), describes the effect of norm-bounded input
perturbations on the network trajectory. This gain provides insight as to the level of robust invariance
of the classification regions to changes in the input data with respect to the training set. In particular,
as the gain is decreased, the perturbed solution will be closer to the solution obtained from the
training set. This can lead to increased robustness and generalization with respect to a network that
does not statisfy Condition 1. Note that the IO gain, γ(·), is linear, and hence the block IO map is
Lipschitz even for an infinite unroll length. The IO gain depends directly on the norm of the state
transfer Jacobian, in Eq. (8), as indicated by the term ρ̄ in Theorem 1.7

Theorem 1. (Asymptotic stability for shared weights)
If Condition 1 holds, then NAIS-Net with ReLU or tanh activations is Asymptotically Stable with
respect to input dependent equilibrium points. More formally:

x(k)→ x̄ ∈ Rn, ∀x(0) ∈ X ⊆ Rn, u ∈ Rm. (9)

The trajectory is described by ‖x(k)− x̄‖ ≤ ρ̄k‖x(0)− x̄‖ , where ‖ · ‖ is a suitable matrix norm.
6 If s ≥ 0, then x can be extended with an appropriate number of constant zeros (not connected).
7see supplementary material for additional details and all proofs, where the untied case is also covered.

4

Algorithm 1 Fully Connected Reprojection
Input: R ∈ Rñ×n, ñ ≤ n, δ = 1 − 2ε, ε ∈
(0, 0.5).

if ‖RTR‖F > δ then

R̃←
√
δ R√
‖RTR‖F

else
R̃← R

end if
Output: R̃

Algorithm 2 CNN Reprojection
Input: δ ∈ RNC, C ∈ RnX×nX×NC×NC , and
0 < ε < η < 1.
for each feature map c do

δ̃c ← max

(
min

(
δc, 1− η

)
,−1 + η

)
C̃c

icentre ← −1− δ̃c
if
∑

j 6=icentre

∣∣Cc
j

∣∣ > 1− ε− |δ̃c| then

C̃c
j ←

(
1− ε− |δ̃c|

)
Cc

j∑
j 6=icentre |Cc

j |
end if

end for
Output: δ̃, C̃

Figure 2: Proposed algorithms for enforcing stability.

In particular:

• With tanh activation, the steady state x̄ is independent of the initial state, and it is a linear function
of the input, namely, x̄ = A−1Bu. The network is Globally Asymptotically Stable.

With ReLU activation, x̄ is given by a continuous piecewise affine function of x(0) and u. The
network is Locally Asymptotically Stable with respect to each x̄ .

• If the activation is tanh, then the network is Globally Input-Output (robustly) Stable for any
additive input perturbation w ∈ Rm. The trajectory is described by:

‖x(k)− x̄‖ ≤ ρ̄k‖x(0)− x̄‖+ γ(‖w‖), with γ(‖w‖) = h
‖B‖

(1− ρ̄)
‖w‖. (10)

where γ(·) is the input-output gain. For any µ ≥ 0, if ‖w‖ ≤ µ then the following set is robustly
positively invariant (x(k) ∈ X ,∀k ≥ 0):

X = {x ∈ Rn : ‖x− x̄‖ ≤ γ(µ)} . (11)

• If the activation is ReLU, then the network is Globally Input-Output practically Stable. In other
words, ∀k ≥ 0 we have:

‖x(k)− x̄‖ ≤ ρ̄k‖x(0)− x̄‖+ γ(‖w‖) + ζ. (12)
The constant ζ ≥ 0 is the norm ball radius for x(0)− x̄.

4 Implementation
In general, an optimization problem with a spectral radius constraint as in Eq. (8) is hard [24]. One
possible approach is to relax the constraint to a singular value constraint [24] which is applicable
to both fully connected as well as convolutional layer types [49]. However, this approach is only
applicable if the identity matrix in the Jacobian (Eq. (6)) is scaled by a factor 0 < c < 1 [24]. In this
work we instead fulfil the spectral radius constraint directly.

The basic intuition for the presented algorithms is the fact that for a simple Jacobian of the form
I + M , M ∈ Rn×n, Condition 1 is fulfilled, if M has eigenvalues with real part in (−2, 0) and
imaginary part in the unit circle. In the supplemental material we prove that the following algorithms
fulfill Condition 1 following this intuition. Note that, in the following, the presented procedures are
to be performed for each block of the network.

Fully-connected blocks. In the fully connected case, we restrict the matrix A to by symmetric and
negative definite by choosing the following parameterization for them:

A = −RTR− εI, (13)
where R ∈ Rn×n is trained, and 0 < ε� 1 is a hyper-parameter. Then, we propose a bound on the
Frobenius norm, ‖RTR‖F . Algorithm 1, performed during training, implements the following8:

8The more relaxed condition δ ∈ (0, 2) is sufficient for Theorem 1 to hold locally (supplementary material).

5

0 8 16 24
Layer index (k)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

C
ro

ss
-E

nt
ro

py

NAIS-Net
ResNet-SH-STABLE
ResNet-SH-NA
ResNet-SH
ResNet-SH-NA-BN

ResNet-SH-BN
ResNet-NA
ResNet
ResNet-NA-BN
ResNet-BN

0 20 40 60 80 100
Layer index (k)

0

1

2

3

4

5

6

A
ct

iv
at

io
n

va
lu

e

class0
class1
class2
class3
class4
class5
class6
class7
class8
class9

Figure 3: Single neuron trajectory and convergence. (Left) Average loss of NAIS-Net with different
residual architectures over the unroll length. Note that both RESNET-SH-STABLE and NAIS-Net satisfy
the stability conditions for convergence, but only NAIS-Net is able to learn, showing the importance of non-
autonomy. Cross-entropy loss vs processing depth. (Right) Activation of a NAIS-Net single neuron for input
samples from each class on MNIST. Trajectories not only differ with respect to the actual steady-state but also
with respect to the convergence time.

Theorem 2. (Fully-connected weight projection)
Given R ∈ Rn×n, the projection R̃ =

√
δ R√
‖RTR‖F

, with δ = 1 − 2ε ∈ (0, 1), ensures that

A = −R̃T R̃− εI is such that Condition 1 is satisfied for h ≤ 1 and therefore Theorem 1 holds.

Note that δ = 2(1− ε) ∈ (0, 2) is also sufficient for stability, however, the δ from Theorem 2 makes
the trajectory free from oscillations (critically damped), see Figure 3. This is further discussed in
Appendix.

Convolutional blocks. The symmetric parametrization assumed in the fully connected case can
not be used for a convolutional layer. We will instead make use of the following result:
Lemma 1. The convolutional layer Eq. (4) with zero-padding p ∈ N, and filter size nC = 2p+ 1

has a Jacobian of the form Eq. (6). with A ∈ Rn2
XNC×n2

XNC . The diagonal elements of this matrix,
namely, An2

Xc+j,n2
Xc+j , 0 ≤ c < NC , 0 ≤ j < n2X are the central elements of the (c + 1)-th

convolutional filter mapping Xc+1(k), into Xc+1(k + 1), denoted by Cc
icentre

. The other elements in
row n2Xc+ j, 0 ≤ c < NC , 0 ≤ j < n2X are the remaining filter values mapping to X(c+1)(k + 1).

To fulfill the stability condition, the first step is to set Cc
icentre

= −1 − δc, where δc is trainable
parameter satisfying |δc| < 1− η, and 0 < η � 1 is a hyper-parameter. Then we will suitably bound
the∞-norm of the Jacobian by constraining the remaining filter elements. The steps are summarized
in Algorithm 2 which is inspired by the Gershgorin Theorem [21]. The following result is obtained:
Theorem 3. (Convolutional weight projection)
Algorithm 2 fulfils Condition 1 for the convolutional layer, for h ≤ 1, hence Theorem 1 holds.

Note that the algorithm complexity scales with the number of filters. A simple design choice for the
layer is to set δ = 0, which results in Cc

icentre
being fixed at −19.

5 Experiments
Experiments were conducted comparing NAIS-Net with ResNet, and variants thereof, using both
fully-connected (MNIST, section 5.1) and convolutional (CIFAR-10/100, section 5.2) architectures to
quantitatively assess the performance advantage of having a VDNN where stability is enforced.

5.1 Preliminary Analysis on MNIST
For the MNIST dataset [32] a single-block NAIS-Net was compared with 9 different 30-layer ResNet
variants each with a different combination of the following features: SH (shared weights i.e. time-
invariant), NA (non-autonomous i.e. input skip connections), BN (with Batch Normalization), Stable

9Setting δ = 0 removes the need for hyper-parameter η but does not necessarily reduce conservativeness as
it will further constrain the remaining element of the filter bank. This is further discussed in the supplementary.

6

(stability enforced by Algorithm 1). For example, RESNET-SH-NA-BN refers to a 30-layer ResNet
that is time-invariant because weights are shared across all layers (SH), non-autonomous because
it has skip connections from the input to all layers (NA), and uses batch normalization (BN). Since
NAIS-Net is time-invariant, non-autonomous, and input/output stable (i.e. SH-NA-STABLE), the
chosen ResNet variants represent ablations of the these three features. For instance, RESNET-SH-NA
is a NAIS-Net without I/O stability being enforced by the reprojection step described in Algorithm 1,
and RESNET-NA, is a non-stable NAIS-Net that is time-variant, i.e non-shared-weights, etc. The
NAIS-Net was unrolled for K = 30 iterations for all input patterns. All networks were trained using
stochastic gradient descent with momentum 0.9 and learning rate 0.1, for 150 epochs.

Results. Test accuracy for NAIS-NET was 97.28%, while RESNET-SH-BN was second best with
96.69%, but without BatchNorm (RESNET-SH) it only achieved 95.86% (averaged over 10 runs).

After training, the behavior of each network variant was analyzed by passing the activation, x(i),
though the softmax classifier and measuring the cross-entropy loss. The loss at each iteration describes
the trajectory of each sample in the latent space: the closer the sample to the correct steady state the
closer the loss to zero (see Figure 3). All variants initially refine their predictions at each iteration
since the loss tends to decreases at each layer, but at different rates. However, NAIS-Net is the
only one that does so monotonically, not increasing loss as i approaches 30. Figure 3 shows how
neuron activations in NAIS-Net converge to different steady state activations for different input
patterns instead of all converging to zero as is the case with RESNET-SH-STABLE, confirming the
results of [15]. Importantly, NAIS-Net is able to learn even with the stability constraint, showing that
non-autonomy is key to obtaining representations that are stable and good for learning the task.

NAIS-Net also allows training of unbounded processing depth without any feature normalization
steps. Note that BN actually speeds up loss convergence, especially for RESNET-SH-NA-BN (i.e.
unstable NAIS-Net). Adding BN makes the behavior very similar to NAIS-Net because BN also
implicitly normalizes the Jacobian, but it does not ensure that its eigenvalues are in the stability
region.

5.2 Image Classification on CIFAR-10/100
Experiments on image classification were performed on standard image recognition benchmarks
CIFAR-10 and CIFAR-100 [27]. These benchmarks are simple enough to allow for multiple runs to
test for statistical significance, yet sufficiently complex to require convolutional layers.

Setup. The following standard architecture was used to compare NAIS-Net with ResNet10: three
sets of 18 residual blocks with 16, 32, and 64 filters, respectively, for a total of 54 stacked blocks.
NAIS-Net was tested in two versions: NAIS-NET1 where each block is unrolled just once, for a total
processing depth of 108, and NAIS-NET10 where each block is unrolled 10 times per block, for
a total processing depth of 540. The initial learning rate of 0.1 was decreased by a factor of 10 at
epochs 150, 250 and 350 and the experiment were run for 450 epochs. Note that each block in the
ResNet of [17] has two convolutions (plus BatchNorm and ReLU) whereas NAIS-Net unrolls with a
single convolution. Therefore, to make the comparison of the two architectures as fair as possible by
using the same number of parameters, a single convolution was also used for ResNet.

Results. Table 5.2 compares the performance on the two datasets, averaged over 5 runs. For
CIFAR-10, NAIS-Net and ResNet performed similarly, and unrolling NAIS-Net for more than one
iteration had little affect. This was not the case for CIFAR-100 where NAIS-NET10 improves over
NAIS-NET1 by 1%. Moreover, although mean accuracy is slightly lower than ResNet, the variance
is considerably lower. Figure 4 shows that NAIS-Net is less prone to overfitting than a classic ResNet,
reducing the generalization gap by 33%. This is a consequence of the stability constraint which
imparts a degree of robust invariance to input perturbations (see Section 3). It is also important to
note that NAIS-Net can unroll up to 540 layers, and still train without any problems.

5.3 Pattern-Dependent Processing Depth
For simplicity, the number of unrolling steps per block in the previous experiments was fixed. A
more general and potentially more powerful setup is to have the processing depth adapt automatically.
Since NAIS-Net blocks are guaranteed to converge to a pattern-dependent steady state after an
indeterminate number of iterations, processing depth can be controlled dynamically by terminating
the unrolling process whenever the distance between a layer representation, x(i), and that of the

10https://github.com/tensorflow/models/tree/master/official/resnet

7

https://github.com/tensorflow/models/tree/master/official/resnet

MODEL CIFAR-10 CIFAR-100
TRAIN/TEST TRAIN/TEST

RESNET 99.86±0.03 97.42 ± 0.06
91.72±0.38 66.34 ± 0.82

NAIS-NET1 99.37±0.08 86.90 ± 1.47
91.24±0.10 65.00 ± 0.52

NAIS-NET10 99.50±0.02 86.91 ± 0.42
91.25±0.46 66.07 ± 0.24

Figure 4: CIFAR Results. (Left) Classification accuracy on the CIFAR-10 and CIFAR-100 datasets averaged
over 5 runs. Generalization gap on CIFAR-10. (Right) Dotted curves (training set) are very similar for the
two networks but NAIS-Net has a considerably lower test curve (solid).

(a) frog (b) bird

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

(c) ship (d) airplane
Figure 5: Image samples with corresponding NAIS-Net depth. The figure shows samples from CIFAR-10
grouped by final network depth, for four different classes. The qualitative differences evident in images inducing
different final depths indicate that NAIS-Net adapts processing systematically according characteristics of the
data. For example, “frog” images with textured background are processed with fewer iterations than those with
plain background. Similarly, “ship” and “airplane” images having a predominantly blue color are processed
with lower depth than those that are grey/white, and “bird” images are grouped roughly according to bird
size with larger species such as ostriches and turkeys being classified with greater processing depth. A higher
definition version of the figure is made available in the supplementary materials.

immediately previous layer, x(i − 1), drops below a specified threshold. With this mechanism,
NAIS-Net can determine the processing depth for each input pattern. Intuitively, one could speculate
that similar input patterns would require similar processing depth in order to be mapped to the same
region in latent space. To explore this hypothesis, NAIS-Net was trained on CIFAR-10 with an
unrolling threshold of ε = 10−4. At test time the network was unrolled using the same threshold.

Figure 5 shows selected images from four different classes organized according to the final network
depth used to classify them after training. The qualitative differences seen from low to high depth
suggests that NAIS-Net is using processing depth as an additional degree of freedom so that, for a
given training run, the network learns to use models of different complexity (depth) for different types
of inputs within each class. To be clear, the hypothesis is not that depth correlates to some notion of
input complexity where the same images are always classified at the same depth across runs.

6 Conclusions
We presented NAIS-Net, a non-autonomous residual architecture that can be unrolled until the latent
space representation converges to a stable input-dependent state. This is achieved thanks to stability

8

