
A Complete details: Deep learning a binary similarity function

We consider a new unsupervised problem of learning a binary similarity function (BSF) that predicts
whether two examples from a given problem should belong to the same cluster (i.e., have the same
class label). Formally, a problem is specified by a set X of data and meta-features φ. The goal is
to learn a classifier f(x, x′, φ) ∈ {0, 1} that takes two examples x, x′ ∈ X and the corresponding
problem meta-features φ, and predicts 1 if the input pair would belong to the same cluster (or have
the same class labels).

In our experiments, we take Euclidean dataX ⊆ Rd (each problem may have different dimensionality
d), and the meta-features φ = Σ(X) consist of the covariance matrix of the unlabeled data. We
restricted our experiments to the 146 datasets with at most 1000 examples and 10 features. We
normalized each dataset to have zero mean and unit variance along every coordinate (hence, every
diagonal element in the covariance matrix was set to 1).

We randomly sampled pairs of examples from each dataset to form meta-training and meta-test sets
as described in the following section. For each pair, we concatenated the features to create data
with 20 features (padding examples with fewer than 10 features with zeros). We then computed the
empirical covariance matrix of the dataset, and vectorized the entries of the covariance matrix on and
above the leading diagonal to obtain an additional 55 covariance features. All pairs sampled from the
same dataset shared these covariance features, and thus we obtained a 75-dimensional feature vector
per pair. Moreover, we derived a new binary label dataset in the following way. We assigned a label 1
to the pairs formed by combining examples belonging to the same class, and 0 to others.

A.0.1 Sampling pairs to form meta-train and meta-test datasets

We formed a partition of the new datasets by randomly assigning each dataset to one of the two
categories with equal probability. Each dataset in the first category was used to sample data pairs
for both the meta-training and the meta-internal test (meta-IT) datasets, while the second category
did not contribute any training data and was exclusively used to generate only the meta-external test
(meta-ET) dataset.

We constructed meta-training pairs by randomly sampling pairs from each dataset in the first category.
In order to mitigate the bias resulting from the variability in size of the different datasets, we restricted
the number of pairs sampled from each dataset to at most 2500. Likewise, we obtained the meta-IT
dataset by randomly sampling each dataset subject to at most 2500 pairs. Specifically, we randomly
shuffled each dataset belonging to the first category, and used the first half (or 2500 examples,
whichever was fewer) of the dataset for the meta-training data, and the following indices for the meta-
IT data, again subject to maximum 2500 instances. This procedure ensured a disjoint intersection
between the meta-training and the meta-IT data. Note that combining thousands of examples from
each of hundreds of problems yields hundreds of thousands of examples, thereby turning small data
into big data. This provides a means of making DNNs naturally applicable to data sets that might
have otherwise been too small.

We created the meta-ET data using datasets belonging to the second category. Again, we sampled
at most 2500 examples from each dataset in the second category. We emphasize that the datasets
in the second category did not contribute any training data for our experiments. We performed 10
independent experiments to obtain multiple partitions of the datasets into two categories, and repeated
the aforementioned procedure to prepare 10 separate (meta-training, meta-IT, meta-ET) triplets. This
resulted in the following (average size +/- standard deviation) statistics for dataset sizes:

meta-training and meta-IT : 1.73× 105 ± 1.07× 104

meta-ET : 1.73× 105 ± 1.19× 104

In order to ensure symmetry of the binary similarity function, we introduced an additional meta-
training pair for each meta-training pair in the meta-training set: in this new pair, we swapped the
order of the feature vectors of the instances while replicating the covariance features of the underlying
dataset that contributed the two instances (note that since the covariance features were symmetric,
they carried over unchanged).

12



A.0.2 Training neural models

For each meta-training set, we trained an independent deep net model with 4 hidden layers having
100, 50, 25, and 12 neurons respectively over just 10 epochs, and used batches of size 250 each. We
updated the parameters of the model via the Adadelta [28] implementation of the stochastic gradient
descent (SGD) procedure supplied with the Torch library3 with the default setting of the parameters,
specifically, interpolation parameter equal to 0.9 and no weight decay. We trained the model via the
standard negative log-likelihood criterion (NLL). We employed ReLU non-linearity at each hidden
layer but the last one, where we invoked the log-softmax function.

We tested our trained models on meta-IT and meta-ET data. For each feature vector in meta-IT
(respectively meta-ET), we noted down the predicted same class probability. We added the predicted
same class probability for the feature vector obtained with flipped order, as described earlier for the
feature vectors in the meta-training set. We predicted the instances in the corresponding pair to be in
the same cluster if the average of these two probabilities exceeded 0.5, otherwise we segregated them.

A.0.3 Results

We compared the meta approach to a hypothetical majority rule that had prescience about the class
distribution. As the name suggests, the majority rule predicted all pairs to have the majority label.That
is, on each problem separately, we determined whether 1 (same class) or 0 (different class) was more
accurate; and provided the baseline the advantage of this knowledge for each problem, even though it
normally wouldn’t be available at classification time. This information about the distribution of the
labels was not made accessible to our meta-algorithm.

Fig. 4 shows the average fraction of similarity pairs correctly identified relative to the corresponding
pairwise ground truth relations on the two test sets, and the corresponding standard deviations
across the 10 independent (meta-training, meta-IT, meta-ET) collections. Clearly, the meta approach
outperforms the majority rule on meta-IT, illustrating the benefits of the meta approach in a multi-task
transductive setting. More interesting, still, is the significant improvement exhibited by the meta
method on meta-ET, despite having its category precluded from contributing any data for training.
The result clearly demonstrates the benefits of leveraging archived supervised data for informed
decision making in unsupervised settings such as binary similarity prediction.

3See https://github.com/torch/torch7 .

13

https://github.com/torch/torch7

	Complete details: Deep learning a binary similarity function
	Sampling pairs to form meta-train and meta-test datasets
	Training neural models
	Results



