
Online Learning with an Unknown Fairness Metric

Stephen Gillen* Christopher Jung† Michael Kearns‡ Aaron Roth§

September 17, 2018

Abstract

We consider the problem of online learning in the linear contextual bandits setting, but in
which there are also strong individual fairness constraints governed by an unknown similarity
metric. These constraints demand that we select similar actions or individuals with approxi-
mately equal probability [Dwork et al., 2012], which may be at odds with optimizing reward,
thus modeling settings where profit and social policy are in tension. We assume we learn about
an unknown Mahalanobis similarity metric from only weak feedback that identifies fairness
violations, but does not quantify their extent. This is intended to represent the interventions
of a regulator who “knows unfairness when he sees it” but nevertheless cannot enunciate a
quantitative fairness metric over individuals. Our main result is an algorithm in the adversar-
ial context setting that has a number of fairness violations that depends only logarithmically
on T , while obtaining an optimal O(

√
T) regret bound to the best fair policy.

*Department of Mathematics, University of Pennsylvania.
†Department of Computer and Information Sciences, University of Pennsylvania. Supported in part by a grant from

the Quattrone Center for the Fair Administration of Justice.
‡Department of Computer and Information Sciences, University of Pennsylvania.
§Department of Computer and Information Sciences, University of Pennsylvania. Supported in part by grants from

the DARPA Brandeis project, the Sloan Foundation, and NSF grants CNS-1513694 and CNS-1253345.

1 Introduction

The last several years have seen an explosion of work studying the problem of fairness in machine
learning. Yet there remains little agreement about what “fairness” should mean in different con-
texts. In broad strokes, the literature can be divided into two families of fairness definitions: those
aiming at group fairness, and those aiming at individual fairness.

Group fairness definitions are aggegrate in nature: they partition individuals into some col-
lection of protected groups (say by race or gender), specify some statistic of interest (say, positive
classification rate or false positive rate), and then require that a learning algorithm equalize this
quantity across the protected groups. On the other hand, individual fairness definitions ask for
some constraint that binds on the individual level, rather than only over averages of people. Of-
ten, these constraints have the semantics that “similar people should be treated similarly” Dwork
et al. [2012].

Individual fairness definitions have substantially stronger semantics and demands than group
definitions of fairness. For example, Dwork et al. [2012] lay out a compendium of ways in which
group fairness definitions are unsatisfying. Yet despite these weaknesses, group fairness defini-
tions are by far the most prevalent in the literature (see e.g. Kamiran and Calders [2012], Hajian
and Domingo-Ferrer [2013], Kleinberg et al. [2017], Hardt et al. [2016], Friedler et al. [2016], Za-
far et al. [2017], Chouldechova [2017] and Berk et al. [2017] for a survey). This is in large part
because notions of individual fairness require making stronger assumptions on the setting under
consideration. In particular, the definition from Dwork et al. [2012] requires that the algorithm
designer know a “task-specific fairness metric.”

Learning problems over individuals are also often implicitly accompanied by some notion of
merit, embedded in the objective function of the learning problem. For example, in a lending set-
ting we might posit that each loan applicant is either “creditworthy” and will repay a loan, or is
not creditworthy and will default — which is what we are trying to predict. Joseph et al. [2016a]
take the approach that this measure of merit — already present in the model, although initially
unknown to the learner — can be taken to be the similarity metric in the definition of Dwork
et al. [2012], requiring informally that creditworthy individuals have at least the same probability
of being accepted for loans as defaulting individuals. (The implicit and coarse fairness metric
here assigns distance zero between pairs of creditworthy individuals and pairs of defaulting in-
dividuals, and some non-zero distance between a creditworthy and a defaulting individual.) This
resolves the problem of how one should discover the “fairness metric”, but results in a notion of
fairness that is necessarily aligned with the notion of “merit” (creditworthiness) that we are trying
to predict.

However, there are many settings in which the notion of merit we wish to predict may be
different or even at odds with the notion of fairness we would like to enforce. For example, notions
of fairness aimed at rectifying societal inequities that result from historical discrimination can aim
to favor the disadvantaged population (say, in college admissions), even if the performance of the
admitted members of that population can be expected to be lower than that of the advantaged
population. Similarly, we might desire a fairness metric incorporating only those attributes that
individuals can change in principle (and thus excluding ones like race, age and gender), and
that further expresses what are and are not meaningful differences between individuals, outside
the context of any particular prediction problem. These kinds of fairness desiderata can still be
expressed as an instantiation of the definition from Dwork et al. [2012], but with a task-specific

1

fairness metric separate from the notion of merit we are trying to predict.
In this paper, we revisit the individual fairness definition from Dwork et al. [2012]. This

definition requires that pairs of individuals who are close in the fairness metric must be treated
“similarly” (e.g. in an allocation problem such as lending, served with similar probability). We
investigate the extent to which it is possible to satisfy this fairness constraint while simultane-
ously solving an online learning problem, when the underlying fairness metric is Mahalanobis
but not known to the learning algorithm, and may also be in tension with the learning problem.
One conceptual problem with metric-based definitions, that we seek to address, is that it may be
difficult for anyone to actually precisely express a quantitative metric over individuals — but they
nevertheless might “know unfairness when they see it.” We therefore assume that the algorithm
has access to an oracle that knows intuitively what it means to be fair, but cannot explicitly enun-
ciate the fairness metric. Instead, given observed actions, the oracle can specify whether they were
fair or not, and the goal is to obtain low regret in the online learning problem — measured with
respect to the best fair policy — while also limiting violations of individual fairness during the
learning process.

1.1 Our Results and Techniques

We study the standard linear contextual bandit setting. In rounds t = 1, . . . ,T , a learner observes
arbitrary and possibly adversarially selected d-dimensional contexts, each corresponding to one
of k actions. The reward for each action is (in expectation) an unknown linear function of the
contexts. The learner seeks to minimize its regret.

The learner also wishes to satisfy fairness constraints, defined with respect to an unknown
distance function defined over contexts. The constraint requires that the difference between the
probabilities that any two actions are taken is bounded by the distance between their contexts.
The learner has no initial knowledge of the distance function. Instead, after the learner makes its
decisions according to some probability distribution πt at round t, it receives feedback specifying
for which pairs of contexts the fairness constraint was violated. Our goal in designing a learner is
to simultaneously guarantee near-optimal regret in the contextual bandit problem (with respect to
the best fair policy), while violating the fairness constraints as infrequently as possible. Our main
result is a computationally efficient algorithm that guarantees this for a large class of distance
functions known as Mahalanobis distances (these can be expressed as d(x1,x2) = ||Ax1 −Ax2||2 for
some matrix A).
Theorem (Informal): There is a computationally efficient learning algorithm L in our setting that
guarantees that for any Mahalanobis distance, any time horizon T , and any error tolerance ε:

1. (Learning) With high probability, L obtains regret Õ
(
k2d2 log(T) + d

√
T
)

to the best fair pol-
icy (See Theorem 3 for a precise statement.)

2. (Fairness) With probability 1, L violates the unknown fairness constraints by more than ε
on at most O

(
k2d2 log(d/ε)

)
many rounds. (Theorem 4.)

We note that the quoted regret bound requires setting ε = O(1/T), and so this implies a num-
ber of fairness violations of magnitude more than 1/T that is bounded by a function growing
logarithmically in T . Other tradeoffs between regret and fairness violations are possible.

These two goals: of obtaining low regret, and violating the unknown constraint a small num-
ber of times — are seemingly in tension. A standard technique for obtaining a mistake bound with

2

respect to fairness violations would be to play a “halving algorithm”, which would always act as if
the unknown metric is at the center of the current version space (the set of metrics consistent with
the feedback observed thus far) — so that mistakes necessarily remove a non-trivial fraction of the
version space, making progress. On the other hand, a standard technique for obtaining a dimin-
ishing regret bound is to play “optimistically” – i.e. to act as if the unknown metric is the point
in the version space that would allow for the largest possible reward. But “optimistic” points are
necessarily at the boundary of the version space, and when they are falsified, the corresponding
mistakes do not necessarily reduce the version space by a constant fraction.

We prove our theorem in two steps. First, in Section 3, we consider the simpler problem in
which the linear objective of the contextual bandit problem is known, and the distance function
is all that is unknown. In this simpler case, we show how to obtain a bound on the number of
fairness violations using a linear-programming based reduction to a recent algorithm which has
a mistake bound for learning a linear function with a particularly weak form of feedback Lobel
et al. [2017]. A complication is that our algorithm does not receive all of the feedback that the
algorithm of Lobel et al. [2017] expects. We need to use the structure of our linear program to
argue that this is ok. Then, in Section 4, we give our algorithm for the complete problem, using
large portions of the machinery we develop in Section 3.

We note that in a non-adversarial setting, in which contexts are drawn from a distribution, the
algorithm of Lobel et al. [2017] could be more simply applied along with standard techniques for
contextual bandit learning to give an explore-then-exploit style algorithm. This algorithm would
obtain bounded (but suboptimal) regret, and a number of fairness violations that grows as a root
of T . The principal advantages of our approach are that we are able to give a number of fairness
violations that has only logarithmic dependence on T , while tolerating contexts that are chosen
adversarially, all while obtaining an optimal O(

√
T) regret bound to the best fair policy.

1.2 Additional Related Work

There are two papers, written concurrently to ours, that tackle orthogonal issues in metric-fair
learning. Rothblum and Yona [2018] consider the problem of generalization when performing
learning subject to a known metric constraint. They show that it is possible to prove relaxed
PAC-style generalization bounds without any assumptions on the metric, and that for worst-
case metrics, learning subject to a metric constraint can be computationally hard, even when
the unconstrained learning problem is easy. In contrast, our work focuses on online learning
with an unknown metric constraint. Our results imply similar generalization properties via stan-
dard online-to-offline reductions, but only for the class of metrics we study. Kim et al. [2018]
considers a group-fairness like relaxation of metric-fairness, asking that on average, individuals
in pre-specified groups are classified with probabilities proportional to the average distance be-
tween individuals in those groups. They show how to learn such classifiers in the offline setting,
given access to an oracle which can evaluate the distance between two individuals according to
the metric (allowing for unbiased noise). The similarity to our work is that we also consider access
to the fairness metric via an oracle, but our oracle is substantially weaker, and does not provide
numeric valued output.

There are also several papers in the algorithmic fairness literature that are thematically re-
lated to ours, in that they both aim to bridge the gap between group notions of fairness (which
can be semantically unsatisfying) and individual notions of fairness (which require very strong
assumptions). Zemel et al. [2013] attempt to automatically learn a representation for the data in a

3

batch learning problem (and hence, implicitly, a similarity metric) that causes a classifier to label
an equal proportion of two protected groups as positive. They provide a heuristic approach and
an experimental evaluation. Two recent papers (Kearns et al. [2017] and Hébert-Johnson et al.
[2017]) take the approach of asking for a group notion of fairness, but over exponentially many
implicitly defined protected groups, thus mitigating what Kearns et al. [2017] call the “fairness
gerrymandering” problem, which is one of the principal weaknesses of group fairness definitions.
Both papers give polynomial time reductions which yield efficient algorithms whenever a corre-
sponding agnostic learning problem is solvable. In contrast, in this paper, we take a different
approach: we attempt to directly satisfy the original definition of individual fairness from Dwork
et al. [2012], but with substantially less information about the underlying similarity metric.

Starting with Joseph et al. [2016a], several papers have studied notions of fairness in classic
and contextual bandit problems. Joseph et al. [2016a] study a notion of “meritocratic” fairness
in the contextual bandit setting, and prove upper and lower bounds on the regret achievable by
algorithms that must be “fair” at every round. This can be viewed as a variant of the Dwork
et al. [2012] notion of fairness, in which the expected reward of each action is used to define
the “fairness metric”. The algorithm does not originally know this metric, but must discover it
through experimentation. Joseph et al. [2016b] extend the work of Joseph et al. [2016a] to the
setting in which the algorithm is faced with a continuum of options at each time step, and give
improved bounds for the linear contextual bandit case. Jabbari et al. [2017] extend this line of
work to the reinforcement learning setting in which the actions of the algorithm can impact its
environment. Finally, Liu et al. [2017] consider a notion of fairness based on calibration in the
simple stochastic bandit setting.

There is a large literature that focuses on learning Mahalanobis distances — see Kulis et al.
[2013] for a survey. In this literature, the closest paper to our work focuses on online learning of
Mahalanobis distances (Jain et al. [2009]). However, this result is in a very different setting from
the one we consider here. In Jain et al. [2009], the algorithm is repeatedly given pairs of points,
and needs to predict their distance. It then learns their true distance, and aims to minimize its
squared loss. In contrast, in our paper, the main objective of the learning algorithm is orthogonal
to the metric learning problem — i.e. to minimize regret in the linear contextual bandit problem,
but while simultaneously learning and obeying a fairness constraint, and only from weak feedback
noting violations of fairness.

2 Model and Preliminaries

2.1 Linear Contextual Bandits

We study algorithms that operate in the linear contextual bandits setting. A linear contextual ban-
dit problem is parameterized by an unknown vector of linear coefficients θ ∈ Rd , with ||θ||2 ≤ 1.
Algorithms in this setting operate in rounds t = 1, . . . ,T . In each round t, an algorithm L observes k
contexts xt1, . . . ,x

t
k ∈R

d , scaled such that ||xti ||2 ≤ 1. We write xt = (xt1, . . . ,x
t
k) to denote the entire set

of contexts observed at round t. After observing the contexts, the algorithm chooses an action it.
After choosing an action, the algorithm obtains some stochastic reward rtit such that rtit is subgaus-
sian1 and E[rtit] = 〈xtit ,θ〉. The algorithm does not observe the reward for the actions not chosen.
When the action it is clear from context, and write rt instead of rtit .

1A random variable X with µ = E[X] is sub-gaussian, if for all t ∈R, E[et(X−µ)] ≤ e
t2
2 .

4

Remark 1. For simplicity, we consider algorithms that select only a single action at every round. How-
ever, this assumption is not necessary. In the appendix, we show how our results extend to the case in
which the algorithm can choose any number of actions at each round. This assumption is sometimes
more natural: for example, in a lending scenario, a bank may wish to make loans to as many individuals
as will be profitable, without a budget constraint.

In this paper, we will be discussing algorithms L that are necessarily randomized. To formalize
this, we denote a history including everything observed by the algorithm up through but not
including round t as ht = ((x1, i1, r1), . . . , (xt−1, it−1, rt−1)) The space of such histories is denoted by
Ht = (Rd×k × [k] × R)t−1. An algorithm L is defined by a sequence of functions f 1, . . . , f T each
mapping histories and observed contexts to probability distributions over actions:

f t :Ht ×Rd×k→ ∆[k].

We write πt to denote the probability distribution over actions that L plays at round t: πt =
f t(ht ,xt). We view πt as a vector over [0,1]k , and so πti denotes the probability that L plays action
i at round t. We denote the expected reward of the algorithm at day t as E[rt] = Ei∼πt [r

t
i]. It will

sometimes also be useful to refer to the vector of expected rewards across all actions on day t. We
denote it as

r̄t = (〈xt1,θ〉, . . . ,〈x
t
k ,θ〉).

Note that this vector is of course unknown to the algorithm.

2.2 Fairness Constraints and Feedback

We study algorithms that are constrained to behave fairly in some manner. We adapt the defini-
tion of fairness from Dwork et al. [2012] that asserts, informally, that “similar individuals should
be treated similarly”. We imagine that the decisions that our contextual bandit algorithm L makes
correspond to individuals, and that the contexts xti correspond to features pertaining to individu-
als. We adopt the following (specialization of) the fairness definition from Dwork et al, which is
parameterized by a distance function d : Rd ×Rd →R.

Definition 1 (Dwork et al. [2012]). Algorithm L is Lipschitz-fair on round t with respect to distance
function d if for all pairs of individuals i, j:

|πti −π
t
j | ≤ d(xti ,x

t
j).

For brevity, we will often just say that the algorithm is fair at round t, with the understanding that we
are always talking about this one particular kind of fairness.

Remark 2. Note that this definition requires a fairness constraint that binds between individuals at a
single round t, but not between rounds t. This is for several reasons. First, at a philosophical level, we
want our algorithms to be able to improve with time, without being bound by choices they made long
ago before they had any information about the fairness metric. At a (related) technical level, it is easy
to construct lower bound instances that certify that it is impossible to simultaneously guarantee that an
algorithm has diminishing regret to the best fair policy, while violating fairness constraints (now defined
as binding across rounds) a sublinear number of times.

5

One of the main difficulties in working with Lipschitz fairness (as discussed in Dwork et al.
[2012]) is that the distance function d plays a central role, but it is not clear how it should be spec-
ified. In this paper, we concern ourselves with learning d from feedback. In particular, algorithms
L will have access to a fairness oracle.

Informally, the fairness oracle will take as input: 1) the set of choices available to L at each
round t, and 2) the probability distribution πt that L uses to make its choices at round t, and
returns the set of all pairs of individuals for which L violates the fairness constraint.

Definition 2 (Fairness Oracle). Given a distance function d, a fairness oracle Od is a function Od :
R
d×k ×∆[k]→ 2[k]×[k] defined such that:

Od(xt ,πt) = {(i, j) : |πti −π
t
j | > d(xti ,x

t
j)}

Formally, algorithms L in our setting will operate in the following environment:

Definition 3. 1. An adversary fixes a linear reward function θ ∈ Rd with ||θ|| ≤ 1 and a distance
function d. L is given access to the fairness oracle Od .

2. In rounds t = 1 to T :

(a) The adversary chooses contexts xt ∈Rd×k with ||xti || ≤ 1 and gives them to L.

(b) L chooses a probability distribution πt over actions, and chooses action it ∼ πt.
(c) L receives reward rtit and observes feedback Od(πt) from the fairness oracle.

Because of the power of the adversary in this setting, we cannot expect algorithms that can
avoid arbitrarily small violations of the fairness constraint. Instead, we will aim to limit significant
violations.

Definition 4. Algorithm L is ε-unfair on pair (i, j) at round t with respect to distance function d if

|πti −π
t
j | > d(xti ,x

t
j) + ε.

Given a sequence of contexts and a history ht (which fixes the distribution on actions at day t) We write

Unfair(L,ε,ht) =
k−1∑
i=1

k∑
j=i+1

1(|πti −π
t
j | > d(xti ,x

t
j) + ε)

to denote the number of pairs on which L is ε-unfair at round t.

Given a distance function d and a history hT+1, the ε-fairness loss of an algorithm L is the total
number of pairs on which it is ε-unfair:

FairnessLoss(L,hT+1,ε) =
T∑
t=1

Unfair(L,ε,ht)

For a shorthand, we’ll write FairnessLoss(L,T ,ε).
We will aim to design algorithms L that guarantee that their fairness loss is bounded with

probability 1 in the worst case over the instance: i.e. in the worst case over both θ and x1, . . . ,xT ,
and in the worst case over the distance function d (within some allowable class of distance func-
tions – see Section 2.4).

6

2.3 Regret to the Best Fair Policy

In addition to minimizing fairness loss, we wish to design algorithms that exhibit diminishing
regret to the best fair policy. We first define a linear program that we will make use of throughout
the paper. Given a vector a ∈ Rd and a vector c ∈ Rk2

, we denote by LP (a,c) the following linear
program:

maximize
π={p1,...,pk}

k∑
i=1

piai

subject to |pi − pj | ≤ ci,j ,∀(i, j)
k∑
i=1

pi ≤ 1

We write π(a,c) ∈ ∆[k] to denote an optimal solution to LP (a,c). Given a set of contexts xt,
recall that r̄t is the vector representing the expected reward corresponding to each context (ac-
cording to the true, unknown linear reward function θ). Similarly, we write d̄t to denote the
vector representing the set of distances between each pair of contexts i, j (according to the true,
unknown distance function d): d̄ti,j = d(xti ,x

t
j).

Observe that π(r̄t , d̄t) corresponds to the distribution over actions that maximizes expected
reward at round t, subject to satisfying the fairness constraints — i.e. the distribution that an
optimal player, with advance knowledge of θ would play, if he were not allowed to violate the
fairness constraints at all. This is the benchmark with respect to which we define regret:

Definition 5. Given an algorithm L (f1, . . . , fT), a distance function d, a linear parameter vector θ, and
a history hT+1 (which includes a set of contexts x1, . . . ,xT), its regret is defined to be:

Regret(L,θ,d,hT+1) =
T∑
t=1

E

i∼π(r̄t ,d̄t)
[r̄ti]−

T∑
t=1

E

i∼f t(ht ,xt)
[r̄ti]

For shorthand, we’ll write Regret(L,T).
Our goal will be to design algorithms for which we can bound regret with high probability

over the randomness of hT+1 2 in the worst case over θ, d, and (x1, . . . ,xT).

2.4 Mahalanobis Distance

In this paper, we will restrict our attention to a special family of distance functions which are
parameterized by a matrix A:

Definition 6 (Mahalanobis distances). A function d : Rd×Rd →R is a Mahalanobis distance function
if there exists a matrix A such that for all x1,x2 ∈Rd :

d(x1,x2) = ||Ax1 −Ax2||2
where || · ||2 denotes Euclidean distance. Note that if A is not full rank, then this does not define a metric
— but we will allow this case (and be able to handle it in our algorithmic results).

2We assume that hT+1 is generated by algorithm A, meaning randomness only comes from the stochastic reward
and the way in which each arm is selected according to the probability distribution calculated by the algorithm. We
don’t assume any distributional assumption over x1, . . . ,xT

7

Mahalanobis distances will be convenient for us to work with, because squared Mahalanobis
distances can be expressed as follows:

d(x1,x2)2 = ||Ax1 −Ax2||22
= 〈A(x1 − x2),A(x1 − x2)〉
= (x1 − x2)>A>A(x1 − x2)

=
d∑

i,j=1

Gi,j(x1 − x2)i(x1 − x2)j

where G = A>A. Observe that when x1 and x2 are fixed, this is a linear function in the entries of
the matrix G. We will use this property to reason about learning G, and thereby learning d.

3 Warmup: The Known Objective Case

In this section, we consider an easier case of the problem in which the linear objective function
θ is known to the algorithm, and the distance function d is all that is unknown. In this case, we
show via a reduction to an online learning algorithm of Lobel et al. [2017], how to simultaneously
obtain a logarithmic regret bound and a logarithmic (in T) number of fairness violations. The
analysis we do here will be useful when we solve the full version of our problem (in which θ is
unknown) in Section 4.

3.1 Outline of the Solution

Recall that since we know θ, at every round t after seeing the contexts, we know the vector of
expected rewards r̄t that we would obtain for selecting each action. Our algorithm will play
at each round t the distribution π(r̄t , d̂t) that results from solving the linear program LP (r̄t , d̂t),
where d̂t is a “guess” for the pairwise distances between each context d̄t. (Recall that the optimal
distribution to play at each round is π(r̄t , d̄t).)

The main engine of our reduction is an efficient online learning algorithm for linear functions
recently given by Lobel et al. [2017] which is further described in Section 3.2. Their algorithm,
which we refer to as DistanceEstimator, works in the following setting. There is an unknown
vector of linear parameters α ∈ R

m. In rounds t, the algorithm observes a vector of features
ut ∈ Rm, and produces a prediction gt ∈ R for the value 〈α,ut〉. After it makes its prediction, the
algorithm learns whether its guess was too large or not, but does not learn anything else about
the value of 〈α,ut〉. The guarantee of the algorithm is that the number of rounds in which its
prediction is off by more than ε is bounded by O(m log(m/ε))3.

Our strategy will be to instantiate
(k
2
)

copies of this distance estimator — one for each pair
of actions — to produce guesses (d̂ti,j)

2 intended to approximate the squared pairwise distances

d(xti ,x
t
j)

2. From this we derive estimates d̂ti,j of the pairwise distances d(xti ,x
t
j). Note that this is

a linear estimation problem for any Mahalanobis distance, because by our observation in Section

3If the algorithm also learned whether or not its guess was in error by more than ε at each round, variants of the
classical halving algorithm could obtain this guarantee. But the algorithm does not receive this feedback, which is why
the more sophisticated algorithm of Lobel et al. [2017] is needed.

8

2.4, a squared Mahalanobis distance can be written as a linear function of the m = d2 unknown
entries of the matrix G = A>A which defines the Mahalanobis distance.

The complication is that the DistanceEstimator algorithms expect feedback at every round,
which we cannot always provide. This is because the fairness oracle Od provides feedback about
the distribution π(r̄t , d̂t) used by the algorithm, not directly about the guesses d̂t. These are not
the same, because not all of the constraints in the linear program LP (r̄t , d̂t) are necessarily tight —
it may be that |π(r̄t , d̂t)i −π(r̄t , d̂t)j | < d̂ti,j . For any copy of DistanceEstimator that does not receive
feedback, we can simply “roll back” its state and continue to the next round. But we need to
argue that we make progress — that whenever we are ε-unfair, or whenever we experience large
per-round regret, then there is at least one copy of DistanceEstimator that we can give feedback
to such that the corresponding copy of DistanceEstimator has made a large prediction error, and
we can thus charge either our fairness loss or our regret to the mistake bound of that copy of
DistanceEstimator.

As we show, there are three relevant cases.

1. In any round in which we are ε-unfair for some pair of contexts xti and xtj , then it must be

that d̂ti,j ≥ d(xti ,x
t
j) + ε, and so we can always update the (i, j)th copy of DistanceEstimator

and charge our fairness loss to its mistake bound. We formalize this in Lemma 1.

2. For any pair of arms (i, j) such that we have not violated the fairness constraint, and the
(i, j)th constraint in the linear program is tight, we can provide feedback to the (i, j)th copy
of DistanceEstimator (its guess was not too large). There are two cases. Although the
algorithm never knows which case it is in, we handle each case separately in the analysis.

(a) For every constraint (i, j) in LP (r̄t , d̂t) that is tight in the optimal solution, |d̂ti,j−d(xti ,x
t
j)| ≤

ε. In this case, we show that our algorithm does not incur very much per round regret.
We formalize this in Lemma 4.

(b) Otherwise, there is a tight constraint (i, j) such that |d̂ti,j − d(xti ,x
t
j)| > ε. In this case,

we may incur high per-round regret — but we can charge such rounds to the mistake
bound of the (i, j)th copy of DistanceEstimator using Lemma 1.

3.2 The Distance Estimator

First, we fix some notation for the DistanceEstimator algorithm. We write DistanceEstimator(ε)
to instantiate a copy of DistanceEstimator with a mistake bound for ε-misestimations. The mis-
take bound we state for DistanceEstimator is predicated on the assumption that the norm of the
unknown linear parameter vector α ∈ Rm is bounded by ||α|| ≤ B1, and the norms of the arriving
vectors ut ∈Rm are bounded by ||ut || ≤ B2. Given an instantiation of DistanceEstimator and a new
vector ut for which we would like a prediction, we write: gt = DistanceEstimator.guess(ut) for
its guess of the value of 〈α,ut〉. We use the following notation to refer to the feedback we provide to
DistanceEstimator: If gt > 〈α,ut〉 and we provide feedback, we write DistanceEstimator.f eedback(>).
Otherwise, if gt ≤ 〈α,ut〉 and we give feedback, we write DistanceEstimator.f eedback(⊥). In
some rounds, we may be unable to provide the feedback that DistanceEstimator is expecting: in
these rounds, we simply “roll-back” its internal state. We can do this because the mistake bound
for DistanceEstimator holds for every sequence of arriving vectors ut. If we give feedback to
DistanceEstimator in a given round t, we write vt = 1 write vt = 0 otherwise.

9

Definition 7. Given an accuracy parameter ε, a linear parameter vector α, a sequence of vectors
u1, . . . ,uT , a sequence of guesses g1, . . . , gT and a sequence of feedback indicators, v1, . . . , vT , the number
of valid ε-mistakes made by DistanceEstimator is:

Mistakes(ε) =
T∑
t=1

1(vt = 1∧ |gt − 〈ut ,α〉| > ε)

In other words, it is the number of ε-mistakes made by DistanceEstimator in rounds for which we
provided the algorithm feedback.

We now state a version of the main theorem from Lobel et al. [2017], adapted to our setting4:

Lemma 1 (Lobel et al. [2017]). For any ε > 0 and any sequence of vectors u1, . . . ,uT , DistanceEstimator(ε)
makes a bounded number of valid ε-mistakes.

Mistakes(ε) =O

m log
(
m ·B1 ·B2

ε

)
3.3 The Algorithm

For each pair of arms i, j ∈ [k], our algorithm instantiates a copy of DistanceEstimator(ε2), which
we denote by DistanceEstimatori,j : we also subscript all variables relevant to DistanceEstimatori,j
with i, j (e.g. uti,j). The underlying linear parameter vector we want to learn α = f latten(G) ∈ Rd2

,
where f latten : Rm×n→R

m·n maps a m×n matrix to a vector of size mn by concatenating its rows
into a vector. Similarly, given a pair of contexts xti ,x

t
j , we will define uti,j = f latten((xti−x

t
j)(x

t
i−x

t
j)
>).

DistanceEstimatori,j .guess(uti,j) will output guess gti,j for the value 〈α,uti,j〉 = (d̄ti,j)
2, as

〈f latten(G), f latten((xti − x
t
j)(x

t
i − x

t
j)
>)〉 =

d∑
a,b=1

Ga,b(x
t
i − x

t
j)a(x

t
i − x

t
j)b = (d̄ti,j)

2

We take d̂ti,j =
√
gti,j as our estimate for the distance between xti and xtj .

The algorithm then chooses an arm to pull according to the distribution π(r̄t , d̂t), where r̄ti =
〈θ,xi〉. The fairness oracle Od returns all pairs of arms that violate the fairness constraints. For
these pairs (i, j) we provide feedback to DistanceEstimatori,j : the guess was too large. For the
remaining pairs of arms (i, j), there are two cases. If the (i, j)th constraint in LP (r̄t , d̂t) was not
tight, then we provide no feedback (vti,j = 0). Otherwise, we provide feedback: the guess was not
too large. The pseudocode appears as Algorithm 1.

First we derive the valid mistake bound that the DistanceEstimatori,j algorithms incur in our
parameterization.

Lemma 2. For pair (i, j), the total number of valid ε2 mistakes made by DistanceEstimatori,j is
bounded as:

Mistakes(ε2) =O

d2 log
(
d · ||A>A||F

ε

)
where the distance function is defined as d(xi ,xj) = ||Axi −Axj ||2 and || · ||F denotes the Frobenius norm.

4In Lobel et al. [2017], the algorithm receives feedback in every round, and the scale parameters B1 and B2 are
normalized to be 1. But the version we state is an immediate consequence.

10

for i, j = 1, . . . , k do
DistanceEstimatori,j = DistanceEstimator(ε2)

end
for t = 1, . . . ,T do

receive the contexts xt = (xt1, . . . ,x
t
k)

for i, j = 1, . . . , k do
uti,j = f latten((xti − x

t
j)(x

t
i − x

t
j)
>)

gti,j = DistanceEstimatorij .guess(uti,j)

d̂ti,j =
√
gti,j

end
πt = π(r̄t , d̂t)
Pull an arm it according to πt and receive a reward rtit
S = Od(xt ,πt)
R = {(i, j)|(i, j) < S ∧ |pti − p

t
j | = d̂

t
ij}

for (i, j) ∈ S do
DistanceEstimatorij .f eedback(⊥)
vtij = 1

end
for (i, j) ∈ R do

DistanceEstimatorij .f eedback(>)
vtij = 1

end
end

Algorithm 1: Lknown−θ

11

Proof. This follows directly from Lemma 1, and the observations that in our setting, m = d2,
B1 = ||α|| = ||A>A||F , and

B2 ≤max
t
||uti,j ||2 ≤max

t
||(xti − x

t
j)||

2 ≤ 4.

We next observe that since we only instantiate k2 copies of DistanceEstimator in total, Lemma
2 immediately implies the following bound on the total number of rounds in which any distance
estimator that receives feedback provides us with a distance estimate that differs by more than ε
from the correct value:

Corollary 1. The number of rounds where there exists a pair (i, j) such that feedback is provided (vti,j =
1) and its estimate is off by more than ε is bounded:∣∣∣∣{t : ∃(i, j) : vtij = 1∧ |d̂ti,j − d̄

t
i,j | > ε}

∣∣∣∣ ≤Ok2d2 log
(
d · ||A>A||F

ε

)
Proof. This follows from summing the k2 valid ε2 mistake bounds for each copy of DistanceEstimatori,j ,
and noting that an ε mistake in predicting the value of d̄ti,j implies an ε2 mistake in predicting the

value of (d̄ti,j)
2.

We now have the pieces to bound the ε-unfairness loss of our algorithm:

Theorem 1. For any sequence of contexts and any Mahalanobis distance d(x1,x2) = ||Ax1 −Ax2||2:

FairnessLoss(Lknown−θ ,T ,ε) ≤O

k2d2 log

d · ||ATA||Fε

Proof.

FairnessLoss(Lknown−θ ,T ,ε) =
T∑
t=1

Unfair(Lknown−θ ,ε)

≤
T∑
t=1

∑
i,j

1(|πti −π
t
j | > d̄

t
ij + ε)

=
∑
i,j

T∑
t=1

1({vtij = 1∧ d̂tij > d
t
ij + ε})

≤
∑
i,j

T∑
t=1

1({vtij = 1∧ |d̂tij − d
t
ij | > ε})

=O

k2d2 log
(
d · ||A>A||F

ε

) Corollary 1

12

sorted

p

p′

probability

pa

pa −∆

Figure 1: A visual interpretation of the surgery performed on p in the proof of Lemma 3 to obtain
P ′. Note that the surgery manages to shrink the distance between pa and pb without increasing
the distance between any other pair of points.

We now turn our attention to bounding the regret of the algorithm. Recall from the overview
in Section 3.1, that our plan will be to divide rounds into two types. In rounds of the first type, our
distance estimates corresponding to every tight constraint in the linear program have only small
error. We cannot bound the number of such rounds, but we can bound the regret incurred in any
such rounds. In rounds of the second type, we have at least one significant error in the distance
estimate corresponding to a tight constraint. We might incur significant regret in such rounds,
but we can bound the number of such rounds.

The following lemma bounds the decrease in expected per-round reward that results from
under-estimating a single distance constraint in our linear programming formulation.

Lemma 3. Fix any vector of distance estimates d and any vector of rewards r. Fix a constant ε and
any pair of coordinates (a,b) ∈ [k] × [k]. Let d′ be the vector such that d′ab = dab − ε and d′ij = dij for

(i, j) , (a,b), then 〈r,π(r,d)〉 − 〈r,π(r,d′)〉 ≤ ε
∑k
i=1 ri

Proof. The plan of the proof is to start with π(r,d) and perform surgery on it to arrive at a new
probability distribution p′ ∈ ∆k that satisfies the constraints of LP (r,d′), and obtains objective
value at least 〈r,p′〉 ≥ 〈r,π(r,d)〉 − ε

∑k
i=1 ri . Because p′ is feasible, it lower bounds the objective

value of the optimal solution π(r,d′), which yields the theorem.
To reduce notational clutter, for the rest of the argument we write p to denote π(r,d). Without

loss of generality, we assume that pa ≥ pb. If pa − pb ≤ dab − ε, then pi is still a feasible solution to
LP (r,d′), and we are done. Thus, for the rest of the argument, we can assume that pa−pb > dab −ε.
We write ∆ = (pa − pb)− (dab − ε) > 0

We now define our modified distribution p′:

p′i =

pi −∆ pa ≤ pi
pa −∆ pa −∆ ≤ pi < pa
pi otherwise

We’ll partition the coordinates of pi into which of the three cases they fall into in our definition
of p′ above. S1 = {i|pa ≤ pi}, S2 = {i|pa − ε ≤ pi < pa}, and S3 = {i|i < pb + (dab − ε)}. It remains to
verify that p′ is a feasible solution to LP (r,d′), and that it obtains the claimed objective value.

13

Feasibility: First, observe that
∑
i p
′
i ≤ 1. This follows because p′ is coordinate-wise smaller than

p, and by assumption, p was feasible. Thus,
∑
i p
′
i ≤

∑
i pi ≤ 1.

Next, observe that by construction, p′i ≥ 0 for all i. To see this, first observe that pa − ∆ =
pb + (dab − ε) ≥ 0 where the last inequality follows because dab ≥ ε. We then consider the three
cases:

1. For i ∈ S1, p′i = pi −∆ ≥ pa −∆ ≥ 0 because pi ≥ pa.

2. For i ∈ S2, p′i = pa −∆ ≥ 0.

3. For i ∈ S3, p′i = pi ≥ 0.

Finally, we verify that for all (i, j), |p′i −p
′
j | ≤ d

′
ij . First, observe that p′a−p′b = (pb+(dab−ε))−p′b =

dab−ε = d′ab, and so the inequality is satisfied for index pair (a,b). For all the other pairs (i, j) , (a,b),
we have d′ij = dij , so it is enough to show that |p′i − p

′
j | ≤ dij . Note that for all x,y ∈ {1,2,3} with

x < y, if i ∈ Sx and j ∈ Sy , we have that x ≤ y. Therefore, it is sufficient to verify the following six
cases:

1. i ∈ S1, j ∈ S1: |p′i − p
′
j | = (pi −∆)− (pj −∆) = pi − pj ≤ dij

2. i ∈ S1, j ∈ S2: |p′i − p
′
j | = (pi −∆)− (pa −∆) = pi − pa < pi − pj ≤ dij

3. i ∈ S1, j ∈ S3: |p′i − p
′
j | = (pi −∆)− pj = (pi − pj)−∆ ≤ (pi − pj) ≤ dij

4. i ∈ S2, j ∈ S2: |p′i − p
′
j | = (pa −∆)− (pa −∆) = 0 ≤ dij

5. i ∈ S2, j ∈ S3: |p′i − p
′
j | = (pa −∆)− pj ≤ pi − pj ≤ dij

6. i ∈ S3, j ∈ S3: |p′i − p
′
j | = pi − pj ≤ dij

Thus, we have shown that p′ is a feasible solution to LP (r,d′).

Objective Value: Note that for each index i, pi − p′i ≤ ∆ ≤ ε. Therefore we have:

〈r,π(r,d)〉 − 〈r,π(r,d′)〉 ≤ 〈r,π(r,d)〉 − 〈r,p′〉
= 〈r,p − p′〉

≤ ε
k∑
i=1

ri

which completes the proof.

We now prove the main technical lemma of this section. It states that in any round in which
the error of our distance estimates for tight constraints is small (even if we have high error in the
distance estimates for slack constraints), then we will have low per-round regret.

Lemma 4. At round t, if for all pairs of indices (i, j), we have either:

1. |d̂ti,j − d̄
t
i,j | ≤ ε or

14

2. vti,j = 0 (corresponding to an LP constraint that is not tight)

then:
〈rt ,π(rt , d̄t)〉 − 〈rt ,π(rt , d̂t)〉 ≤ εk3

for any vector rt with ||rt ||∞ ≤ 1.

Proof. First, define d̃t to be the coordinate-wise maximum of d̂t and d̄t: i.e. the vector such that for
every pair of coordinates i, j, d̃ij = max(d̄ij , d̂ij). To simplify notation, we will write p̂ = π(rt , d̂t),
p̄ = π(rt , d̄t), and p̃ = π(rt , d̃t).

We make three relevant observations:

1. First, because LP (rt , d̃t) is a relaxation of LP (rt , d̄t), it has only larger objective value. In other
words, we have that 〈rt , p̃〉 ≥ 〈rt , p̄〉. Thus, it suffices to prove that 〈rt , p̂〉 ≥ 〈rt , p̃〉 − εk3.

2. Second, for all pairs i, j, |d̂ti,j − d̃
t
i,j | ≤ |d̂

t
i,j − d̄

t
i,j |. Thus, if we had |d̂ti,j − d̄

t
i,j | ≤ ε, we also have

|d̂ti,j − d̃
t
i,j | ≤ ε.

3. Finally, by construction, for every pair (i, j), we have d̃ij ≥ d̂ij

Let S1 be the set of indices (i, j) such that |d̂ti,j − d̃
t
i,j | ≤ ε, and let S2 be the set of indices (i, j) < S1

such that vti,j = 0. Note that by assumption, these partition the space, and that by construction,

for every (i, j) ∈ S2, the corresponding constraint in LP (rt , d̂t) is not tight: i.e. |p̂i − p̂j | < d̂ti,j . Let

d∗ be the vector such that for all (i, j) ∈ S1, d∗ij = d̂ij , and for all (i, j) ∈ S2, d∗ij = d̃ij . Observe that

LP (rt ,d∗) corresponds to a relaxation of LP (rt , d̂) in which only constraints that were already slack
were relaxed. As a result, p̂ is also an optimal solution to LP (rt ,d∗). Note also that by construction,
we now have that for every pair (i, j): |d̃ij − d∗ij | ≤ ε

Our argument will proceed by describing a sequence of n + 1 = k2 + 1 vectors p0,p1, . . . ,pn

such that p0 = p̃, pn is a feasible solution to LP (rt ,d∗), and for all adjacent pairs p`,p`+1, we have:
〈rt ,p`+1〉 ≥ 〈rt ,p`〉 − εk. Telescoping these inequalities yields:

〈rt , p̂〉 ≥ 〈rt ,pn〉 ≥ 〈rt , p̃〉 − k3ε

which will complete the proof.
To finish the argument, fix an arbitrary ordering on the indices (i, j) ∈ [k]×[k], which we denote

by (i1, j1), . . . , (in, jn). Define the distance vector d` such that:

d`ia,ja =

 d̃ia,ja , If a > `;
d∗ia,ja , If a ≤ `.

Note that the sequence of distance vectors d1, . . . ,dn “walks between” d̃ and d∗ one coordinate at
a time. Now let p` = π(rt ,d`). By construction, we have that every pair (d`,d`+1) differ in only
a single coordinate, and that the difference has magnitude at most ε. Therefore, we can apply
Lemma 3 to conclude that:

〈rt ,p`+1〉 ≥ 〈rt ,p`〉 − ε
k∑
i=1

rti ≥ 〈r
t ,p`〉 − εk

as desired.

15

Finally, we have all the pieces we need to prove a regret bound for Lknown−θ.

Theorem 2. For any time horizon T :

Regret(Lknown−θ ,T) ≤O
k2d2 log

(
d · ||A>A||F

ε

)
+ k3εT

Setting ε =O(1/(k3T)) yields a regret bound of O(d2 log(||A>A||F · dkT)).

Proof. We partition the rounds t into two types. Let S1 denote the rounds such that there is at
least one pair of indices (i, j) such that one instance DistanceEstimatorij produced an estimate
that had error more than ε, and it was provided feedback. We let S2 denote the remaining rounds,
for which for every pair of indices (i, j), either DistanceEstimatorij produced an estimate that had
error at most ε, or DistanceEstimatorij was not given feedback.

S1 = {t : ∃(i, j) : |d̂tij − d̄
t
ij | > ε and vtij = 1} S2 = {t : ∀(i, j) : |d̂tij − d̄

t
ij | ≤ ε or vtij = 0}

Observe that S1 and S2 partition the set of all rounds. Next, observe that Corollary 1 tells us
that:

|S1| ≤O
k2d2 log

(
d · ||A>A||F

ε

)
and Lemma 4 tells us that for every round t ∈ S2, the per-round regret is at most εk3. Together
with the facts that |S2| ≤ T and that the per-round regret for any t ∈ S1 is at most 1, we obtain:

Regret(Lknown−θ ,T) ≤O
k2d2 log

(
d · ||A>A||F

ε

)
+ k3εT

4 The Full Algorithm

In this section, we present our final algorithm, which has no knowledge of either the distance
function d or the linear objective θ. The resulting algorithm shares many similarities with the
algorithm we developed in Section 3, and so much of the analysis can be reused.

4.1 Outline of the Solution

At a high level, our plan will be to combine the techniques we developed in Section 3 with a
standard “optimism in the face of uncertainty” strategy for learning the parameter vector θ. Our
algorithm will maintain a ridge-regression estimate θ̃ together with confidence regions derived in
Abbasi-Yadkori et al. [2011]. After it observes the contexts xti at round t, it uses these to derive up-
per confidence bounds on the expected rewards, corresponding to each context — represented as a
vector r̂t. The algorithm continues to maintain distance estimates d̂t using the DistanceEstimator
subroutines, identically to how they were used in Section 3. At ever round, the algorithm then
chooses its action according to the distribution πt = π(r̂t , d̂t).

The regret analysis of the algorithm follows by decomposing the per-round regret into two
pieces. The first can be bounded by the sum of the expected widths of the confidence intervals

16

corresponding to each context xti that might be chosen at each round t, where the expectation is
over the randomness of the algorithm’s distribution πt. A theorem of Abbasi-Yadkori et al. [2011]
bounds the sum of the widths of the confidence intervals corresponding to arms actually chosen by
the algorithm (Lemma 6). Using a martingale concentration inequality, we are able to relate these
two quantities (Lemma 8). We show that the second piece of the regret bound can be manipulated
into a form that can be bounded using Lemmas 1 and 4 from Section 3 (Theorem 3).

4.2 Confidence Intervals from Abbasi-Yadkori et al. [2011]

We would like to be able to construct confidence intervals at each round t around each arm’s
expected reward such that for each arm i, with probability 1−δ, r̄ti ∈ [r̃ti +wti , r̃

t
i +wti], where r̃ti is our

ridge-regression estimate of r̄ti and wti is the confidence interval width around the estimate. Our
algorithm will make use of such confidence intervals for the ridge regression estimator derived
and analyzed in Abbasi-Yadkori et al. [2011], which we recount here.

Let Ṽ t = Xt>Xt +λI be a regularized design matrix, where Xt = [x1
i1
, . . . ,xt−1

it−1
] represents all the

contexts whose rewards we have observed up to but not including time t. Let Y t = [r1
i1
, . . . , rt−1

it−1
] be

the corresponding vector of observed rewards. θ̃ = (V t)−1Xt>Y t is the (ridge regression) regular-
ized least squares estimator we use at time t. We write r̃ti = 〈θ̃,xti 〉 for the reward point prediction
that this estimator makes at time t for arm i.

We can construct the following confidence intervals around r̃t:

Lemma 5 (Abbasi-Yadkori et al. [2011]). With probability 1− δ,

|r̄ti − r̃
t
i | = |〈x

t
i , (θ − θ̃)〉| ≤ ‖xti ‖(V̄ t)−1

(√
2d log(

1 + t/λ
δ

) +
√
λ
)

where ||x||A =
√
x>Ax

Therefore, the confidence interval widths we use in our algorithm will be

wti = min(‖xti ‖(V̄ t)−1

(√
2d log(

1 + t/λ
δ

) +
√
λ
)
,1)

(expected rewards are bounded by 1 in our setting, and so the minimum maintains the validity of
the confidence intervals). The upper confidence bounds we use to compute our distribution over
arms will be r̂ti = r̃ti +wti . We will write wt = [wt1, . . . ,w

t
k] to denote the vector of confidence interval

widths at round t.
Little can be said about the widths of these confidence intervals in isolation. However, the

following theorem bounds the sum (over time) of the widths of the confidence intervals around
the contexts actually selected.

Lemma 6 (Abbasi-Yadkori et al. [2011]).

T∑
t=1

wtit ≤
√

2d log
(
1 +

T
dλ

)(√
2dT log(

1 + T /λ
δ

) +
√
T λ

)

17

for i, j = 1, . . . , k do
DistanceEstimatorij = DistanceEstimator(ε2)

end
for t = 1, . . . ,T do

receive the contexts xt = (xt1, . . . ,x
t
k)

Xt = [x1, . . . ,xt−1]
Y t = [rt , . . . , rt−1]
Ṽ t = Xt>Xt +λI
θ̃ = (V t)−1Xt>Y t

for i = 1, . . . , k do
r̃ti = 〈θ̃,xti 〉

wti = min
(
‖xti ‖(V̄ t)−1

(√
2d log(1+t/λ

δ) +
√
λ
)
,1

)
r̂ti = r̃ti +wti

end
for i, j = 1, . . . , k do

uti,j = f latten((xti − x
t
j)(x

t
i − x

t
j)
T))

gti,j = DistanceEstimatori,j .guess(uti,j)

d̂tij =
√
gti,j

end
πt = π(r̂t , d̂t)
Pull an arm it according to πt and receive a reward rtit
S = Od(xt ,πt)
R = {(i, j)|(i, j) < S ∧ |πti −π

t
j | = d̂

t
i,j}

for (i, j) ∈ S do
DistanceEstimatori,j .f eedback(⊥)
vti,j = 1

end
for (i, j) ∈ R do

DistanceEstimatori,j .f eedback(>)
vti,j = 1

end
end

Algorithm 2: Lfull

18

4.3 The Algorithm

The pseudocode for the full algorithm is given in Algorithm 2.
In our proof of Theorem 3, we will connect the regret of Lf ull to the sum of the expected widths

of the confidence intervals pulled at each round. In contrast, what is bounded by Lemma 6 is
the sum of the realized widths. Using the Azuma Hoeffding inequality, we can relate these two
quantities.

Lemma 7 (Azuma-Hoeffding inequality (Hoeffding [1963])). Suppose {Xk : k = 0,1,2,3, . . .} is a
martingale and ∣∣∣Xk −Xk−1

∣∣∣ < ck .
Then, for all positive integers N and all positive reals t,

Pr(XN −X0 ≥ t) ≤ exp(
t2

2
∑N
k=1 c

2
k

)

Lemma 8.

Pr

 T∑
t=1

Ei∼πt [w
t
i]−

T∑
t=1

wtit ≥
√

2T log
1
δ

 ≤ δ
Proof. Once x1, . . . ,xt−1, r1

it , . . . , r
t−1
it−1 and xt are fixed, πt is fixed. In other words, for the filtration

F t = σ (x1, . . . ,xt−1, r1
it , . . . , r

t−1
it−1 ,xt), wtit is F t measurable. Now, define

Dt =
t∑
s=1

Ei∼πs [w
s
i]−

t∑
s=1

wsis

with respect to F t. One can think of Dt as the accumulated difference between the confidence
width of the arm that was actually pulled and the expected confidence width. It’s easy to see that
{Dt} is a martingale, as E[D1] = 0, and E[Dt+1|F t] =Dt.

Also, Dt −Dt−1 = wtit −Ei∼πt [w
t
i] ≤ 1, since the confidence interval widths are bounded by 1.

Applying the Azuma-Hoeffding inequality gives us the following:

Pr(
T∑
t=1

Ei∼πt [w
t
i]−

T∑
t=1

wtit ≥ ε) = Pr(DT ≥ ε) ≤ exp(
−ε2

2T
)

Now, setting ε =
√

2T ln 1
δ yields:

Pr(
T∑
t=1

Ei∼πt [w
t
i]−

T∑
t=1

wtit ≥
√

2T log
1
δ

) ≤ δ

Theorem 3. For any time horizon T , with probability 1− δ:

Regret(Lf ull ,T) ≤O
k2d2 log

(
d · ||A>A||F

ε

)
+ k3εT + d

√
T log(

T
δ

)

If ε = 1/k3T , this is a regret bound of O

(
k2d2 log

(
kdT · ||A>A||F

)
+ d
√
T log(Tδ)

)
19

Proof. We can compute:

Regret(Lf ull ,T) =
T∑
t=1

E

i∼π(r̄t ,d̄t)
[r̄ti]−

T∑
t=1

E

i∼π(r̂t ,d̂t)
[r̄ti]

=
T∑
t=1

〈r̄t ,π(r̄t , d̄t)〉 − 〈r̄t ,π(r̂t , d̂t)〉

=
T∑
t=1

〈r̄t ,π(r̄t , d̄t)〉 − 〈r̄t ,π(r̂t , d̄t)〉+ 〈r̄t ,π(r̂t , d̄t)〉 − 〈r̄t ,π(r̂t , d̂t)〉

≤
T∑
t=1

〈r̂t ,π(r̂t , d̄t)〉 − 〈r̄t ,π(r̂t , d̄t)〉+ 〈r̄t ,π(r̂t , d̄t)〉 − 〈r̄t ,π(r̂t , d̂t)〉

≤
T∑
t=1

〈2wt ,π(r̂t , d̄t)〉+ 〈r̄t ,π(r̂t , d̄t)〉 − 〈r̄t ,π(r̂t , d̂t)〉

Here, the first inequality follows from the fact that r̂t is coordinate-wise larger than r̄t, and that
π(r̂t , d̄t) is the optimal solution to LP (r̂t , d̄t). The second inequality follows from r̄ ∈ [r̃ −w, r̃ +w] =
[r̂ − 2w, r̂].

Just as in the proof of Theorem 2, we now partition time into two sets:

S1 = {t : ∃(i, j) : |d̂tij − d̄
t
ij | > ε and vtij = 1} S2 = {t : ∀(i, j) : |d̂tij − d̄

t
ij | ≤ ε or vtij = 0}

Recall that corollary 1 bounds |S1| ≤ O
(
k2d2 log

(
d·||A>A||F

ε

))
. Since the per-step regret of our al-

gorithm can be at most 1, this means that rounds t ∈ S1 can contribute in total at most C �

O

(
k2d2 log

(
d·||A>A||F

ε

))
regret. Thus, for the rest of our analysis, we can focus on rounds t ∈ S2.

Fix any round t ∈ S2. From Lemma 4 we have:.

〈r̂ ,π(r̂ , d̄)〉 − 〈r̂ ,π(r̂ , d̂)〉 ≤ k3ε

Further manipulations give:(
〈r̂ ,π(r̂ , d̄)〉 − 〈r̄ ,π(r̂ , d̄)〉

)
−
(
〈r̂ ,π(r̂ , d̂)〉 − 〈r̄ ,π(r̂ , d̂)〉

)
≤ k3ε − 〈r̄ ,π(r̂ , d̄)〉+ 〈r̄ ,π(r̂ , d̂)〉

〈2w,π(r̂ , d̄)〉 − 〈2w,π(r̂ , d̂)〉 ≤ k3ε − 〈r̄ ,π(r̂ ,d)〉+ 〈r̄ ,π(r̂ , d̂)〉
〈2w,π(r̂ , d̄)〉 ≤ 〈2w,π(r̂ , d̂)〉+ k3ε − 〈r̄ ,π(r̂ , d̄)〉+ 〈r̄ ,π(r̂ , d̂)〉

20

Now, substituting the above expressions back into our expression for regret:

Regret(Lf ull ,T)

≤ C +
∑
t∈S2

〈2wt ,π(r̂t , d̄t)〉+ 〈r̄t ,π(r̂t , d̄t)〉 − 〈r̄ti ,π(r̂t , d̂t)〉

≤ C +
∑
t∈S2

〈2wt ,π(r̂t , d̂t)〉+ k3ε − 〈r̄t ,π(r̂t , d̄t)〉+ 〈r̄t ,π(r̂t , d̂t)〉+ 〈r̄t ,π(r̂t , d̄t)〉 − 〈r̄ti ,π(r̂t , d̂t)〉

≤ C +
∑
t∈S2

〈2wt ,π(r̂t , d̂t)〉+ k3ε

≤ C + 2
∑
t∈S2

E

i∈π(r̂t ,d̂t)
[wti] + k3ε

≤ C + k3εT + 2

√

2d log
(
1 +

T
dλ

)(√
2dT log(

1 + T /λ
δ

) +
√
T λ

)
+

√
2T log

1
δ

=O

k2d2 log
(
d · ||A>A||F

ε

)+ k3εT +O(d
√
T log(

T
δ

))

The last inequality holds with probability 1− δ and uses Lemmas 6 and 8, and sets λ = 1.

Finally, the bound on the fairness loss is identical to the bound we proved in Theorem 1 (be-
cause our algorithm for constructing distance estimates d̂ is unchanged). We have:

Theorem 4. For any sequence of contexts and any Mahalanobis distance d(x1,x2) = ||Ax1 −Ax2||2:

FairnessLoss(Lf ull ,T ,ε) ≤O
k2d2 log

(
d · ||A>A||F

ε

)
5 Conclusion and Future Directions

We have initiated the study of fair sequential decision making in settings where the notions of
payoff and fairness are separate and may be in tension with each other, and have shown that in
a stylized setting, optimal fair decisions can be efficiently learned even without direct knowledge
of the fairness metric. A number of extensions of our framework and results would be interesting
to examine. At a high level, the interesting question is: how much can we further relax the in-
formation about the fairness metric available to the algorithm? For instance, what if the fairness
feedback is only partial, identifying some but not all fairness violations? What if it only indicates
whether or not there were any violations, but does not identify them? What if the feedback is
not guaranteed to be exactly consistent with any metric? Or what if the feedback is consistent
with some distance function, but not one in a known class: for example, what if the distance is
not exactly Mahalanobis, but is approximately so? In general, it is very interesting to continue
to push to close the wide gap between the study of individual fairness notions and the study of
group fairness notions. When can we obtain the strong semantics of individual fairness without
making correspondingly strong assumptions?

21

Acknowledgements

We thank Steven Wu and Matthew Joseph for helpful discussions at an early stage of this work.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochas-
tic bandits. In Advances in Neural Information Processing Systems 24: 25th Annual Confer-
ence on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 De-
cember 2011, Granada, Spain., pages 2312–2320, 2011. URL http://papers.nips.cc/paper/

4417-improved-algorithms-for-linear-stochastic-bandits.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal
justice risk assessments: the state of the art. arXiv preprint arXiv:1703.09207, 2017.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. arXiv preprint arXiv:1703.00056, 2017.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference,
pages 214–226. ACM, 2012.

Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. On the (im) possibility
of fairness. arXiv preprint arXiv:1609.07236, 2016.

Sara Hajian and Josep Domingo-Ferrer. A methodology for direct and indirect discrimination
prevention in data mining. IEEE transactions on knowledge and data engineering, 25(7):1445–
1459, 2013.

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning.
Advances in Neural Information Processing Systems, 2016.

Ursula Hébert-Johnson, Michael P Kim, Omer Reingold, and Guy N Rothblum. Calibration for
the (computationally-identifiable) masses. arXiv preprint arXiv:1711.08513, 2017.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association, 58(301):13–30, 1963.

Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern, and Aaron Roth. Fairness
in reinforcement learning. In International Conference on Machine Learning, pages 1617–1626,
2017.

Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric learning and
fast similarity search. In Advances in neural information processing systems, pages 761–768, 2009.

Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning:
Classic and contextual bandits. pages 325–333, 2016a.

22

http://papers.nips.cc/paper/4417-improved-algorithms-for-linear-stochastic-bandits
http://papers.nips.cc/paper/4417-improved-algorithms-for-linear-stochastic-bandits

Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. Fair al-
gorithms for infinite and contextual bandits. CoRR, abs/1610.09559, 2016b. URL http:

//arxiv.org/abs/1610.09559.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without dis-
crimination. Knowledge and Information Systems, 33(1):1–33, 2012.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymander-
ing: Auditing and learning for subgroup fairness. arXiv preprint arXiv:1711.05144, 2017.

Michael P Kim, Omer Reingold, and Guy N Rothblum. Fairness through computationally-
bounded awareness. arXiv preprint arXiv:1803.03239, 2018.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair deter-
mination of risk scores. In Proceedings of the 2017 ACM Conference on Innovations in Theoretical
Computer Science, Berkeley, CA, USA, 2017, 2017.

Brian Kulis et al. Metric learning: A survey. Foundations and Trends® in Machine Learning, 5(4):
287–364, 2013.

Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal, and David C Parkes. Cal-
ibrated fairness in bandits. arXiv preprint arXiv:1707.01875, 2017.

Ilan Lobel, Renato Paes Leme, and Adrian Vladu. Multidimensional binary search for contextual
decision-making. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC
’17, Cambridge, MA, USA, June 26-30, 2017, page 585, 2017. doi: 10.1145/3033274.3085100.
URL http://doi.acm.org/10.1145/3033274.3085100.

Guy N Rothblum and Gal Yona. Probably approximately metric-fair learning. arXiv preprint
arXiv:1803.03242, 2018.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. Fair-
ness beyond disparate treatment & disparate impact: Learning classification without disparate
mistreatment. In Proceedings of the 26th International Conference on World Wide Web, pages
1171–1180. International World Wide Web Conferences Steering Committee, 2017.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representa-
tions. In International Conference on Machine Learning, pages 325–333, 2013.

A Generalization to Multiple Actions

In the body of the paper, we analyzed the standard contextual bandit setting in which the algo-
rithm must choose a single action to take at each round. However, it is often the case that this
constraint is artificial and undesirable in settings for which fairness is a concern. Consider, for
example, the case of lending: at each round, a bank observes the loan applications of a collection
of individuals, and decides whom to grant loans to. Some loans may be profitable and some loans
may not be — so the optimal policy is non-trivial. But there need not be a budget constraint —
the optimal policy may grant loans to as many qualified individuals as there are on a given day.

23

http://arxiv.org/abs/1610.09559
http://arxiv.org/abs/1610.09559
http://doi.acm.org/10.1145/3033274.3085100

In our framework, this corresponds to letting the algorithm take as many as k actions on a single
day. Fortunately, all of our results generalize to this case. The maximum reward per day in this
case increases from 1 to k, so naturally the regret bound we obtain is also a factor of k larger. In
this section, we explain the details of our proof that need to be modified.

The first step is to consider a modified linear program LP (a,c), which we will write as LPm(a,c).
It simply replaces the simplex constraint that the probabilities of actions sum to 1 with the hyper-
cube constraint that no probability can be greater than 1:

maximize
π={p1,...,pk}

k∑
i=1

piai

subject to |pi − pj | ≤ ci,j ,∀(i, j)

0 ≤ pi ≤ 1,∀i

We must also change our definition of regret, because the benchmark we want to compete with
is the best fair policy that can make up to k action selections per round. This simply corresponds
to comparing to a benchmark which is defined with respect to LPm(a,c) — but the form of the
regret is unchanged:

Regretm(L,T)

=
T∑
t=1

k∑
i=1

r̄ti · P r(best fair policy pulls arm i in round t)− r̄ti · P r(L pulls arm i in round t)

=
T∑
t=1

〈r̄t ,π(r̄t , d̄t)〉 − 〈r̄t , f t(ht ,xt)〉

where π is defined exactly as before, except with respect to LPm(a,c).
The first observation is that our generalization to multiple arms does not affect our analysis of

fairness loss at all, since we are able to bound this without reference to the rewards. That is, we
still have that fairness loss is bounded as

FairnessLoss(Lf ullm ,T ,ε) ≤O
k2d2 log

(
d · ||A>A||F

ε

)
As for our regret analysis, certain terms in the regret scale by a factor of k.

Regretm(Lf ullm ,T) ≤O
k3d2 log

(
d · ||A>A||F

ε

)
+ k3εT + dk

√
k2T log(

kT
δ

)

Proof. There are only two parts of our proof that depend on the structure on the linear program
LP (a,c). The first is the proof of Lemma 3, which uses the fact that if we take a feasible solution to
LP (a,c) and reduce its values pointwise, we maintain feasibility — that is, that the feasible region
of LP (a,c) is downward closed. But note that the feasible region of LPm(a,c) is also downward
closed, so the same argument goes through. Recall that our analysis in the known objective case
partitions rounds into two sorts: rounds for which we can bound our per-round regret (from

24

Lemma 3), and a bounded number of rounds in which we cannot. For those rounds in which we
cannot bound the per-round regret, the maximum regret is now k rather than 1. So, our regret

during these rounds increases by a factor of k to O
(
k3d2 log

(
d·||A>A||F

ε

))
.

Therefore, we have that

Regretm(Lf ullm ,T) ≤O
k3d2 log

(
d · ||A>A||F

ε

)+ k3εT +
∑
t∈S2

〈2wt ,π(r̂t , d̂t)〉

where S2 = {t : ∀(i, j) : |d̂tij − d̄
t
ij | ≤ ε or vtij = 0}

Next, we need to consider the final term in this expression. 〈wt ,π(r̂t , d̂t)〉 is the expected sum
of the confidence interval widths of the arms that are pulled at round t. By the same martingale
argument as in lemma 8, with high probability, the expected sum of the confidence interval widths
over time horizon T is close to the realized sum of the confidence widths of the arms pulled; in
this case, the martingale is

Dt =
t∑
s=1

k∑
i=1

wsi ·Pr(arm i is pulled in round s)−
t∑
s=1

k∑
i=1

wsi ·1(arm i is pulled in round s)

However, in this case, the martingale difference is bounded by at most k instead of 1. Hence,
applying the Azuma-Hoeffding inequality gives us that with probability 1− δ,

T∑
t=1

k∑
i=1

wti ·Pr(arm i is pulled in round t) ≤
T∑
t=1

k∑
i=1

wti ·1(arm i is pulled in round t) +

√
2k2T log

1
δ

First, note that the confidence interval derived from lemma 5 remains valid. Also, V̄ t = V̄ t−1 +∑
i∈P t x

t
ix
t
i
>. For simplicity in notation, we write P t = {i : arm i is pulled in round t}. So we need to

bound
∑T
t=1

∑
i∈P t w

t
i .

We can then derive:

T∑
t=1

∑
i∈P t

wti ≤
T∑
t=1

∑
i∈P t
‖xti ‖(V̄ t−1)−1

(√
2d log(

1 + t/λ
δ

) +
√
λ
)

≤
T∑
t=1

∑
i∈P t
‖xti ‖(V̄ t−1)−1

(√
2d log(

1 + t/λ
δ

)
)

+
T∑
t=1

∑
i∈P t

(
‖xti ‖(V̄ t−1)−1

√
λ
)

≤
T∑
t=1

∑
i∈P t
‖xti ‖(V̄ t−1)−1 ·

(√√√ T∑
t=1

∑
i∈P t

2d log(
1 + t/λ
δ

)
)

+

√√√
T∑
t=1

∑
i∈P t

λ

≤
T∑
t=1

∑
i∈P t
‖xti ‖(V̄ t−1)−1 ·

(√
2dkT log(

1 + kT /λ
δ

)
)

+
√
kT λ

For each i ∈ [k], write Ai to denote the set of rounds that arm i is pulled.
∑T
t=1

∑
i∈P t ‖xti ‖(V̄ t)−1 =∑k

i=1
∑
t∈Ai ‖x

t
i ‖(V̄ t)−1 , so for each i ∈ [k], we’ll bound

∑
t∈Ai ‖x

t
i ‖(V̄ t)−1 .

25

Lemma 9. ∑
t∈Ai

‖xti ‖(¯V t−1)−1 ≤
√

2d log
(
1 +

kT
dλ

)
Proof. We’ll iterate each ‖xti ‖(¯V t−1)−1 first over round t = 1, . . . ,T and then j ∈ P t where the order of
P t has its very first element as ‖xti ‖ and the rest is arbitrary. Let’s call this indexing a. First, we
have that V̄ (a) = V̄ (a− 1) + x(a)x(a)>. More importantly, because of the way we chose to index, for
each t ∈ Ai and index a that corresponds to (i, t), ‖xti ‖(V̄ t−1)−1 = ‖x(a)‖(V̄ (a−1))−1

From Lemma 11 in Abbasi-Yadkori et al. [2011] we have
∑N
a=1 ‖x(a)‖(V̄ (a−1))−1 ≤

√
2d log

(
1 + N

dλ

)
,

where N ≤ kT .
Therefore, we have that

∑
t∈Ai

‖xti ‖(¯V t−1)−1 ≤
N∑
a=1

‖x(a)‖(V̄ (a−1))−1 ≤
√

2d log
(
1 +

kT
dλ

)

Applying the above lemma for each arm i ∈ [k], we have

T∑
t=1

∑
i∈P t

wti ≤
T∑
t=1

∑
i∈P t
‖xti ‖(¯V t−1)−1 ·

(√
2dkT log(

1 + kT /λ
δ

)
)

+
√
kT λ

≤ k
√

2d log
(
1 +

kT
dλ

)
·
(√

2dkT log(
1 + kT /λ

δ
)
)

+
√
kT λ

26

	Introduction
	Our Results and Techniques
	Additional Related Work

	Model and Preliminaries
	Linear Contextual Bandits
	Fairness Constraints and Feedback
	Regret to the Best Fair Policy
	Mahalanobis Distance

	Warmup: The Known Objective Case
	Outline of the Solution
	The Distance Estimator
	The Algorithm

	The Full Algorithm
	Outline of the Solution
	Confidence Intervals from Abbasi-YadkoriPS11
	The Algorithm

	Conclusion and Future Directions
	Generalization to Multiple Actions

