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A Appendix

This appendix is dedicated to proving the key results of this paper, namely Proposition 1 and Theorems
1 and 2, which describe the asymptotics of neural networks at initialization and during training.

We study the limit of the NTK as n1, ..., nL−1 →∞ sequentially, i.e. we first take n1 →∞, then
n2 →∞, etc. This leads to much simpler proofs, but our results could in principle be strengthened to
the more general setting when min(n1, ..., nL−1)→∞.

A natural choice of convergence to study the NTK is with respect to the operator norm on kernels:

‖K‖op = max
‖f‖pin≤1

‖f‖K = max
‖f‖pin≤1

√
Ex,x′ [f(x)TK(x, x′)f(x′)],

where the expectation is taken over two independent x, x′ ∼ pin. This norm depends on the input
distribution pin. In our setting, pin is taken to be the empirical measure of a finite dataset of distinct
samples x1, ..., xN . As a result, the operator norm of K is equal to the leading eigenvalue of the
NnL × NnL Gram matrix (Kkk′(xi, xj))k,k′<nL,i,j<N

. In our setting, convergence in operator
norm is hence equivalent to pointwise convergence of K on the dataset.

A.1 Asymptotics at Initialization

It has already been observed (12; 9) that the output functions fθ,i for i = 1, ..., nL tend to iid Gaussian
processes in the infinite-width limit.
Proposition 1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and in the
limit as n1, ..., nL−1 →∞ sequentially, the output functions fθ,k, for k = 1, ..., nL, tend (in law) to
iid centered Gaussian processes of covariance Σ(L), where Σ(L) is defined recursively by:

Σ(1)(x, x′) =
1

n0
xTx′ + β2

Σ(L+1)(x, x′) = Ef [σ(f(x))σ(f(x′))] + β2,

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L).
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Proof. We prove the result by induction. When L = 1, there are no hidden layers and fθ is a random
affine function of the form:

fθ(x) =
1
√
n0
W (0)x+ βb(0).

All output functions fθ,k are hence independent and have covariance Σ(1) as needed.

The key to the induction step is to consider an (L + 1)-network as the following composition: an
L-network Rn0 → RnL mapping the input to the pre-activations α̃(L)

i , followed by an elementwise
application of the nonlinearity σ and then a random affine map RnL → RnL+1 . The induction
hypothesis gives that in the limit as sequentially n1, ..., nL−1 →∞ the preactivations α̃(L)

i tend to
iid Gaussian processes with covariance Σ(L). The outputs

fθ,i =
1
√
nL

W
(L)
i α(L) + βb

(L)
i

conditioned on the values of α(L) are iid centered Gaussians with covariance

Σ̃(L+1)(x, x′) =
1

nL
α(L)(x; θ)Tα(L)(x′; θ) + β2.

By the law of large numbers, as nL →∞, this covariance tends in probability to the expectation

Σ̃(L+1)(x, x′)→ Σ(L+1)(x, x′) = Ef∼N (0,Σ(L))[σ(f(x))σ(f(x′))] + β2.

In particular the covariance is deterministic and hence independent of α(L). As a consequence,
the conditioned and unconditioned distributions of fθ,i are equal in the limit: they are iid centered
Gaussian of covariance Σ(L+1).

In the infinite-width limit, the neural tangent kernel, which is random at initialization, converges in
probability to a deterministic limit.

Theorem 1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and in the
limit as the layers width n1, ..., nL−1 →∞ sequentially, the NTK Θ(L) converges in probability to a
deterministic limiting kernel:

Θ(L) → Θ(L)
∞ ⊗ IdnL

.

The scalar kernel Θ
(L)
∞ : Rn0 × Rn0 → R is defined recursively by

Θ(1)
∞ (x, x′) = Σ(1)(x, x′)

Θ(L+1)
∞ (x, x′) = Θ(L)

∞ (x, x′)Σ̇(L+1)(x, x′) + Σ(L+1)(x, x′),

where
Σ̇(L+1) (x, x′) = Ef∼N(0,Σ(L)) [σ̇ (f (x)) σ̇ (f (x′))] ,

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L), and where
σ̇ denotes the derivative of σ.

Proof. The proof is again by induction. When L = 1, there is no hidden layer and therefore no limit
to be taken. The neural tangent kernel is a sum over the entries of W (0) and those of b(0):

Θkk′(x, x
′) =

1

n0

n0∑
i=1

n1∑
j=1

xix
′
iδjkδjk′ + β2

n1∑
j=1

δjkδjk′

=
1

n0
xTx′δkk′ + β2δkk′ = Σ(1)(x, x′)δkk′ .

Here again, the key to prove the induction step is the observation that a network of depth L+ 1 is
an L-network mapping the inputs x to the preactivations of the L-th layer α̃(L)(x) followed by a
nonlinearity and a random affine function. For a network of depth L+ 1, let us therefore split the
parameters into the parameters θ̃ of the first L layers and those of the last layer (W (L), b(L)).
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By Proposition 1 and the induction hypothesis, as n1, ..., nL−1 → ∞ the pre-activations α̃(L)
i are

iid centered Gaussian with covariance Σ(L) and the neural tangent kernel Θ
(L)
ii′ (x, x′) of the smaller

network converges to a deterministic limit:(
∂θ̃α̃

(L)
i (x; θ)

)T
∂θ̃α̃

(L)
i′ (x′; θ)→ Θ(L)

∞ (x, x′)δii′ .

We can split the neural tangent network into a sum over the parameters θ̃ of the first L layers and the
remaining parameters W (L) and b(L).

For the first sum let us observe that by the chain rule:

∂θ̃pfθ,k(x) =
1
√
nL

nL∑
i=1

∂θ̃p α̃
(L)
i (x; θ)σ̇(α̃

(L)
i (x; θ))W

(L)
ik .

By the induction hypothesis, the contribution of the parameters θ̃ to the neural tangent kernel
Θ

(L+1)
kk′ (x, x′) therefore converges as n1, ..., nL−1 →∞:

1

nL

nL∑
i,i′=1

Θ
(L)
ii′ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i′ (x′; θ)

)
W

(L)
ik W

(L)
i′k′

→ 1

nL

nL∑
i=1

Θ(L)
∞ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i (x′; θ)

)
W

(L)
ik W

(L)
ik′

By the law of large numbers, as nL →∞, this tends to its expectation which is equal to

Θ(L)
∞ (x, x′)Σ̇(L+1)(x, x′)δkk′ .

It is then easy to see that the second part of the neural tangent kernel, the sum over W (L) and b(L)

converges to Σ(L+1)δkk′ as n1, ..., nL →∞.

A.2 Asymptotics during Training

Given a training direction t 7→ dt ∈ F , a neural network is trained in the following manner: the
parameters θp are initialized as iid N (0, 1) and follow the differential equation:

∂tθp(t) =
〈
∂θpF

(L), dt

〉
pin

.

In this context, in the infinite-width limit, the NTK stays constant during training:

Theorem 2. Assume that σ is a Lipschitz, twice differentiable nonlinearity function, with bounded
second derivative. For any T such that the integral

∫ T
0
‖dt‖pindt stays stochastically bounded, as

n1, ..., nL−1 →∞ sequentially, we have, uniformly for t ∈ [0, T ],

Θ(L)(t)→ Θ(L)
∞ ⊗ IdnL

.

As a consequence, in this limit, the dynamics of fθ is described by the differential equation

∂tfθ(t) = Φ
Θ

(L)
∞ ⊗IdnL

(
〈dt, ·〉pin

)
.

Proof. As in the previous theorem, the proof is by induction on the depth of the network. When
L = 1, the neural tangent kernel does not depend on the parameters, it is therefore constant during
training.

For the induction step, we again split an L+ 1 network into a network of depth L with parameters
θ̃ and top layer connection weights W (L) and bias b(L). The smaller network follows the training
direction

d′t = σ̇
(
α̃(L)(t)

)( 1
√
nL

W (L)(t)

)T
dt

3



for i = 1, . . . , nL, where the function α̃(L)
i (t) is defined as α̃(L)

i (·; θ(t)). We now want to apply
the induction hypothesis to the smaller network. For this, we need to show that

∫ T
0
‖d′t‖pindt is

stochastically bounded as n1, . . . , nL →∞. Since σ is a c-Lipschitz function, we have that

‖d′t‖pin ≤ c‖
1
√
nL

W (L)(t)‖op‖dt‖pin .

To apply the induction hypothesis, we now need to bound ‖ 1√
nL
W (L)(t)‖op. For this, we use the

following lemma, which is proven in Appendix A.3 below:

Lemma 1. With the setting of Theorem 2, for a network of depth L + 1, for any ` = 1, . . . , L, we
have the convergence in probability:

lim
nL→∞

· · · lim
n1→∞

sup
t∈[0,T ]

‖ 1
√
n`

(
W (`)(t)−W (`)(0)

)
‖op = 0

From this lemma, to bound ‖ 1√
nL
W (L)(t)‖op, it is hence enough to bound ‖ 1√

nL
W (L)(0)‖op. From

the law of large numbers, we obtain that the norm of each of the nL+1 rows of W (L)(0) is bounded,
and hence that ‖ 1√

nL
W (L)(0)‖op is bounded (keep in mind that nL+1 is fixed, while n1, . . . , nL

grow).

From the above considerations, we can apply the induction hypothesis to the smaller network, yielding,
in the limit as n1, . . . , nL →∞ (sequentially), that the dynamics is governed by the constant kernel
Θ

(L)
∞ :

∂tα̃
(L)
i (t) =

1
√
nL

Φ
Θ

(L)
∞

(〈
σ̇
(
α̃

(L)
i (t)

)(
W

(L)
i (t)

)T
dt, ·

〉
pin

)
.

At the same time, the parameters of the last layer evolve according to

∂tW
(L)
ij (t) =

1
√
nL

〈
α

(L)
i (t), dt,j

〉
pin

.

We want to give an upper bound on the variation of the weights columns W (L)
i (t) and of the

activations α̃(L)
i (t) during training in terms of L2-norm and pin-norm respectively. Applying the

Cauchy-Schwarz inequality for each j, summing and using ∂t|| · || ≤ ||∂t · ||), we have

∂t

∥∥∥W (L)
i (t)−W (L)

i (0)
∥∥∥

2
≤ 1
√
nL
||α(L)

i (t)||pin ||dt||pin .

Now, observing that the operator norm of Φ
Θ

(L)
∞

is equal to ||Θ(L)
∞ ||op, defined in the introduction of

Appendix A, and using the Cauchy-Schwarz inequality, we get

∂t

∥∥∥α̃(L)
i (t)− α̃(L)

i (0)
∥∥∥
pin
≤ 1
√
nL

∥∥∥Θ(L)
∞

∥∥∥
op

∥∥∥σ̇ (α̃(L)
i (t)

)∥∥∥
∞

∥∥∥W (L)
i (t)

∥∥∥
2
‖dt‖pin ,

where the sup norm ‖·‖∞ is defined by ‖f‖∞ = supx |f(x)|.
To bound both quantities simultaneously, study the derivative of the quantity

A(t) = ||α(L)
i (0)||pin + c

∥∥∥α̃(L)
i (t)− α̃(L)

i (0)
∥∥∥
pin

+ ||W (L)
i (0)||2 +

∥∥∥W (L)
i (t)−W (L)

i (0)
∥∥∥

2
.

We have

∂tA(t) ≤ 1
√
nL

(
c2
∥∥∥Θ(L)
∞

∥∥∥
op

∥∥∥W (L)
i (t)

∥∥∥
2

+ ||α(L)
i (t)||pin

)
||dt||pin

≤ max{c2‖Θ(L)
∞ ‖op, 1}√
nL

‖dt‖pinA(t),
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where, in the first inequality, we have used that |σ̇| ≤ c and, in the second inequality, that the sum
‖W (L)

i (t)‖2 + ||α(L)
i (t)||pin is bounded by A(t). Applying Grönwall’s Lemma, we now get

A(t) ≤ A(0) exp

(
max{c2‖Θ(L)

∞ ‖op, 1}√
nL

∫ t

0

‖ds‖pinds

)
.

Note that ‖Θ(L)
∞ ‖op is constant during training. Clearly the value inside of the exponential converges

to zero in probability as nL →∞ given that the integral
∫ t

0
‖dt‖pinds stays stochastically bounded.

The variations of the activations
∥∥∥α̃(L)

i (t)− α̃(L)
i (0)

∥∥∥
pin

and weights
∥∥∥W (L)

i (t)−W (L)
i (0)

∥∥∥
2

are

bounded by c−1(A(t)−A(0)) andA(t)−A(0) respectively, which converge to zero at rateO
(

1√
nL

)
.

We can now use these bounds to control the variation of the NTK and to prove the theorem. To
understand how the NTK evolves, we study the evolution of the derivatives with respect to the
parameters. The derivatives with respect to the bias parameters of the top layer ∂

b
(L)
j
fθ,j′ are always

equal to δjj′ . The derivatives with respect to the connection weights of the top layer are given by

∂
W

(L)
ij
fθ,j′(x) =

1
√
nL

α
(L)
i (x; θ)δjj′ .

The pre-activations α̃(L)
i evolve at a rate of 1√

nL
and so do the activations α(L)

i . The summands

∂
W

(L)
ij
fθ,j′(x)⊗ ∂

W
(L)
ij
fθ,j′′(x

′) of the NTK hence vary at rate of n−3/2
L which induces a variation

of the NTK of rate 1√
nL

.

Finally let us study the derivatives with respect to the parameters of the lower layers

∂θ̃kfθ,j(x) =
1
√
nL

nL∑
i=1

∂θ̃k α̃
(L)
i (x; θ)σ̇

(
α̃

(L)
i (x; θ)

)
W

(L)
ij .

Their contribution to the NTK Θ
(L+1)
jj′ (x, x′) is

1

nL

nL∑
i,i′=1

Θ
(L)
ii′ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i′ (x′; θ)

)
W

(L)
ij W

(L)
i′j′ .

By the induction hypothesis, the NTK of the smaller network Θ(L) tends to Θ
(L)
∞ δii′ as

n1, ..., nL−1 →∞. The contribution therefore becomes

1

nL

nL∑
i=1

Θ(L)
∞ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i (x′; θ)

)
W

(L)
ij W

(L)
ij′ .

The connection weights W (L)
ij vary at rate 1√

nL
, inducing a change of the same rate to the whole sum.

We simply have to prove that the values σ̇(α̃
(L)
i (x; θ)) also change at rate 1√

nL
. Since the second

derivative of σ is bounded, we have that

∂t

(
σ̇
(
α̃

(L)
i (x; θ(t))

))
= O

(
∂tα̃

(L)
i (x; θ(t))

)
.

Since ∂tα̃
(L)
i (x; θ(t)) goes to zero at a rate 1√

nL
by the bound on A(t) above, this concludes the

proof.

It is somewhat counterintuitive that the variation of the activations of the hidden layers α(`)
i during

training goes to zero as the width becomes large1. It is generally assumed that the purpose of the
activations of the hidden layers is to learn “good” representations of the data during training. However
note that even though the variation of each individual activation shrinks, the number of neurons grows,
resulting in a significant collective effect. This explains why the training of the parameters of each
layer ` has an influence on the network function fθ even though it has asymptotically no influence on
the individual activations of the layers `′ for ` < `′ < L.

1As a consequence, the pre-activations stay Gaussian during training as well, with the same covariance Σ(`).
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A.3 A Priori Control during Training

The goal of this section is to prove Lemma 1, which is a key ingredient in the proof of Theorem 2.
Let us first recall it:

Lemma 1. With the setting of Theorem 2, for a network of depth L + 1, for any ` = 1, . . . , L, we
have the convergence in probability:

lim
nL→∞

· · · lim
n1→∞

sup
t∈[0,T ]

‖ 1
√
n`

(
W (`)(t)−W (`)(0)

)
‖op = 0

Proof. We prove the lemma for all ` = 1, . . . , L simultaneously, by expressing the variation of
the weights 1√

n`
W (`) and activations 1√

n`
α̃(`) in terms of ‘back-propagated’ training directions

d(1), . . . , d(L) associated with the lower layers and the NTKs of the corresponding subnetworks:

1. At all times, the evolution of the preactivations and weights is given by:

∂tα̃
(`) = ΦΘ(`)

(
< d

(`)
t , · >pin

)
∂tW

(`) =
1
√
n`

< α(`), d
(`+1)
t >pin ,

where the layer-wise training directions d(1), . . . , d(L) are defined recursively by

d
(`)
t =

dt if ` = L+ 1

σ̇
(
α̃(`)

) (
1√
n`
W (`)

)T
d

(`+1)
t if ` ≤ L,

and where the sub-network NTKs Θ(`) satisfy

Θ(1) =

[[
1
√
n0
α(0)

]T [
1
√
n0
α(0)

]]
⊗ Idn`

+ β2 ⊗ Idn`

Θ(`+1) =
1
√
n`
W (`)σ̇(α̃(`))Θ(`)σ̇(α̃(`))

1
√
n`
W (`)

+

[[
1
√
n`
α(`)

]T [
1
√
n`
α(`)

]]
⊗ Idn`

+ β2 ⊗ Idn`
.

2. Set w(k)(t) :=
∥∥∥ 1√

nk
W (k)(t)

∥∥∥
op

and a(k) (t) :=
∥∥∥ 1√

nk
α(k) (t)

∥∥∥
pin

. The identities of the

previous step yield the following recursive bounds:∥∥∥d(`)
t

∥∥∥
pin
≤ cw(`)(t)

∥∥∥d(`+1)
t

∥∥∥
pin

,

where c is the Lipschitz constant of σ. These bounds lead to∥∥∥d(`)
t

∥∥∥
pin
≤ cL+1−`

L∏
k=`

w(k)(t) ‖dt‖pin .

For the subnetworks NTKs we have the recursive bounds

‖Θ(1)‖op ≤ (a(0)(t))2 + β2.

‖Θ(`+1)‖op ≤ c2(w(`)(t))2‖Θ(`)‖op + (a(`)(t))2 + β2,

which lead to
‖Θ(`+1)‖op ≤ P

(
a(1), . . . , a(`), w(1), . . . , w(`)

)
,

where P is a polynomial which only depends on `, c, β and pin.
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3. Set

ã(k) (t) :=

∥∥∥∥ 1
√
nk

(
α̃(k) (t)− α̃(k) (0)

)∥∥∥∥
pin

w̃(k) (t) :=

∥∥∥∥ 1
√
nk

(
W (k) (t)−W (k) (0)

)∥∥∥∥
op

and define

A (t) =

L∑
k=1

a(k) (0) + cã(k) (t) + w(k) (0) + w̃(k) (t) .

Since a(k) (t) ≤ a(k) (0) + cã(k) (t) and w(k) (t) ≤ w(k) (0) + w̃(k) (t), controlling A (t)
will enable us to control the a(k) (t) and w(k) (t). Using the formula at the beginning of the
first step, we obtain

∂tã
(`) (t) ≤ 1

√
n`
‖Θ(`)(t)‖op‖d(`)

t ‖pin

∂tw̃
(`) (t) ≤ 1

√
n`
a(`) (t) ‖d(`+1)

t ‖pin .

This allows one to bound the derivative of A (t) as follows:

∂tA (t) ≤
L∑
`=1

c
√
n`
‖Θ(`)(t)‖op‖d(`)

t ‖pin +
1
√
n`
a(`) (t) ‖d(`+1)

t ‖pin .

Using the polynomial bounds on ‖Θ(`)(t)‖op and ‖d(`+1)
t ‖pin in terms of the a(k) and w(k)

for k = 1, . . . ` obtained in the previous step, we get that

∂tA (t) ≤ 1√
min {n1, . . . , nL}

Q
(
w(1) (t) , . . . , w(L) (t) , a(1) (t) , . . . , a(L) (t)

)
‖dt‖pin ,

where the polynomial Q only depends on L, c, β and pin and has positive coefficients. As a
result, we can use a(k) (t) ≤ a(k) (0) + cã(k) (t) and w(k) (t) ≤ w(k) (0) + w̃(k) (t) to get
the polynomial bound

∂tA (t) ≤ 1√
min {n1, . . . , nL}

Q̃ (A (t)) ‖dt‖pin .

4. Let us now observe that A (0) is stochastically bounded as we take the sequential limit
limnL→∞ · · · limn1→∞ as in the statement of the lemma. In this limit, we indeed have that
w(`)and a(`) are convergent: we have w(`) → 0, while a(`) converges by Proposition 1.

The polynomial control we obtained on the derivative of A (t) now allows one to use
(a nonlinear form of, see e.g. (5)) Grönwall’s Lemma: we obtain that A (t) stays uni-
formly bounded on [0, τ ] for some τ = τ (n1, . . . , nL) > 0, and that τ → T as
min (n1, . . . , nL) → ∞, owing to the 1√

min{1,...,nL}
in front of the polynomial. Since

A (t) is bounded, the differential bound on A (t) gives that the derivative ∂tA (t) converges
uniformly to 0 on [0, τ ] for any τ < T , and hence A (t)→ A (0). This concludes the proof
of the lemma.
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