
Supplementary Material

Adversarially Robust Optimization with Gaussian Processes

Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka and Volkan Cevher (NeurIPS 2018)

A Illustration of STABLEOPT’s Execution

The following figure gives an example of the selection procedure of STABLEOPT at two different
time steps:

(a) t = 5 (b) t = 15

Figure 4: An execution of STABLEOPT on the running example. We observe that after t = 15 steps,
x̃t obtained in Eq. 13 corresponds to x⇤

✏ .

The intermediate time steps are illustrated as follows:

(a) t = 6 (b) t = 7 (c) t = 8

(d) t = 9 (e) t = 10 (f) t = 11

(g) t = 12 (h) t = 13 (i) t = 14

12

B Proofs of Theoretical Results

B.1 Proof of Theorem 1 (upper bound)

Recall that x̃t is the point computed by STABLEOPT in (13) at time t, and that �t corresponds to the
perturbation obtained in STABLEOPT (Line 3) at time t. In the following, we condition on the event
in Lemma 1 holding true, meaning that ucbt and lcbt provide valid confidence bounds as per (15).
As stated in the lemma, this holds with probability at least 1 � ⇠.

By the definition of ✏-instant regret, we have

r✏(x̃t) = max
x2D

min
�2�✏(x)

f(x + �) � min
�2�✏(xt)

f(x̃t + �) (32)

 max
x2D

min
�2�✏(x)

f(x + �) � min
�2�✏(x̃t)

lcbt�1(x̃t + �) (33)

= max
x2D

min
�2�✏(x)

f(x + �) � lcbt�1(x̃t + �t) (34)

 max
x2D

min
�2�✏(x)

ucbt�1(x + �) � lcbt�1(x̃t + �t) (35)

= min
�2�✏(x̃t)

ucbt�1(x̃t + �) � lcbt�1(x̃t + �t) (36)

 ucbt�1(x̃t + �t) � lcbt�1(x̃t + �t) (37)

= 2�
1/2
t �t�1(x̃t + �t), (38)

where (33) and (35) follow from Lemma 1, (34) follows since �t minimizes lcbt�1 by definition,
(36) follows since x̃t maximizes the robust upper confidence bound by definition, (37) follows by
upper bounding the minimum by the specific choice �t 2 �✏(xt), and (38) follows since the upper
and lower confidence bounds are separated by 2�

1/2
t �t�1(·) according to their definitions in (12).

In fact, the analysis from (33) to (38) shows that the following pessimistic estimate of r✏(x̃t) is upper
bounded by 2�

1/2
t �t�1(x̃t + �t):

r✏(x̃t) = max
x2D

min
�2�✏(x)

f(x + �) � min
�2�✏(x̃t)

lcbt�1(x̃t + �). (39)

Unlike r✏(x̃t), the algorithm has the required knowledge to identify the value of t 2 {1, . . . , T} with
the smallest r✏(x̃t). Specifically, the first term on the right-hand side of (39) does not depend on t, so
the smallest r✏(x̃t) is achieved by x(T) defined in (17). Since the minimum is upper bounded by the
average, it follows that

r✏(x
(T))  r✏(x

(T)) (40)


1

T

TX

t=1

2�
1/2
t �t�1(x̃t + �t) (41)


2�

1/2
T

T

TX

t=1

�t�1(x̃t + �t), (42)

where (41) uses (38), and (42) uses the monotonicity of �T . Next, we claim that

2
TX

t=1

�t�1(x̃t + �t) 

p
C1T�T , (43)

where C1 = 8/ log(1 + �
�2). In fact, this is a special case of the well-known result [31, Lemma

5.4],4 which upper bounds the sum of posterior standard deviations of sampled points in terms of
the information gain �T (recall that STABLEOPT samples at location x̃t + �t). Combining (42)–(43)
and re-arranging, we deduce that after T satisfies T

�T �T
�

C1
⌘2 , the ✏-instant regret is at most ⌘, thus

completing the proof.

4More precisely, [31, Lemma 5.4] alongside an application of the Cauchy-Schwarz inequality as in [31].

13

0

f1 f2 f3 f4 f5

w

�⌘

�2⌘

min�2�✏(x) f3(x + �) = �2⌘

Width-2✏ region in which

Figure 6: Illustration of functions f1, . . . , f5 equal to a common function shifted by various multiples
of a given parameter w. In the ✏-stable setting, there is a wide region (shown in gray for the dark blue
curve f3) within which the perturbed function value equals �2⌘.

B.2 Proof of Theorem 2 (lower bound)

Our lower bounding analysis builds heavily on that of the non-robust optimization setting with
f 2 Fk(B) studied in [27], but with important differences. Roughly speaking, the analysis of [27] is
based on the difficulty of finding a very narrow “bump” of height 2⌘ in a function whose values are
mostly close to zero. In the ✏-stable setting, however, even the points around such a bump will be
adversarially perturbed to another point whose function value is nearly zero. Hence, all points are
essentially equally bad.

To overcome this challenge, we consider the reverse scenario: Most of the function values are still
nearly zero, but there exists a narrow valley of depth �2⌘. This means that every point within an
✏-ball around the function minimizer will be perturbed to the point with value �2⌘. Hence, a constant
fraction of the volume is still 2⌘-suboptimal, and it is impossible to avoid this region with high
probability unless the time horizon T is sufficiently large. An illustration is given in Figure 6, with
further details below.

We now proceed with the formal proof.

B.2.1 Preliminaries

Recall that we are considering an arbitrary given (deterministic) GP optimization algorithm. More
precisely, such an algorithm consists of a sequence of decision functions that return a sampling
location xt based on y1, . . . , yt�1, and an additional decision function that reports the final point x(T)

based on y1, . . . , yT . The points x1, . . . ,xt�1 (or x1, . . . ,xT) do not need to be treated as additional
inputs to these functions, since (x1, . . . ,xt�1) is a deterministic function of (y1, . . . , yt�1).

We first review several useful results and techniques from [27]:

• We lower bound the worst-case ✏-regret within Fk(B) by the ✏-regret averaged over a suitably-
designed finite collection {f1, . . . , fM} ⇢ Fk(B) of size M .

• We choose each fm(x) to be a shifted version of a common function g(x) on Rp. Specifically,
each fm(x) is obtained by shifting g(x) by a different amount, and then cropping to D = [0, 1]p.
For our purposes, we require g(x) to satisfy the following properties:

1. The RKHS norm in Rp is bounded, kgkk  B;
2. We have (i) g(x) 2 [�2⌘, 2⌘] with minimum value g(0) = �2⌘, and (ii) there is a “width”

w such that g(x) > �⌘ for all kxk1 � w;

3. There are absolute constants h0 > 0 and ⇣ > 0 such that g(x) = 2⌘
h0

h
�x⇣

w

�
for some

function h(z) that decays faster than any finite power of kzk�1
2 as kzk2 ! 1.

14

Letting g(x) be such a function, we construct the M functions by shifting g(x) so that each
fm(x) is centered on a unique point in a uniform grid, with points separated by w in each
dimension. Since D = [0, 1]p, one can construct

M =
j⇣ 1

w

⌘pk
(44)

such functions. We will use this construction with w ⌧ 1, so that there is no risk of having
M = 0, and in fact M can be assumed larger than any desired absolute constant.

• It is shown in [27] that the above properties5 can be achieved with

M =

$
r

q
log B(2⇡l2)p/4h(0)

2⌘

⇣⇡l

!p%
(45)

in the case of the SE kernel, and with

M =
j⇣

Bc3

⌘

⌘p/⌫k
(46)

in the case of the Matérn kernel, where

c3 :=
⇣

r

⇣

⌘⌫
·

c
�1/2
2

2(8⇡2)(⌫+p/2)/2

!
, (47)

and where c2 > 0 is an absolute constant. Note that these values of M amount to choosing w in
(44), and the assumption of sufficiently small ⌘

B in the theorem statement ensures that M � 1
(or equivalently w ⌧ 1) as stated above.

• Property 2 above ensures that the “robust” function value min�2�✏(x) f(x) equals �2⌘ for
any x whose ✏-neighborhood includes the minimizer xmin of f , while being �⌘ or higher for
any input whose entire ✏-neighborhood is separated from xmin by at least w. For w ⌧ 1 and
✏ < 0.5, a point of the latter type is guaranteed to exist, which implies

r✏(x) � ⌘ (48)

for any x whose ✏-neighborhood includes xmin.

In addition, we introduce the following notation, also used in [27]:

• The probability density function of the output sequence y = (y1, . . . , yT) when the un-
derlying function is fm is denoted by Pm(y). We also define f0(x) = 0 to be the zero
function, and define P0(y) analogously for the case that the optimization algorithm is run
on f0. Expectations and probabilities (with respect to the noisy observations) are similarly
written as Em, Pm, E0, and P0 when the underlying function is fm or f0. On the other hand,
in the absence of a subscript, E[·] and P[·] are taken with respect to the noisy observations
and the random function f drawn uniformly from {f1, . . . , fM} (recall that we are lower
bounding the worst case by this average).

• Let {Rm}
M
m=1 be a partition of the domain into M regions according the above-mentioned

uniform grid, with fm taking its minimum value of �2⌘ in the centre of Rm. Moreover, let
jt be the index at time t such that xt falls into Rjt ; this can be thought of as a quantization
of xt.

• Define the maximum (absolute) function value within a given region Rj as

v
j
m := max

x2Rj

|fm(x)|, (49)

and the maximum KL divergence to P0 within the region as

D
j
m := max

x2Rj

D(P0(·|x)kPm(·|x)), (50)

where Pm(y|x) is the distribution of an observation y for a given selected point x under the
function fm, and similarly for P0(y|x).

5Here g(x) plays the role of �g(x) in [27] due to the discussion at the start of this appendix, but otherwise
the construction is identical.

15

• Let Nj 2 {0, . . . , T} be a random variable representing the number of points from Rj that
are selected throughout the T rounds.

Next, we present several useful lemmas. The following well-known change-of-measure result,
which can be viewed as a form of Le Cam’s method, has been used extensively in both discrete and
continuous bandit problems.
Lemma 2. [1, p. 27] For any function a(y) taking values in a bounded range [0, A], we have

��Em[a(y)] � E0[a(y)]
��  A dTV(P0, Pm) (51)

 A

p
D(P0kPm), (52)

where dTV(P0, Pm) = 1
2

R
RT |P0(y) � Pm(y)| dy is the total variation distance.

We briefly remark on some slight differences here compared to [1, p. 27]. There, only Em[a(y)] �
E0[a(y)] is upper bounded in terms of dTV(P0, Pm), but one easily obtains the same upper bound on
E0[a(y)] �Em[a(y)] by interchanging the roles of P0 and Pm. The step (52) follows from Pinsker’s

inequality, dTV(P0, Pm) 

q
D(P0kPm)

2 , and by upper bounding 1p
2

 1 to ease the notation.

The following result simplifies the divergence term in (52).
Lemma 3. [27, Eq. (44)] Under the preceding definitions, we have

D(P0kPm) 

MX

j=1

E0[Nj]D
j
m. (53)

The following well-known property gives a formula for the KL divergence between two Gaussians.
Lemma 4. [27, Eq. (36)] For P1 and P2 being Gaussian with means (µ1, µ2) and a common
variance �

2, we have

D(P1kP2) =
(µ1 � µ2)2

2�2
. (54)

Finally, we have the following technical result regarding the “needle-in-haystack” type function
constructed above.
Lemma 5. [27, Lemma 7] The functions {fm}

M
m=1 corresponding to (45)–(46) are such that the

quantities v
j
m satisfy

PM
m=1(v

j
m)2 = O(⌘2) for all j.

B.2.2 Analysis of the average ✏-stable regret

Let Jbad(m) be the set of j such that all x 2 Rj yield min�2�✏(x) f(x + �) = �2⌘ when the true
function is fm, and define Rbad(m) = [j2Jbad(m)Rj . By the ✏-regret lower bound in (48), we have

Em[r✏(x
(T))] � ⌘Pm[x(T)

2 Rbad(m)] (55)

� ⌘

✓
P0[x

(T)
2 Rbad(m)] �

p
D(P0kPm)

◆
(56)

� ⌘

✓
P0[x

(T)
2 Rbad(m)] �

vuut
MX

j=1

E0[Nj]D
j
m

◆
, (57)

where (56) follows from Lemma 2 with a(y) = 1{x(T)
2 Rbad(m)} and A = 1 (recall that x(T)

is a function of y = (y1, . . . , yT)), and (57) follows from Lemma 3. Averaging over m uniform on
{1, . . . , M}, we obtain

E[r✏(x
(T))] � ⌘

✓
1

M

MX

m=1

P0[x
(T)

2 Rbad(m)] �
1

M

MX

m=1

vuut
MX

j=1

E0[Nj]D
j
m

◆
. (58)

We proceed by bounding the two terms separately.

16

• We first claim that
1

M

MX

m=1

P0[x
(T)

2 Rbad(m)] � C1 (59)

for some C1 > 0. To show this, it suffices to prove that any given x(T)
2 D is in at least a

constant fraction of the Rbad(m) regions, of which there are M . This follows from the fact that
the ✏-ball centered at xm,min = arg minx2D fm(x) takes up a constant fraction of the volume
of D, where the constant depends on both the stability parameter ✏ and the dimension p. A
small caveat is that because the definition of Rbad insists that the every point in the region Rj

is within distance ✏ of xm,min, the left-hand side of (59) may be slightly below the relevant
ratio of volumes above. However, since Theorem 2 assumes that ⌘

B is sufficiently small, the
choices of M in (45) and (46) ensure that M is sufficiently large for this “quantization” effect
to be negligible.

• For the second term in (58), we claim that

1

M

MX

m=1

vuut
MX

j=1

E0[Nj]D
j
m  C2

⌘

�

r
T

M
(60)

for some C2 > 0. To see this, we write

1

M

MX

m=1

vuut
MX

j=1

E0[Nj]D
j
m

= O

✓
1

�

◆
·

1

M

MX

m=1

vuut
MX

j=1

E0[Nj](v
j
m)2 (61)

 O

✓
1

�

◆
·

vuut 1

M

MX

m=1

MX

j=1

E0[Nj](v
j
m)2 (62)

= O

✓
1

�

◆
·

vuut 1

M

MX

j=1

E0[Nj]

✓ MX

m=1

(vj
m)2

◆
(63)

= O

✓
⌘

p
M�

◆
·

vuut
MX

j=1

E0[Nj] (64)

= O

✓ p
T⌘

p
M�

◆
, (65)

where (61) follows since the divergence D(P0(·|x)kPm(·|x)) associated with a point x having
value v(x) is v(x)2

2�2 (cf., (54)), (62) follows from Jensen’s inequality, (64) follows from Lemma
5, and (65) follows from

P
j Nj = T .

Substituting (59) and (60) into (58), we obtain

E[r✏(x
(T))] � ⌘

⇣
C1 � C2

⌘

�

r
T

M

⌘
, (66)

which implies that the regret is lower bounded by ⌦(⌘) unless T = ⌦
�

M�2

⌘2

�
. Substituting M from

(45) and (46), we deduce that the conditions on T in the theorem statement are necessary to achieve
average regret E[r✏(x(T))] = O(⌘) with a sufficiently small implied constant.

B.2.3 From average to high-probability regret

Recall that we are considering functions whose values lie in the range [�2⌘, 2⌘], implying that
r✏(x(T))  4⌘. Letting T⌘ be the lower bound on T derived above for achieving average regret

17

O(⌘) (i.e., we have E[r
(T⌘)
✏] = ⌦(⌘)), it follows from the reverse Markov inequality (i.e., Markov’s

inequality applied to the random variable 4⌘ � r
(T⌘)
✏) that

P[r✏(x
(T⌘)) � c⌘] �

⌦(⌘) � c⌘

4⌘ � c⌘
(67)

for any c > 0 sufficiently small for the numerator and denominator to be positive. The right-hand
side is lower bounded by a constant for any such c, implying that the probability of achieving ✏-regret
at most c⌘ cannot be arbitrarily close to one. By renaming c⌘ as ⌘

0, it follows that in order to achieve
some target ✏-stable regret ⌘

0 with probability sufficiently close to one, a lower bound of the same
form as the average regret bound holds. In other words, the conditions on T in the theorem statement
remain necessary also for the high-probability regret.

We emphasize that Theorem 2 concerns the high-probability regret when “high probability” means
sufficiently close to one as a function of ✏, p, and the kernel parameters (but still constant with respect
to T and ⌘). We do not claim a lower bound under any particular given success probability (e.g.,
⌘-optimality with probability at least 3

4).

C Details on Variations from Section 4

We claim that the STABLEOPT variations and theoretical results outlined in Section 4 are in fact
special cases of Algorithm 1 and Theorem 1, despite being seemingly quite different. The idea behind
this claim is that Algorithm 1 and Theorem 1 allow for the “distance” function d(·, ·) to be completely
arbitrary, so we may choose it in rather creative/unconventional ways.

In more detail, we have the following:

• For the unknown parameter setting maxx2D min✓2⇥ f(x, ✓), we replace x in the original
setting by the concatenated input (x, ✓), and set

d((x, ✓), (x0
, ✓0)) = kx � x0

k2. (68)

If we then set ✏ = 0, we find that the input x experiences no perturbation, whereas ✓ may be
perturbed arbitrarily, thereby reducing (7) to maxx2D min✓2⇥ f(x, ✓) as desired.

• For the robust estimation setting, we again use the concatenated input (x, ✓). To avoid over-
loading notation, we let d0(✓, ✓0) denote the distance function (applied to ✓ alone) adopted for
this case in Section 4. We set

d((x, ✓), (x0
, ✓0)) =

⇢
d0(✓, ✓0) x = x0

1 x 6= x0
.

(69)

Due to the second case, the input x experiences no perturbation, since doing so would violate
the distance constraint of ✏. We are then left with x = x0 and d0(✓, ✓0)  ✏, as required.

• For the grouped setting maxG2G minx2G f(x), we adopt the function

d(x,x0) = 1{x and x0 are in different groups}, (70)

and set ✏ = 0. Considering the formulation in (7), we find that any two inputs x and x0 yield
the same ✏-stable objective function, and hence, reporting a point x is equivalent to reporting its
group G. As a result, (7) reduces to the desired formulation maxG2G minx2G f(x).

The variations of STABLEOPT described in (20)–(26), as well as the corresponding theoretical results
outlined in Section 4, follow immediately by substituting the respective choices of d(·, ·) and ✏ above
into Algorithm 1 and Theorem 1. It should be noted that in the first two examples, the definition of �t

in (14) is modified to take the maximum over not only x1, · · · ,xt, but also ✓1, · · · , ✓t.

D Lake Data Experiment

We consider an application regarding environmental monitoring of inland waters, using a data set
containing 2024 in situ measurements of chlorophyll concentration within a vertical transect plane,
collected by an autonomous surface vessel in Lake Zürich. This data set was considered in previous

18

0 500 1000
Length [m]

�20

�15

�10

�5

0

D
ep

th
[m

]

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

(a) Chlorophyll concentration

0 500 1000
Length [m]

�20

�15

�10

�5

0

D
ep

th
[m

]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) Robust objective

0 20 40 60 80 100 120
t

0.0

0.2

0.4

0.6

�-
re

gr
et

StableOpt
GP-UCB
MaxiMin-GP-UCB
Stable-GP-UCB
Stable-GP-Random

(c) ✏-regret

Figure 7: Experiment on the Zürich lake dataset; In the later rounds STABLEOPT is the only method
that reports a near-optimal ✏-stable point.

works such as [7, 15] to detect regions of high concentration. In these works, the goal was to locate
all regions whose concentration exceeds a pre-defined threshold.

Here we consider a different goal: We seek to locate a region of a given size such that the concentration
throughout the region is as high as possible (in the max-min sense). This is of interest in cases
where high concentration only becomes relevant when it is spread across a sufficiently wide area. We
consider rectangular regions with different pre-specified lengths in each dimension:

�✏D,✏L(x) = {x0
� x : x0

2 D, |xD � x
0
D|  ✏D \ |xL � x

0
L|  ✏L}, (71)

where x = (xD, xL) and x0 = (x0
D, x

0
L) indicate the depth and length, and we denote the correspond-

ing stability parameters by (✏D, ✏L). This corresponds to d(·, ·) being a weighted `1-norm.

We evaluate each algorithm on a 50 ⇥ 50 grid of points, with the corresponding values coming
from the GP posterior that was derived using the original data. We use the Matérn-5/2 ARD kernel,
setting its hyperparameters by maximizing the likelihood on a second (smaller) available dataset. The
parameters ✏D and ✏L are set to 1.0 and 100.0, respectively. The stability requirement changes the
global maximum and its location, as can be observed in Figure 7. The number of sampling rounds is
T = 120, and each algorithm is initialized with the same 10 random data points and corresponding
observations. The performance is averaged over 100 different runs, where every run corresponds
to a different random initialization. In this experiment, STABLE-GP-UCB achieves the smallest
✏-regret in the early rounds, while in the later rounds STABLEOPT is the only method that reports a
near-optimal ✏-stable point.

19

	Introduction
	Problem Setup
	Proposed Algorithm and Theory
	Upper bound on -regret
	Lower bound on -regret

	Variations of StableOpt
	Experiments
	Conclusion
	Illustration of StableOpt's Execution
	Proofs of Theoretical Results
	Proof of Theorem 1 (upper bound)
	Proof of Theorem 2 (lower bound)
	Preliminaries
	Analysis of the average -stable regret
	From average to high-probability regret

	Details on Variations from Section 4
	Lake Data Experiment

