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Figure 4: Learning curves of A3C for the 4 chosen learning rates (4e-4, 2e-4, le-4, Se-5) on the
Sokoban level generator.

A Network architecture and learning protocol

The network takes as input a 10x10x4 grid where the last dimension is for a binary encoding of the
different attributes (wall, man, goal, box), which is passed through 2 convolutional layers (4 x 4 with
64 channels, followed by 3 x 3 with 64 channels as well), followed by a fully connected layer of
512 ReLU units. The output layer provides logits for the 4 actions (up, down, left, right). Training is
performed using A3C [Mnih et al., 2016] with a reward function giving a reward of -0.1 per step, +1
per box on a goal and -1 for the converse action, and +10 for solving the level (all boxes on goals),
with a discount factor of 0.99; the optimizer used is RMSProp [Tieleman and Hinton, 2012] (no
momentum, epsilon 0.1, decay 0.99), with entropy regularization of 0.005. During training, at each
episode, the learner performs a single trajectory of length 100 (like multiTS(1, 100)), receives the
corresponding rewards, then moves on to the next episode. A single level is (very likely) never seen
twice during training. Similarly, it is very unlikely that a level of the 1000 test levels was seen during
training. We take the best performing network, which solves around 65% of the levels when sampling
a single sequence of actions. The network is trained for 3.5e9 steps (node expansions), which can
seem to be a lot, however notice that this is equivalent to fully searching a single level of Sokoban
(without state cuts) uniformly with 4 actions up to depth 16 (given that solutions are usually of depth
more than 30). The learning process was repeated for 4 learning rates (4e-4, 2e-4, le-4, 5e-5) (see
Fig. 4).

B Another universal restarting strategy for Las Vegas programs

We use the sequence’ of runtimes f(n) := A6519(n):
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1 if n is odd,

Foralln € Ny : f(n) := {Qf(n/g) 0.W.

It has the ‘fractal’ property that f(k2") = 2" f(k) (since f(k2") = 2f (k2" 1) = ... = 2" f(k2°)),
for k € Ny and n € Ny, and it follows that f(2") = 2™ and f(k2™) > 2™.

At iteration n, the Las Vegas program is run for f(n) steps. For all ¢t > 0, if f(n) > t, then it has
a probability at least ¢(¢) of halting, otherwise it does not halt and is forcibly stopped after f(n)
computations steps. Let ¢ := 218211 be the smallest power of 2 greater than or equal to ¢. Then
Lemma 8 below tells us that for ¢ < £ we have that f(kt + ¢) = f(c) < /2 < t, that is, between
two consecutive factors of £, f(n) < t.

Let phai(n) denote the probability that the algorithm halts exactly at the nth run, and take 1 < ¢ < i
and k£ > 0, then the expected number of computation steps L (sum of the lengths of the runs) before

*https://oeis.org/A006519.



halting is given by:
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not halting before run n

where pha(n) = 0 when f(n) < t, and ppa(n) = q(t) otherwise.
We restate Theorem 5 more precisely:

Theorem 7. For all distributions p over halting times, the expected runtime of the universal restarting
strategy based on A6519 is bounded by

t t
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o) < njnt + 15 (1 5 61
where ¢ is the cumulative distribution of p.

Proof of Theorems 5 and 7. At step n, if k is the number of past runs where f(m) > # (with m < n),
then H;:ll(l — pha(4)) = (1 — q(t))* then with 1 < ¢ < fandy := 1 — g(t):

— [¥*f(n) itn="ki+c (ie, f(n) <t)
Z {7 Fpt +v’““f(n) ifn=*ki+t,

Luniv (p )

n=0
i ifn =kt +c
— v pt+’yk+1tf(k+ 1) ifn==Fki+1.
where we used f((k + 1)f) = f(k + 1) (remembering that f is a power of 2) and Lemma 8 for

f(kt +¢) = f(c). Since f(n) = f(c) < t whenn = kit + ¢, we can decompose Ly (p) into the
steps where f(n) < t and the rest:
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where we used Lemma 13 on the last line with v = 1 — ¢(t). Finally, since i = 2Mog2t] < 9¢ and
q(t) > q(t) and [log, t] < log, t + 1:
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which proves the result. O

Lemma 8. For f =A6519, with k& € Ng,n € Ng,a € Ny,b € Ny and a2b < 27, and with a odd,
then

1
+ log, In 16 + log,, (t))

(k2™ + a2°) = f(a2°) = 2°.

Proof. Since a is odd, then so is k2" ~°+a, and so f(k2"+a2") = f(2°(k2" b+a)) = 20 f (k2" b+
a) = 2°. O



Hence, for all numbers between two adjacent factors of 27, f (k2" +¢) = f(c) < 2771,
Lemma 9. Forn € N; and f =A6519,
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Proof. If n > 1 and using Lemma 8 again at 2"~ !:
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Lemma 10. Let f =A6519, then for k € Ny, n € Ny, ¢ € Ng:
fle)=2" & k= (2c+1)2".
Proof. Since any number & can be uniquely written in the form k& = (2¢+1)2%, and f((2¢+1)2%) =
2°f(2¢+ 1) = 2* with a € Ny, then f(k) =2" < a=n. O

Lemma 11. Forv € [0,1),

Proof. Let h(z) := 2%4%" for z € R, then h/(x) = In(2)2%~>" (2% In~y + 1) where h/(x() = 0 for

the unique x such that 2%° = lnl + and since Iny < 0, we have that /() is positive for z < x
v

and negative for > x. Thus h is unimodal, and since furthermore h(x) is positive the sum can be
upper bounded by the integral of the continuous function plus its maximum:

Z h(n) < /OOO h(z)dz + max h(z),
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where we used integration by substitution. Adding the two terms finishes the proof. [

Lemma 12. Fory € [0,1) anda > 1:
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Proof. Let N = min {n € Ny : 'yzN < %} = {log2 log%—‘, then
25
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Extracting log, In 2 finishes the proof. O

Lemma 13. Let f =A6519 and v € [0, 1). Then
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Proof. Since f(n) is a power of 2 for all n € Ny, we regroup the runs by powers of 2:
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where we used Lemma 11 and Lemma 12 on the second to last line together with In % >1—~. O

Lemma 14. Fory € [0,1) and a > 1:
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Proof. For e > 0 and a > 1, it can be shown that (1 + £)* > 1 4 ae. Then, taking y := T

(I+e)*>14ae

which proves the result.
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