
Appendix

A Proof of Proposition 1

We first start by rewriting the expected reward function J(✓) as:
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where we have first taken the expectation with respect to all histories conditioned on a given number
of events and then taken the expectation with respect to the number of events. Then, we can compute
the gradient r✓J(✓) as follows:
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where we have used that r✓f(✓)
f(✓) = r✓ log f(✓) and
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B Proof of Proposition 2

We first start by rewriting the penalized expected reward function Jr(✓) as:
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where we have just used the linearity of the expectation. Then, we can use Proposition 1 and the
chain rule to compute the gradient r✓Jr(✓):
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C Sampling event times from the intensity �⇤
✓(t)

Immediately after taking an action at time ti, the agent has to determine the time of the next action
ti+1 by sampling from the intensity function �⇤

✓(t) given by Eq. 5. However, if a feedback event
arrives at time s < ti+1, i.e., the feedback event arrives before the agent has performed her next
action, then the intensity function �⇤

✓(t) will need to be updated and the time ti+1 will not be a valid
sample from the updated intensity. To overcome this difficulty, we design the following procedure,
which to the best of our knowledge, is novel in the context of temporal point processes. Recall that
the intensity function of the action events was

�⇤
✓(t) = exp(b� + Vhhi) exp(!t(t� ti)) (11)
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In other words, we write �⇤
✓(t) = c.e!t(t�ti) and c changes due to an arrival of an event. So, we

can state our problem as the following more general problem of sampling from a partially known
intensity function:

�(t) =

⇢
c1e�!(t�ti) if t < s
c2e�!(t�ti) otherwise,

(12)

where the parameters c1 is known to us at time ti but s, c2 are revealed to us only at time s, i.e.,
if our sampled time is greater than s. Due to this, we cannot sample from the above intensity
using simple rejection sampling or the superposition property of Poisson processes, as previous
work [27, 34]. Instead, at a high level, we solve the problem by first sampling a uniform random
variable u ⇠ U [0, 1] and then using it to calculate ti+1 = CDF�1

1 (u | c1, ti), where CDF1(t | c1, ti)
denotes the cumulative distribution function of the next event time. Here, we are using inverse
transform sampling under the assumption that the intensity function is defined completely using c1

only. Then, we wait until the earlier of either ti+1, when we accept the sample, or s, in which case the
parameters c2 are revealed to us. With the full knowledge of the intensity function, we can now refine
our sample ti+1  CDF�1

2 (t | c1, ti, c2, s) re-using the same u that we had originally sampled.

To be able to perform the above procedure in an efficient manner, we should be able to express
CDF�1

1 (t | c1, ti) and CDF�1
2 (t | c1, ti, c2, s) analytically. Perhaps surprisingly, we can indeed

express both functions analytically for our parametrized intensity function, given by Eq. 12, i.e.,
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Notice that Eq. 14 is the same as Eq. 13, if our uniform sample had been u0 = 1 � 1�u
Q , and

we had started the sampling process at time s instead of time ti with parameters c2, !. Using
this insight, we can easily generalize this sampling mechanism to account for an arbitrary number
of feedback events occurring between two actions of the agent. Algorithm 2 summarizes our
sampling algorithm, where COMPUTEC1 and COMPUTEC2 compute the current values of c1 and c2,
respectively, WAITUNTILNEXTFEEDBACK(t) sets a flag e to True if a feedback event (s, z) happens
before time t. Remarkably, given a cut-off time T , the algorithm only needs to sample |AT | times
from a uniform distribution and perform O(|HT |) computations.

Finally, note that, in the above procedure, there is a possibility that the inverse CDF functions may
not be completely defined on the domain [0, 1]. This would mean that the agent’s MTPP may go
extinct, i.e., there may be a finite probability of the agent not taking an action after time ti at all. In
such cases, we assume that the next action time is beyond our episode horizon T , but we will save
the original u and will keep calculating the inverse CDF using it as, due to the non-linear dependence
of the parameters on the history, the samples may become finite again.

D Experimental details

We carried out all our experiments using TensorFlow 1.4.1 with DynamicRNN API and we im-
plemented stochastic gradient descent (SGD) using the Adam optimizer, which achieved good
performance in practice, as shown in Figure 5. Therein, we had to specify eight hyperparameters: (i)
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Algorithm 2: It returns the next action time
1: Input: Time of previous action t0, history Ht0 up to t0, cut-off time T
2: Output: Next action time t
3: c1  COMPUTEC1(Ht0)
4: t CDF�1

1 (u | c1, t
0)

5: while t < T do
6: (e, s, z) WAITUNTILNEXTFEEDBACK(t)
7: if e == True then
8: Ht0  Ht0 [ {(s, z)}
9: c1  COMPUTEC1(Ht0), c2  COMPUTEC2(Ht0)

10: t CDF�1
2 (u | c1, t

0, c2, s)
11: else
12: return t
13: break
14: end if
15: end while
16: return t

Application Nb Ne T lr Di Dh ql qm

Spaced repetition 5000 32 14 days 0.02
1+2i·10�3 8 8 10�2 5 · 10�3

Smart broadcasting 1000 16 It varies across users 10�2

1+i·10�4 8 8 0.33 (100) –

Table 1: Hyperparameter values used in the implementation of our method for smart broadcasting
and spaced repetition. In smart broadcasting, ql = 0.33 for top-1 inverse chronological ordering and
ql = 100 for average rank inverse chronological ordering.

Nb – the number of batches, (ii) Ne – the number of episodes in each batch, (iii) T – the time length
of each episode, (iv) lr– the learning rate, (v) Di – the dimension of vectors W•, b•’s in the input
layer, (vi) Dh – the dimension of the hidden state hi, (vii) ql – the value of the regularizer coefficient
for intensity function, (viii) qm – the value of the regularizer coefficient for mark distribution. Note
that, the dimensions of the other trainable parameters Wh,W1, ..,W4 and bh in the hidden layer
depend on Di and V� and V y

c in the output layer depend on Dh, which we selected using cross
validation. The values for both applications—spaced repetition and smart broadcasting —are given
in Table 1.

We run the spaced repetition experiments using a Tesla K80 GPU on a machine with 32 cores and
500GB RAM. With this configuration, for episodes with up to ⇠2000 events, the training process
takes ⇠5 seconds in average to run one iteration of SGD with batch size Ne = 32. We run the smart
broadcasting experiments on 2 CPU cores of an Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz and
20GB RAM. With this configuration, for feeds sorted algorithmically and episodes with up to ⇠250
events, the training process takes ⇠30 seconds to run one iteration of SGD with batch size Ne = 16.

E Student model

We use the student model proposed by Tabibian et al. [27], which is an improved version of the
student model proposed by Settles et al. [24]. To accurately predict the student’s ability to recall an
item, the model accounts for the item difficulty, the history of reviews (and recalls) by the student,
and the time since the last review.

More formally, the probability mi(t) that an item i, which was last reviewed at time ⌘, will be
successfully recalled at time t is given by:

mi(t) = e�ni(t)⇥(t�⌘) (15)

where ni(t) denotes the forgetting rate for the item i. The rate of forgetting an item depends on the
inherent difficulty of the item, denoted by ni(0), but also on whether the user was able to recall the
item successfully in the past or not. More specifically, the model has two additional parameters ↵
and �, which determine by how much the forgetting rate ought to change if the student recall, or fails
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Figure 5: The cost-to-go J(✓) calculated on the held-out test-set for different loss functions during
training falls quickly with the number of epochs.

to recall, the item on a review at time t, i.e.,

ni(t) =

⇢
(1� ↵)⇥ ni(t�) if recalled
(1 + �)⇥ ni(t�) if forgotten

(16)

In our work, the parameters ↵ and �, as well as the initial item difficulty ni(0), are learned using
historical learning data from Duolingo as in Tabibian et al. [27].

Note that we have picked this student model for its simplicity but relatively good predictive power, as
shown by previous work. Several other student models have also been proposed in literature, ranging
from exponential [7] to more recent multi-scale context models (MCM) [21], which are biologically
inspired and can explain a wider variety of learning phenomenon. Since our methodology is agnostic
to the choice of student model, it would be very interesting to experiment with other student models.

F Feed sorting algorithm

We use a feed sorting algorithm inspired by the in-case-you-missed-it feature, which is now prevalent
in a variety of social media sites, notably Twitter at the time of writing. Our sorting algorithm divides
each user’s feed in two sections: (i) a prioritized section at the top of the user’s feed, where messages
are sorted according to the priority of the user who posted the message, and (ii) a bulk section, where
messages are sorted in reverse chronological order. In the above, each post stays for a fixed time ⌧ in
the prioritized section and then it moves to the inverse chronological section. Moreover, note that if
the prioritized section contains several messages from the same user, they are sorted chronologically.

In our experiments, for each user’s feed, we set the priority of the users she follows inversely
proportional to her level of activity, as more active users will naturally appear on the feed while users
with sporadic posting activity may need more promotion, we set the priority of the user under our
control to be at the median priority among all users posting in the feed, and set ⌧ to be approximately
10% of the prioritized lifetime of posts ⌧ = 0.1T , where T is the time length of each sequence.

G Experiments on feeds sorted in reverse chronological order

We follow the same experimental setup as in Section 5, however, feeds are sorted in reverse chrono-
logical order. Figure 6 summarizes the results, where the number of messages posted by each method
is the same and all rewards are normalized by the reward achieved by a baseline user who follows a
uniform Poisson intensity. The results show that our method is able to achieve competitive results
in comparison with REDQUEEN, which is an online algorithm specially designed to minimize the
average rank in feeds sorted in reverse chronological order, and it outperforms Karimi’s method,
which is an offline algorithm specially designed to maximize the time at the top in feeds sorted in
reverse chronological order.
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Figure 6: Performance of our policy gradient method against REDQUEEN [34] and Karimi’s
method [12] on feeds sorted in reverse chronological order. Panels (a) and (b) show the aver-
age rank and time at the top, where the solid horizontal line shows the median value across users,
normalized with respect to the value achieved by a user who follows a uniform Poisson intensity, and
the box limits correspond to the 25%-75% percentiles. For the average rank, lower is better and, for
time at the top, higher is better. In both cases, the number of messages posted by each method is the
same.
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Figure 7: Comparing against piece-wise constant (wt = 0) baseline. In all figures, the solid horizontal
line shows the median value across users and the box limits correspond to the 25%-75% percentiles.
Panels (a) and (b) show the average rank and time at the top for the smart broadcasting experiments,
respectively. The values are normalized with respect to the value achieved by a user who follows a
uniform Poisson intensity. For the average rank, lower is better and, for time at the top, higher is better.
In both cases, the number of messages posted by each method is the same within a 10% tolerance.
Panel (c) shows the empirical recall probability at test time and Panel (d) shows the distribution of the
difficulty of items chosen by our method and the baseline version for the space repetition experiments.
The total number of learning events (across all items) are within 5% of each other in the two settings.

H Baseline with wt = 0

We also explored how our algorithm performs when we force the wt parameter to be zero, i.e., we
force the policy to be piece-wise constant between feedback and action events. To this end, we
retrained the neural networks by doing a parameter sweep over ql (and qm for the spaced repetition
experiments) and picked those values which arrived to roughly the same number of events as produced
by the policy learned by the network where we do not constraint wt = 0.

The resulting baseline is shown in Figure 7 for both the smart broadcasting (Figures 7a and 7b) and
spaced repetition experiments (Figures 7c and 7d). We see that forcing the policy to be piecewise
constant degrades performance and increases the variance in both settings, as expected. In the smart
broadcasting experiments, the mean (median) relative decrease in average rank is 33% (33%) for our
method TPPRL, while it is 28% (30%) for the wt = 0 baseline. Similarly, the increase in mean time
spent at the top is about 11% for our method (TPPRL), while it is 9% for the wt = 0 baseline. In the
spaced repetition experiment, we see that the mean recall falls from 38.9% to 37.9%. The difference
in policy learned is especially notable in Figure 7d where we see that the agent, when constrained to
wt = 0, learns to spread its attempts over a wider set of items, which have higher difficulty than the
items selected by the unconstrained policy.
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