
A Proof of Theorem 1

Without loss of generality, assume x
⇤ = 0. Then the linearized SGD is given by
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therefore x
⇤ is linear stable.

If d = 1, then H and ⌃ are scalars, and we have
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B A Synthetic Example

In this section, we provide an example for which SGD selects solutions that generalize worse than
GD.

In this example, the ground truth is f⇤(x) = 0. We are given two data points {(0, 0), (1, 0)} and we
attempt to fit them using a second order polynomial parameterized by f(x) := a0 +

p
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p
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Thus the empirical risk is given by
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with a1 � 0, a2 � 0. Here the global minima forms a one-dimensional manifold S = {(0, a, a) | a �
0}. Since the ground truth is f⇤(x) = 0, models with a smaller value of a generalizes better. For the
global minima, we have
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The positive eigenvalues of the two matrices are 1 and 1 + 1
2a , respectively. When a is very small,

they are very different from each other, i.e. the non-uniformity is large. They are close for large
values of a. According to our analysis, SGD favors the area where H2 ⇡ H1. This means that SGD
prefers solutions with larger values of a than GD.

(a) (b) (c)
Figure 10: Fitting two points {(0, 0), (1, 0)} with a second order polynomial. Both SGD and GD are initialized
from (a0, a1, a2) = (0, 0.1, 0.2) with learning rate ⌘ = 0.5. (a) The trajectories of GD and SGD. (b) The
solutions found by GD and SGD. (c) The histogram of a1 + a2 of the solutions found by GD and SGD, by
running the optimizers 100 times.

We run both GD and SGD starting from (0, 0.1, 0.2) with learning rate 0.5 for 500 steps. Figure 10
shows the results. In Figure 10a, we show the trajectory of GD and a realization of SGD. As we
can see, SGD is unstable in the area near the initialization. It suddenly jumps to another area where
a is larger, and converges gradually to a minimum with large a. In contrast, GD is stable in the
initialization area. It converges to a minimum close to the starting point (small a) without any jump.
Since SGD has randomness, we ran this experiment for 100 times, and report the histogram of
a1 + a2 = 2a of the converges results in Figure 10c. It clearly shows that with high probability SGD
picks up solutions farther from the ground truth than GD.

C Details of Experiments

Model Architecture

• FNN A 4-layer fully connected network, which is used to fit FashionMNIST. The architec-
ture is 784� 500� 500� 500� 10.

• VGG A VGG-style network with 8 convolutional layers, which is used to fit CIFAR-10.
The architecture is given in Table 4.

• ResNet A standard residual network with 14-layer convolutional layers. This network is
used to fit CIFAR-10.

Computation of the sharpness and non-uniformity In this paper, the largest eigenvalues of both
the Hessian matrix and the variance matrix are calculated by the power iteration, which is given as
follows
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Table 4: VGG network for CIFAR-10.

Layer Output size
input 32⇥ 32⇥ 3

3⇥ 3⇥ 16, conv 32⇥ 32⇥ 16
2⇥ 2, maxpool 16⇥ 16⇥ 16
3⇥ 3⇥ 16, conv 16⇥ 16⇥ 16
2⇥ 2, maxpool 8⇥ 8⇥ 16
3⇥ 3⇥, conv 8⇥ 8⇥ 32

2⇥ 2, maxpool 4⇥ 4⇥ 32
3⇥ 3⇥ 64, conv 4⇥ 4⇥ 64
2⇥ 2, maxpool 2⇥ 2⇥ 64
3⇥ 3⇥ 64, conv 2⇥ 2⇥ 64
2⇥ 2, maxpool 1⇥ 1⇥ 64
64! 128, linear 128
128! 2, linear 2

where v0 is sampled from N (0, I). In the experiments, we found that power iteration always converge
within tens of iterations.

The matrix vector product Avk is computed by using the auto-differential functionality provided by
PyTorch. For the Hessian matrix

H(x)v = r(vTrf(x)).

For the covariance matrix ⌃ = 1
n

P
i H

2
i �H

2, H2
i v can be computed by

w = r(vTrfi)
H

2
i v = r(wTrfi).

The above operation needs to construct a new computation graph for each sample, so the computation
of non-uniformity is very expensive.

13


