
Supplementary material

All numbered equations with yellow color box such as ( 1 ) are inherited from the main body of
manuscript.

1 Proof of Theorem 1

Theorem 1 The optimal objective p∗ to problem ( 2 ) is equal to the optimal objective p∗δ to problem
( 4 ).

Proof 1 As problem ( 4 ) is the relaxed version of problem ( 2 ), we must have p∗δ ≥ p∗.

Suppose x∗ = vec(X∗) is the optimal solution to problem ( 4 ). We recursively implement the
following procedure until there is no 1 in x∗. If x∗ia = 1, according to the doubly stochastic property,
the ith row and ath column elements other than (i, a) element would all be 0. We then remove all
the elements in A corresponding to node i in G1 and node a in G2. Finally we can reach a subset of
x and A such that each element in x is in the range [0, 1). Figure 1 schematically shows how this
procedure works from left to right.

However, due to the definition of function fδ , the affinity score over the remaining nodes becomes 0.
As A is non-negative, any 1 value assignment would result in affinity score no less than 0. Denote the
objective value of such assignment passign, then we have p∗δ ≤ passign. On the other hand, passign is
discrete, then we must have passign ≤ p∗.
In summary, we have p∗ = p∗δ . QED.

2 Proof of Theorem 2

Theorem 2 limθ→0 p
∗
θ = p∗δ

Proof 2 First we define two sets: C1 = {x|Hx = 1,x ∈ [0, 1]n
2}, C2 = {x|x ∈ [0, 1]n

2}. It’s
easy to observe that |p∗θ − p∗δ | ≤ p1, where p1 = argmaxx|h>θ Ahθ − h>δ Ahδ| subject to C1. This
observation is true because the gap between two separable optimal objectives must be no larger than
the maximal gap between the objectives.

We further define p2 = argmaxx|h>θ Ahθ − h>δ Ahδ| subject to C2. As C1 ⊂ C2, we must have
p1 ≤ p2. By rewriting the objective corresponding to p2 in the following way:∣∣∣∣∣∣

∑
i,j

Aijhθ(xi)hθ(xj)−
∑
i,j

Aijhδ(xi)hδ(xj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

Aij [((hθ(xi)− hδ(xi))hθ(xj) + (hθ(xj)− hδ(xj))hδ(xi)]

∣∣∣∣∣∣
Note A, hθ and hδ are all bounded. Additionally, hθ(xi) → hδ(xi) and hθ(xj) → hδ(xj) when
θ → 0 by the third property. Thus |p∗θ − p∗δ | ≤ p1 ≤ p2 → 0. QED.
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Figure 1: Procedure to remove 1 elements. Here the manipulation on a 6× 6 matrix is demonstrated
schematically. From left to right, we remove a 1 element and corresponding column and row in each
step. The rightmost matrix is mat(x†) with all elements in [0, 1).

3 Proof of Proposition 1

Proposition 1 For univariate SF hLap, hPoly, suppose p∗1 and p∗2 are the optimal objectives for ( 5 )
with θ1 and θ2, respectively. Then we have p∗1 ≥ p∗2 if 0 < θ2 < θ1.

Proof 3 This can be easily proved by showing hLap(x; θ2) < hLap(x; θ1) and hPoly(x; θ2) <
hPoly(x; θ1) when θ2 < θ1. QED.

4 Proof of Theorem 3

Theorem 3 Assume that affinity A is positive definite. If the univariate SF hθ(x) ≤ x on [0, 1], then
the global maxima of problem ( 2 ), which is discrete, must also be the global maxima of problem
( 5 ).

Proof 4 As shown in [1], whenever affinity A is positive definite, the global maximum of problem
( 3 ) is a permutation. In this case, the optimum to ( 3 ) is also optimum to ( 2 ). Denote y∗ the
optimal permutation to ( 3 ). As y∗ is doubly stochastic, it must also satisfy the same constraints in
problem ( 5 ). Let p1 be the objective of problem ( 5 ) w.r.t. y∗ – Note p1 is the optimal objective of
problem ( 3 ). Assume there exists an optima x∗θ 6= y∗ to problem ( 5 ) with corresponding objective
p2. As p2 is optimal, we have p2 ≥ p1. Let yθ = hθ(x

∗
θ). As hθ(x) ≤ x, we must have x∗θ ≥ yθ ≥ 0.

Denote p3 the objective score of ( 3 ) by substituting x∗θ . Since A is non-negative, x∗θ ≥ yθ and
x∗θ,yθ ≥ 0, we have p3 ≥ p2. In summary, p3 ≥ p1. However, p1 is the global optimal objective of
( 3 ). Thus the inequality leads to contradiction. The equality exists only when the global optimum of
( 5 ) is y∗. QED.

5 Proof of Proposition 2

Proposition 2 Assume affinity A is positive/negative semi-definite, then as long as the univariate SF
hθ is convex, the objective of ( 5 ) is convex/concave.

Proof 5 Consider problem ( 5 ), we prove this theorem by checking the property of the Hessian with
respect to x. As we have obtained the gradient 2GAhθ of the objective in ( 5 ) with respect to x, we
calculate the Hessian by taking the derivative once again. After some mathematical manipulations,
we have∇2x = 2AK, where

K = diag

([(
∂hθ
∂x1

)2

+ hθ(x1)
∂2hθ
∂x2

1

,

...,

(
∂hθ
∂xn2

)2

+ hθ(xn2)
∂2hθ
∂x2

n2

]> (1)

It is easy to show that (∂hθ/∂xi)2 and hθ(xi) are non-negative according to Definition 1. As hθ is
convex, its second order derivative must also be non-negative. Matrix K is positive semi-definite.
Thus the convexity/concavity of A is preserved after multiplying K. QED.
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6 Proof of Proposition 3

Proposition 3 Assume affinity matrix A is positive definite and univariate SF hθ is convex. The
optimal value to the following problem is:

Econv = max
x

h>θ A
†hθ (2)

Then there exists a permutation x∗, s.t. Econv−E(x∗) ≤ nλ where E(x∗) is the objective value w.r.t.
problem ( 5 ).

Proof 6 First for any convex univariate SF hθ in range [0, 1], we have hθ(x) ≤ x. Under the
assumption in the theorem, given x̂ the optima to problem ( 5 ), we can obtain an optimal discrete y

according to the sampling procedure in Theorem 1. The optimal objective of ( 5 ) can be written as:

Econv(y) =
∑

i6=j,a 6=b

Aij:abhθ(yia)hθ(yjb)+∑
i,a

(Aii:aa + λ)h2θ(yia)
(3)

Besides, by substituting y into problem ( 5 ) we obtain:

E(y) =
∑
i,j,a,b

Aij:abhθ(yia)hθ(yjb) (4)

By subtracting Equation (4) from (3) we have:

Econv(y)− E(y) = λ
∑
i,a

h2θ(yia) (5)

As mat(y) ∈ {0, 1}n2

is a permutation hence hθ(yia) = yia, we have λ
∑
i,a h

2
θ(yia) = nλ. Then

there exists at least one permutation x∗ satisfying the condition. QED.
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