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1 Virtual evidence

Virtual evidence [8] is a versatile mechanism by which, given a Bayesian network (BN), we may
model the conditional distributions of observed leaf nodes using nonnegative distributions which
need not be normalized for a great deal of probabilistic quantities commonly of interest. Formally, for
a BN G = (V,E) with edge set E and vertex set V , let O ⊆ V = {o1, . . . , on} be a set of observed
leaf nodes, and H = V \ O. For any S ⊆ V , denote the set of parents for all variables in S as πS .
The conditional distribution of oi ∈ O is then p(oi|πoi) =

ψi(oi,πoi )

Zi
, where ψi : R|πoi |+1 → R+, Zi

is a normalizing constant, and R+ is the set of nonnegative reals. The joint distribution over G is thus

p(O,H) =p(O, πO)p(H|O, πO)

=p(H|O, πO)

n∏
i=1

p(oi|πoi)

=p(H|O, πO)

n∏
i=1

ψi(oi, πoi)

Zi

=
1

Z
p(H|O, πO)

n∏
i=1

ψi(oi, πoi), (1)

where Z =
∏n
i=1 Zi. Note that p(H|O, πO) may further factorize depending on the BN.

We now show that, for many practical applications of interest, we do not need the normalization
constants Z1, . . . , Zn when computing the Viterbi path, the probability of evidence, or posteriors of
G. We define the following quantity, which will prove useful throughout our discussion,

p′(O,H) =Zp(O,H) = p(H|O, πO)

n∏
i=1

ψi(oi, πoi).
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1.1 Posterior probabilities

Consider the case where we are interested in posterior probabilities in G, i.e., for H ′ ⊆ H , we would
like to compute p(H ′|O). We thus have

p(H ′|O) =
p(H ′, O)

p(O)

=

∑
X∈H\H′

1
Z p(H|O, πO)

∏n
i=1 ψi(oi, πoi)∑

X∈H
1
Z p(H|O, πO)

∏n
i=1 ψi(oi, πoi)

=

∑
X∈H\H′ p(H|O, πO)

∏n
i=1 ψi(oi, πoi)∑

X∈H p(H|O, πO)
∏n
i=1 ψi(oi, πoi)

=

∑
X∈H\H′ p′(O,H)∑
X∈H p′(O,H)

.

Thus, the normalization constants are not necessary to compute posteriors over the hidden variables.

1.2 Probability of evidence and Viterbi score

The probability of evidence, or score, is the quantity computed after summing over all hidden variables
inG. It is often used to score different sets of observations. For instance, consider that we havem sets
of observations Oi = {oi1, . . . , oin} for i = 1, . . . ,m, where each of the sets may contain observed
information regarding a peptide, observed spectrum, or both. Now, consider we’d like to score
and rank each Oi, using G, as p(Oi) in order to choose the maximum scoring set of observations
O∗ = argmaxOi,i=1,...,m p(Oi). This is the general scenario we have when performing an MS/MS
database search. From Equation 1, we thus have

O∗ = argmax
Oi,i=1,...,m

p(Oi)

= argmax
Oi,i=1,...,m

∑
X∈H

1

Z
p(H|Oi, πO)

n∏
j=1

ψj(oj , πoj )

= argmax
Oi,i=1,...,m

1

Z

∑
X∈H

p(H|Oi, πOi)
n∏
j=1

ψj(oj , πoj )

= argmax
Oi,i=1,...,m

∑
X∈H

p′(O,H).

This is the case since p(Oi, H) ∝ p′(Oi, H) and, since Z is constant with respect to the sum,∑
X∈H p′(O,H) ∝

∑
X∈H p(O,H). Thus, we need not worry about the normalizing constants

Z1, . . . , Zn if we need only make decisions based on the relative scores between sets of observations.

Now, instead of the probability of evidence, consider we would like to score each Oi with their
Viterbi score. We thus have

O∗ = argmax
Oi,i=1,...,m

max
X∈H

1

Z
p(H|Oi, πOi)

n∏
j=1

ψj(oj , πoj )

= argmax
Oi,i=1,...,m

1

Z
max
X∈H

p(H|Oi, πOi)
n∏
i=j

ψj(oj , πoj )

= argmax
Oi,i=1,...,m

max
X∈H

p′(Oi, H)

so that, once again, our ranking of each Oi based on Viterbi score does not depend on the normalizing
constants Z1, . . . , Zn.
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1.3 Viterbi path

Consider we’d like to compute the Viterbi path H∗ of G given O. We thus have

H∗ = argmax
X∈H

1

Z
p(H|O, πO)

n∏
i=1

ψi(oi, πoi)

= argmax
X∈H

p(H|O, πO)

n∏
i=1

ψi(oi, πoi)

= argmax
X∈H

p′(O,H).

Thus, computing the Viterbi path does not require the normalizing constants Z1, . . . , Zn.

2 Proofs for Convex Virtual Emissions

Assume that we’re given a Bayesian network where E is the set of observed evidential random
variables, H is the hypothesis space composed of the cross-product of the n hidden discrete random
variables in the network, and h ∈ H is an arbitrary hypothesis (i.e., an arbitrary instantiation of
the hidden variables). We assume the observed variables e ∈ E are leaf nodes, as is common in
many time-series models where the hidden layer explains the downstream observed layer and and
observed nodes do not share edges, such as hidden Markov models (HMMs), hierarchical HMMs [7],
dynamic Bayesian networks (DBNs) for speech recognition [2], hybrid HMMs [1], as well as the
DBNs designed for MS/MS analysis, DRIP [3] and Didea [9].

Consider the log-posterior probability

log p(h|E) = log
p(h,E)

p(E)
= log

p(h,E)∑
h̄∈H p(h̄, E)

= log p(h,E)− log
∑
h∈H

p(h)p(E|h), (2)

as is computed in Didea. Assume p(h) and p(E|h) are non-negative probability distributions and
that the emission density p(E|h) is parameterized by θ which we’d like to learn. Applying virtual
evidence for such models, p(E|h) need not be normalized for posterior inference, Viterbi inference,
and comparative inference between sets of observations (further details are discussed in Section 1).

Assume that there is a parameter θh to be learned for every hypothesis of latent variables, though if we
have fewer parameters, parameter estimation becomes strictly easier. We make this parameterization
explicit by denoting the emission distributions of interest as pθh(E|h). We first look for functions
fh(θh) = pθh(E|h) which render the log-likelihood convex,

log p(E) = log
∑
h∈H

p(h)pθh(E|h) = log
∑
h∈H

chfh(θh), (3)

where ch = p(h) are nonnegative constants with regards to the parameters of interest. Assume that
fh(·) is smooth on R for all h ∈ H .
Theorem 1. The convex functions of the form log

∑
h∈H chfh(θh), such that (f ′h(θh))2 −

f ′′h (θh)fh(θh) = 0, are log
∑
h∈H chfh(θh) = log

∑
h∈H chαhe

βhθh , where αh and βh are con-
stants uniquely determined by initial conditions.

Proof. In order to ensure convexity of Equation 3, it is necessary and sufficient that
∇2
θ log

∑
h∈H chfh(θh) � 0. We thus have the following for the gradient

∇θ log
∑
h∈H

chfh(θh) =
1∑

h∈H chfh(θh)

 c1f
′
1(θ1)
...

c|H|f
′
|H|(θ|H|)

 .
Letting Z =

∑
h chfh(θh), we have

δ log pθ(h|E)

δθiδθj
=

{
cif

′′
i (θi)Z−(cif ′

i(θi))
2

Z2 if i = j
−cif ′

i(θi)cjf
′
j(θj)

Z2 if i 6= j

3



Letting a =
[
c1f
′′
1 (θ1) . . . c|H|f

′′
|H|(θ|H|)

]T
and b =

[
c1f
′
1(θ1) . . . c|H|f

′
|H|(θ|H|)

]T
, we

may thus write the Hessian as

∇2
θ log

∑
h∈H

chfh(θh) =
diag(a)

Z
− 1

Z2
bbT . (4)

Equation 4 is positive semi-definite if and only if, for all x ∈ Rn,

xT∇2
θ log

∑
h∈H

chfh(θh)x ≥0

Z2xT∇2
θ log

∑
h∈H

chfh(θh)x ≥0

xT (Zdiag(a)− bbT )x ≥0

xTZdiag(a)x ≥xT bbTx

(
∑
i

cifi(θi))(
∑
i

cif
′′
i (θi)x

2
i ) ≥(

∑
i

cif
′
i(θi)xi)

2. (5)

Letting l, u, v be vectors with components li = xi
√
cif ′′i (θi), ui = xi

cif
′
i(θi)√

cifi(θi)
, vi =

√
cifi(θi),

we require

(lT l)(vT v) ≥(uT v)2. (6)

Note that, by the non-negativity of ch and fh(θh), vi is real and the quantify lT l is always real. When
l = u, the bound in Equation 6 is guaranteed to hold by the Cauchy-Schwarz inequality. Thus, the
log-probability of evidence is convex when

li =ui

⇒ xi

√
cif ′′i (θi) =xi

cif
′
i(θi)√

cifi(θi)

⇒ f ′′i (θi)fi(θi) =(f ′i(θi))
2. (7)

Equation 7 is an autonomous, second-order, nonlinear ordinary differential equation (ODE), the
solution of which leads us to the following generalization of the commonly encountered LSE convex
function.

To simplify notation, let t = θi and y(t) = fi(t), where we drop the independent variable when it is
understood. Thus, we are looking for y such that

y′′ =
(y′)2

y
. (8)

Let v(t) = y′(t), w(y) = v(t(y)), and ẇ = dw
dy . We thus have

v′ =
v2

y
,

ẇ(y) =
dw

dy
(y) =

dv

dt

dt

dy

∣∣∣∣
t(y)

=
v′

y′

∣∣∣∣
t(y)

=
v′

v

∣∣∣∣
t(y)

.

Using Equation 8, we have

ẇ(y) =
v′(t(y))

w(y)
=
v2(t(y))

w(y)y
=
w2(y)

w(y)y
=
w(y)

y
.

Solving this ODE using seperation of variables, we have

lnw = ln y + d0

⇒ w = exp(ln y + d0) = ed0y = d1y,
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where d0 is a constant of integration. To solve for y, we have
w(y(t)) = v(t) = y′ = d1y.

As before, we solve y′ = d1y using seperation of variables, giving us
ln y =d1t+ d2

⇒ y(t) =d3e
d1t,

where d1 and d3 are constants uniquely determined by initial conditions. Returning to our earlier
notation, the solution to Equation 7 is thus fi(θi) = d3e

d1θi . Letting βi = d1 and αi = d3 completes
the proof.

Corollary 1.1. For convex log p(E) = log
∑
h∈H p(h)pθh(E|h) such that (p′θh(E|h))2 −

p′′θh(E|h)pθh(E|h) = 0, the log-posterior log pθ(h|E) is concave in θ.

Proof. From Theorem 1, pθh(E|h) = αhe
βhθh and we have

log pθ(h|E) = log pθh(h,E)− log
∑
h∈H

p(h)pθh(E|h)

= log p(h)pθh(E|h)− log
∑
h∈H

p(h)pθh(E|h)

= log p(h)αhe
βhθh − log

∑
h∈H

p(h)pθh(E|h)

= log p(h)αh + βhθh − log
∑
h∈H

p(h)pθh(E|h).

With respect to θ, βhθh is affine, − log
∑
h∈H p(h)pθh(E|h) is concave, and the remaining term is

constant.

3 Analysis of CVEs in Didea

In order to analyze Didea’s scoring function, define boolean vectors length ō bx, yx such that, for
the set of b-ions βx = {∪l−1i=1{b(m(x1:i), 1)}} and y-ions υx = {∪l−1i=0{y(m(xi+1:l), 1)}} of x, and
0 ≤ j ≤ ō we have

bx(j) =1{j∈β}, yx(j) = 1{j∈υ}.

We note that computing Didea scores as detailed in the sequel would be much more slower than
computing Didea scores using sum-product inference. However, the compact description of Didea’s
scoring function allows much easier analysis in Sections 3.1 and 3.2.

Recall the CVE used in the main paper, fθτ (s(i)) = eθτs(i). Under this new emission distribution,
Didea’s scoring function may thus be compactly written as

ψλ(s, x) = log p(x, z|τ0 = 0)− log
∑
τ

p(x, zτ |τ0 = τ)

=

l∑
t=1

(log fθ0(bt) + log fθ0(yn−t))− log
∑
τ

exp

l∑
t=1

(log fθτ (bt) + log fθτ (yn−t))

= θ0b
T
x s+ θ0y

T
x s− log

∑
τ

exp(θτ b
T
x sτ + θτy

T
x sτ ) = θ0(bx + yx)T s− log

∑
τ

exp [θτ (bx + yx)T sτ ].

(9)

3.1 Gradients of CVEs in Didea

Letting hτ (x, s) = (bx + yx)T sτ , the gradient of this new conditional log-likelihood has elements
δ

δθτ
ψθ(s, x)

∣∣∣∣
τ=0

= h0(x, s)− 1∑
0 e

θ0h0(x,s)

∑
0

h0(x, s)eθ0h0(x,s) (10)

δ

δθτ
ψθ(s, x)

∣∣∣∣
τ 6=0

= − 1∑
τ e

θτhτ (x,s)

∑
τ

hτ (x, s)eθτhτ (x,s). (11)
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Given N i.i.d. training PSMs {(s1, x1), (s2, x2), . . . , (sN , xN )}, we need only run sum-product in-
ference once to cache the values {∪Ni=1{h−L(si, xi), . . . , h0(si, xi), . . . , hL(si, xi)}} for extremely
fast gradient based learning.

3.2 Proof of Didea lower bound for the XCorr scoring function

Theorem 2. Assume the PSM scoring function ψ(s, x) is that of Didea under the emission function
fθτ (s(i)) with uniform weights θi = θj , for i, j ∈ [−L,L]. Then ψ(s, x) ≤ O(XCorr(s, x)).

Proof. Recall that, for theoretical spectrum u, XCorr is computed as

XCorr(s, x) = uT s− 1

2L+ 1

L∑
τ=−L

uT sτ = uT (s− 1

2L+ 1

L∑
τ=−L

sτ ) = uT s′.

Let λ = θi for i ∈ [−L,L]. From Didea’s scoring function, we have

ψ(s, x) = log p(x, z, τ0 = 0)− log

L∑
τ=−L

p(τ0 = τ)p(x, zτ |τ0 = τ) = log p(x, z, τ0 = 0)− logE[p(x, zτ |τ)],

so that, by Jensen’s inequality,

ψ(s, x) ≤ log p(x, z, τ0 = 0)−E[log p(x, zτ |τ)]. (12)

The right-hand side of 12, which we’ll denote as g(s, x), is

g(s, x) = log
1

|τ |p(x, z|τ0 = 0)−E[log p(x, zτ |τ0 = τ)]

= − log |τ |+ λ(bx + yx)T s−
L∑

τ=−L

p(τ0 = 0) log eλ(bx+yx)T sτ

= − log |τ |+ λ(bx + yx)T s− λ

|τ |

L∑
τ=−L

(bx + yx)T sτ .

Letting u = bx + yx, we have

g(s, x) = − log |τ |+ λuT s− λ

|τ |

L∑
τ=−L

uT sτ = − log |τ |+ λuT (s− 1

|τ |

L∑
τ=−L

sτ ) = − log |τ |+ λXCorr(s, x).

⇒ ψ(s, x) ≤ g(s, x) = − log |τ |+ λXCorr(s, x)

4 Charge varying spectra

In practice, observed spectra exhibit higher charged fragment ions. In order to account for these
new fragmentation peaks while still keeping the scoring function well calibrated (i.e., keeping higher
charged PSMs comparable in range to lower charged PSMs), a Didea charge varying model is
introduced in [9]. In this model, a global variable switches between two separate models: the singly
charged model and a model which considers both single and double charged fragment ions. The latter
model contains a charge variable in every frame which is hidden and integrated over. This effectively
averages the contribution between the differently charge b-and y-ion pairs. Finally, the contribution
between the two separate charged models is averaged (per frame). The posterior of τ0 = 0 remains
Didea’s PSM score in this setting. Further details of the model’s scoring function may be found in [9].

5 Conditional Fisher kernel for improved discriminative analysis

We leverage Didea’s gradient-based PSM information to aid in discriminative postprocessing analysis.
We utilize the same set of features as the DRIP Fisher kernel [5] where, to measure the relative utility
of the gradients under study, the DRIP log-likelihood gradients are replaced with Didea gradient
information (derived in Section 3.1). These features are used to train an SVM classifier, Percolator [6],
which recalibrates PSM scores based on the learned decision boundary between input targets and
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decoys. The resulting Didea conditional Fisher kernel is benchmarked against the DRIP Fisher
kernel and the scoring algorithms benchmarked in the main paper (using their respective standard
Percolator features sets). DRIP Kernel features were computed using a customized version of the
DRIP Toolkit, provided by the authors of [5]. MS-GF+ Percolator features were collected using
msgf2pin and XCorr/XCorr p-value features collected using Crux. The resulting postprocessing
results are displayed in Figure 1.
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Figure 1: Post-database-search accuracy plots measured by q-value versus number of spectra identified for
worm (C. elegans) and yeast (Saccharomyces cerevisiae) datasets. All methods are post-processed using the
Percolator SVM classifier [6]. “DRIP Fisher” augments the standard set of DRIP PSM features (described in [4])
with the recently derived gradient-based DRIP features in [5]. “Didea Fisher” uses the aforementioned DRIP
features with the gradient features replaced by Didea’s conditional log-likelihood gradients. “XCorr,” “XCorr
p-value,” and “MS-GF+” use their standard sets of Percolator features (described in [4]).
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