
Supplementary Material
MetaReg: Towards Domain Generalization using

Meta-Regularization

Bayesian interpretation

In this section, we provide a Bayesian interpretation to our MetaReg approach. Let θ1, θ2, . . . θp
represent the parameters of p task networks where each θi is trained on the dataset Di. The objective
is to find a representation θg by using the p task networks, that generalizes well to unseen domains.
The posterior density of the parameters θg directly depends on the data X and implicitly depends
on the k task networks {θi}ki=1. We introduce a latent variable φ in order to explicitly capture this
dependence:

P (θg|X, θ1, . . . , θp) =
∫
P (θg, φ|X, θ1, . . . , θp)dφ

=

∫
P (θg|X,φ, θ1, . . . θp)P (φ|X, θ1, . . . θp)dφ

=

∫
P (θg|X,φ)P (φ|X, θ1, . . . θp)dφ (1)

The last equation is the result of assuming that the domain specific parameters ({θi}ki=1) and the
domain general parameters (θg) are conditionally independent given the latent variables φ. Instead of
integrating Eq. 1 over φ which is intractable, we make an approximation that uses a point estimate
φ̂meta. This point estimate is obtained via the meta-regularization approach described in Section 3
of the main paper, hence avoiding the need to perform integration over φ. Minimizing the negative
logarithm of the posterior density can then be written as:

min
θg
− logP (θg|X, θ1, . . . θp) ≈ min

θg
− logP (θg|X, φ̂meta)

= min
θg
− logP (X|θg)− logP (θg|φ̂meta) (2)

where the last equality results from a direct application of Bayes’ rule. So, finding the domain general
parameters θg involves a two step training procedure: (1) Obtaining the point estimate φ̂meta using
meta learning and (2) Optimizing Eq. (2) using the learned regularizer parameters φ̂meta.

In our analysis, we made an approximation of replacing φ by the point estimate φmeta(the parameters
estimated using our meta-learning approach). The closeness of this approximation is a topic of future
research.

Effect of cross-domain generalization on the number of unrolling steps

In this experiment, we examine the effect of number of unrolling SGD updates in the meta learning
process (effect of l) on the cross-domain generalization performance. We performed experiments
with l = 1, 2, 3, 4, 5. The results are reported in Table 1. Even with a 1- step update, our method
achieves good performance improvement compared to the baseline. Performance keeps increasing
with increasing l and saturates after l = 3.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Table 1: Effect of number of unrolling steps
steps l Accuracy (in %)

1 83.41
2 83.57
3 83.71
4 83.66
5 83.72

All-but-one training

In the proposed framework, p task networks {Ti}pi=1 are used for training the meta-regularizer. Each
Ti is trained only on domain i, and the regularizer is trained with the objective that Ti must decrease
loss on domain j ∀(i, j). Instead of training Ti only on domain i, an alternative is to train Ti on
all domains other than i. The meta-regularizer can then be trained so that every Ti decreases loss
on domain i. This framework better mimics the domain generalization problem setup. In the two
datasets we considered in this paper (PACS and Sentiment classification), this all-but-training did not
gain any improvements over the training procedure in Algorithm 1 of the main paper. However, when
the number of domains are large, this might lead to more performance gains.

When does MetaReg work?

Understanding failure cases is important as it provides better insight on the workings of our approach.
We study this on Rotated-MNIST dataset – dataset with MNIST digits rotated by 0◦, 10◦, 20◦, 30◦

and 60◦, each of which correponds to one domain. The benefit of using this controlled dataset is that
it is easier to quantify domain shifts. For instance, 10◦ rotations are closer to 0◦ than 75◦. In our
experimets, the datasets corresponding to 0◦, 10◦ and 30◦ were used as source domains, and 20◦ and
60◦ rotations are used as target domains. A 2-layer MLP (784→ 128→ 128→ 10) is used as the
task network, no feature network was used. So, the entire network is regularized. Table 2 presents the
results of the cross-domain generalization on these two target domains.

Table 2: Effect of cross-domain generalization on the extent of domain shift
Method Accuracy (in %) on 20◦ domain Accuracy (in %) on 60◦ domain
Baseline 95.9 57.3
MetaReg 96.7 56.8

We observe that there is an improvement in the performance on the 20◦ domain and a drop in
performance on the 60◦ domain. This is because the 60◦ domain presents much larger domain shift
than the variations represented in the training set. This suggests that MetaReg works as long as the
shifts encountered in the test set is refective of the variations captured in the training domains.

Tuning hyperparameters

One important aspect of domain generalization and domain adaptation problems is the tuning of
hyperparameters. We need to tune our models without making use of the labeled samples in the target
domain. In all our experiments, we adopt the following cross-validation strategy: From the p source
domains, we choose a domain i as our target domain for cross-validation. We train our algorithm
on the remaining p− 1 source domains and test it on the ith domain. This is reperated for every i
in {1, 2, . . . p}. The hyper-parameter setting that gives the best average cross-validation accuracy is
then picked.

2

