
A Preliminaries

A.1 SVRG

We state the SVRG framework which was originally given by [12]. Our algorithms for solving
regression and eigenvector computation both involve linear system solvers which are solved using the
SVRG framework. SVRG is used to get linear convergence for stochastic gradient descent by taking
gradient updates which equals the exact gradient in expectation but which have reduced variance
which goes down to 0 as we reach near the optimum. This specific statement of the results is taken
from [10].

Theorem 14 (SVRG for Sums of Non-Convex functions) Let D be a distribution over functions,
g1, g2, . . . , gn ∈ Rd → Rd. Let∇f(x)−∇f(y) = Egk∼D∇gk(x)−∇gk(y) ∀x, y ∈ Rd and let
x∗ = argminx∈Rd f(x). Suppose that starting from some initial point x0 ∈ Rd in each iteration k,
we let

xk+1 := xk − η(∇gi(xk)−∇gi(x0)) + η∇f(x0)

where gi ∼ D independently at random for some η.

If f is µ-strongly convex and if for all x ∈ Rd, we have

E
gi∼D

‖∇gi(x)−∇gi(x∗)‖22 ≤ 2σ2(f(x)− f(x∗)) (1)

where σ2 we call the variance parameter, then for all m ≥ 1, we have

E

 1

m

∑
k∈[m]

f(xk)− f(x∗)

 ≤ 1

1− 2ησ2

(
1

mηµ
+ 2ησ2

)
(f(x0)− f(x∗))

Consequently, if we pick η to be a sufficiently small multiple of 1
σ2 then when m = O(σ

2

µ ), we can
decrease the error by a constant multiplicative factor in expectation.

The proof is taken from [10]. We are stating it here just for completeness.

Proof Using the fact that we have,∇f(x)−∇f(y) = Egi∼D∇gi(x)−∇gi(y) ∀x, y ∈ Rd, we
have that:

E
gi∼D

‖xk+1 − x∗‖22 = E
gi∼D

‖xk − η(∇gi(xk)−∇gi(x0) +∇f(x0))− x∗‖22

= E
gi∼D

‖xk − x∗‖22 − 2η E
gi∼D

(∇gi(xk)−∇gi(x0) +∇f(x0))>(xk − x∗)+

η2 E
gi∼D

‖∇gi(xk)−∇gi(x0) +∇f(x0)‖22

= E
gi∼D

‖xk − x∗‖22 − 2η∇f(xk)>(xk − x∗)+

η2 E
gi∼D

‖∇gi(xk)−∇gi(x0) +∇f(x0)‖22 (2)

Now, using ‖x+ y‖22 ≤ 2‖x‖22 + 2‖y‖22, we get:

E
gi∼D

‖∇gi(xk)−∇gi(x0) +∇f(x0)‖22 ≤ 2 E
gi∼D

‖∇gi(xk)−∇gi(x∗)‖22+

2 E
gi∼D

‖∇gi(x0)−∇gi(x∗)−∇f(x0)‖22 (3)

Now, we know that ∇f(x∗) = 0 and using E ‖x− Ex‖2 ≤ E ‖x‖22

E
gi∼D

‖∇gi(x0)−∇gi(x∗)−∇f(x0)‖22 = E
gi∼D

‖∇gi(x0)−∇gi(x∗)− (∇f(x0)−∇f(x∗))‖22

≤ E
gi∼D

‖∇gi(x0)−∇gi(x∗)‖22 (4)
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Now, using equation 1 and equation 4 in equation 3, we get:

E
gi∼D

‖∇gi(xk)−∇gi(x0) +∇f(x0)‖22 ≤ 4σ2(f(xk)− f(x∗)) + 4σ2(f(x0)− f(x∗))

≤ 4σ2(f(xk)− f(x∗) + f(x0)− f(x∗)) (5)

Using the convexity of f , we get f(x∗)− f(xk) ≥ ∇f(xk)>(x∗ − xk), using this and equation 5 in
equation 2, we get

E
gk∼D

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 − 2η∇f(xk)>(xk − x∗)

+ 4η2σ2(f(xk)− f(x∗) + f(x0)− f(x∗))

≤ ‖xk − x∗‖22 − 2η(f(xk)− f(x∗))

+ 4η2σ2(f(xk)− f(x∗) + f(x0)− f(x∗))

≤ ‖xk − x∗‖22 − 2η(1− 2ησ2)(f(xk)− f(x∗)) + 4η2σ2(f(x0)− f(x∗))

Rearranging, we get that

2η(1− 2ησ2)(f(xk)− f(x∗)) ≤ ‖xk − x∗‖22 − E
gk∼D

‖xk+1 − x∗‖22 + 4η2σ2(f(x0)− f(x∗))

Summing over all iterations and taking expectations, we get

2η(1− 2ησ2)E[
∑
k∈[m]

(f(xk)− f(x∗))] ≤ ‖x0 − x∗‖22 + 4mη2σ2(f(x0)− f(x∗))

Now, using strong convexity, we get that ‖x0 − x∗‖22 ≤ 2
µ (f(x0)− f(x∗)) and using this we get:

2η(1− 2ησ2)E

 ∑
k∈[m]

(f(xk)− f(x∗))

 ≤ 2

µ
(f(x0)− f(x∗)) + 4mη2σ2(f(x0)− f(x∗))

E

 1

m

∑
k∈[m]

(f(xk)− f(x∗))

 ≤ 1

1− 2ησ2

(
1

mηµ
+ 2ησ2

)
(f(x0)− f(x∗))

A.2 Acceleration

Below is a Theorem from [9] which shows how can we accelerate an ERM problem where the
objective is strongly convex and each of the individual components is smooth in a black box fashion
by solving many regularized version of the problems. We will use this theorem to give accelerated
runtimes for our problems of regression and top eigenvector computation.

Theorem 15 (Accelerated Approximate Proximal Point, Theorem 1.1 of [9]) Let f : Rn → R
be a µ strongly convex function and suppose that for all x0 ∈ Rn, c > 0, λ > 0, we can compute a
possibly random xc ∈ Rn such that

E f(xc)− min
x∈Rn

{
f(x) +

λ

2
‖x− x0‖22

}
≤ 1

c

[
f(x0)− min

x∈Rn
{f(x) +

λ

2
‖x− x0‖22}

]
in time Tc. Then, given any x0, c > 0, λ ≥ 2µ, we can compute x1 such that

E f(x1)−min
x
f(x) ≤ 1

c
[f(x0)−min

x
f(x)]

in time O
(
T

4( 2λ+µ
µ )

3
2

√
dλµe log(c)

)
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B Proofs

B.1 Sampling Techniques Proofs

First, we provide the following Lemma 16 which will be used later in the proofs to relate the difference
between function values at any point x and the optimal point x∗ to the A>A norm of difference
between the two points. This is key to relating the error from sampling to function error. Note that
this is standard and well known.

Lemma 16 Let f(x) = 1
2‖Ax− b‖

2
2 and x∗ = argmin f(x), then

2(f(x)− f(x∗)) = ‖A(x− x∗)‖22

Proof We know ∇f(x∗) = 0 since x∗ = argmin f(x), thus, we get that A>(Ax∗ − b) = 0 or
A>Ax∗ = A>b. Now,

2(f(x)− f(x∗)) = ‖Ax− b‖22 − ‖Ax∗ − b‖22
= (Ax− b−Ax∗ + b)>(Ax− 2b+ Ax∗)

= (x− x∗)>A>(Ax− 2b+ Ax∗)

= (x− x∗)>(A>Ax− 2A>b+ A>Ax∗)

= (x− x∗)>(A>Ax− 2A>Ax∗ + A>Ax∗)

= (x− x∗)>A>A(x− x∗)
= ‖A(x− x∗)‖22

Lemma 3 (Numerical Sparsity) For a ∈ Rd and c ∈ [d], we have ‖Π̄c(a)‖22 ≤ s(a)‖a‖22/c.

Proof We can assume without loss of generality that |ai| ≥ |aj | whenever i < j i.e. the indices are
sorted in descending order of the absolute values.

‖Π̄c(a)‖22
‖a‖22

=
a2
c+1 + a2

c+2 + · · ·+ a2
d

‖a‖22
≤ |ac+1|(|ac+1|+ |ac+2|+ · · ·+ |ad|)

‖a‖22

≤ |ac+1|‖a‖1
‖a‖22

≤ ‖a‖1‖a‖1
c‖a‖22

≤ ‖a‖
2
1

c‖a‖22
≤ s(a)

c
.

Lemma 4 (Stochastic Approximation of a) Let a ∈ Rd and c ∈ N and let our estimator (â)c =
Samplevec(a, x) (Algorithm 1) Then,

E[(â)c] = a and E
[
‖(â)c‖22

]
≤ ‖a‖22

(
1 +

s(a)

c

)

Proof Since, (â)c = Samplevec(a, c), we can also write this as (â)c = 1
c

∑c
i=1Xi where {Xi} are

sampled i.i.d. such that Pr(Xi =
aj
pj
êj) = pj =

|aj |
‖a‖1 ∀j ∈ [d].

Calculating first and second moments of random variable Xi, we get that

E[Xi] =
∑
j∈d

pj
aj
pj
êj =

∑
j∈d

êjaj

= a (6)

E
[
‖Xi‖22

]
=
∑
j∈[d]

pj

(
aj êj
pj

)2

=
∑
j∈[d]

a2
j

pj
= ‖a‖1

∑
j∈[d]

a2
j

|aj |
= ‖a‖1

∑
j∈[d]

|aj |

= ‖a‖21 (7)
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Now, using the calculated moments in equation 6 and equation 7, to calculate the first and second
moments of (â)c

E[(â)c] = E

1

c

∑
i∈[c]

Xi

 =
1

c

∑
i∈[c]

E[Xi] =
1

c

∑
i∈[c]

a = a

E
[
‖(â)c‖22

]
= E


∥∥∥∥∥∥1

c

∑
i∈[c]

Xi

∥∥∥∥∥∥
2

2


=

1

c2
E

∑
i∈[c]

‖Xi‖22 +
∑

i,j∈[c],i6=j

X>i Xj


Using the moments for random variable Xi calculated in equation 6 and equation 7 and independence
of Xi and Xj for i 6= j, we get that

E
[
‖(â)c‖22

]
=

1

c2

∑
i∈[c]

‖a‖21 +
∑

i,j∈[c],i6=j

a>a


=

1

c2
(
c‖a‖21 + c(c− 1)a>a

)
=

1

c

(
‖a‖21 + (c− 1)a>a

)
Using s(a) = ‖a‖21/‖a‖22

E[‖(â)c‖22] = ‖a‖22
1

c
(s(a) + (c− 1)) ≤ ‖a‖22

(
1 +

s(a)

c

)

Lemma 5 (Stochastic Approximation of a>x) Let a, x ∈ Rd and c ∈ [d], and let our estimator be
defined as (â>x)c = Sampledotproduct(a, x, c) (Algorithm 2) Then,

E[(â>x)c] = a>x and E
[
(â>x)2

c

]
≤ (a>x)2 +

1

c
‖Π̄c(a)‖22‖x‖22

Proof Since (â>x)c = Sampledotproduct(a, x, c), we can also write this as (â>x)c = Πc(a)>x+
1
c

∑c
i=1Xi(x) where {Xi} are sampled i.i.d. such that for each Xi, Pr(Xi = akxk

pk
) = pk =

a2k
‖Π̄c(a)‖22

∀k ∈ Īc(a).

Calculating first and second moments of random variable Xi, we get that

E[Xi] =
∑

k∈Īc(ai)

pk
akxk
pk

=
∑

k∈Īc(ai)

akxk

= Π̄c(a)>x (8)

E
[
‖Xi‖22

]
=

∑
k∈Īc(ai)

pk

(
akxk
pk

)2

=
∑

k∈Īc(a)

a2
kx

2
k

pk
=

∑
k∈Īc(a)

‖Π̄c(a)‖22a2
kx

2
k

a2
k

=
∑

k∈Īc(a)

‖Π̄c(a)‖22x2
k

≤ ‖Π̄c(a)‖22‖x‖22 (9)
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Using the moments calculated in equation 8 and equation 9, we calculate the first and second moments
of the estimator (â>x)c

E[(â>x)c] = E

Πc(a)>x+
1

c

∑
i∈[c]

Xi


= Πc(a)>x+

1

c

∑
i∈[c]

E[Xi]

= Πc(a)>x+
1

c

∑
i∈[c]

Π̄c(a)>x

= Πc(a)>x+ Π̄c(a)>x

= a>x

E
[
(â>x)2

c

]
= E


Πc(a)>x+

1

c

∑
i∈[c]

Xi

2


= E

(Πc(a)>x)2 + 2Πc(a)>x
1

c

∑
i∈[c]

Xi +
1

c2

∑
i∈[c]

Xi

2


= E
[
(Πc(a)>x)2

]
+ E

2Πc(a)>x
1

c

∑
i∈[c]

Xi

+ E

 1

c2

∑
i∈[c]

Xi

2


= (Πc(a)>x)2 + 2Πc(a)>x
1

c

∑
i∈[c]

E[Xi] + E

 1

c2

∑
i∈[c]

Xi

2


Using the expectation of the random variable Xi, calculated in equation 8

E
[
(â>x)2

c

]
= (Πc(a)>x)2 + 2Πc(a)>x

1

c

∑
i∈[c]

Π̄c(a)>x+ E

 1

c2

∑
i∈[c]

Xi

2


= (Πc(a)>x)2 + 2Πc(a)>xΠ̄c(a)>x+
1

c2
E

∑
i∈[c]

X2
i +

∑
i,j∈[c],i6=j

Xi ·Xj



Using the independence of Xi and Xj , we get that

E[(â>x)2
c ] = (Πc(a)>x)2 + 2Πc(a)>xΠ̄c(a)>x+

1

c2

∑
i∈[c]

E
[
X2
i

]
+

∑
i,j∈[c],i6=j

E[Xi] · E[Xj ]


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Using the first and second moments of the random variable Xi, calculated in equation 8 and equation
9

E[(â>x)2
c ] = (Πc(a)>x)2 + 2Πc(a)>xΠ̄c(a)>x

+
1

c2

∑
i∈[c]

‖Π̄c(a)‖22‖x‖22 +
∑

i,j∈[c],i6=j

Π̄c(a)>xΠ̄c(a)>x


= (Πc(a)>x)2 + 2Πc(a)>xΠ̄c(a)>x

+
1

c2
(
c‖Π̄c(a)‖22‖x‖22 + c(c− 1)Π̄c(a)>xΠ̄c(a)>x

)
= (Πc(a)>x)2 + 2Πc(a)>xΠ̄c(a)>x+

1

c
‖Π̄c(a)‖22‖x‖22 +

(
1− 1

c

)
Π̄c(a)>xΠ̄c(a)>x

≤ (Πc(a)>x)2 + 2Πc(a)>xΠ̄c(a)>x+
1

c
‖Π̄c(a)‖22‖x‖22 + Π̄c(a)>xΠ̄c(a)>x

Using (Πc(a)>x)2 + 2Πc(a)>xΠ̄c(a)>x+ Π̄c(a)>xΠ̄c(a)>x = (a>x)2, we get that

E[(â>x)2
c ] ≤ (a>x)2 +

1

c
‖Π̄c(a)‖22‖x‖22

Lemma 6 (Stochastic Approximation of aa>x) Let a, x ∈ Rd and c ∈ [d], and the estimator be
defined as (âa>x)c = Samplerankonemat(a, x, c) (Algorithm 3) Then,

E[(âa>x)c] = aa>x and E
[
‖(âa>x)c‖22

]
≤ ‖a‖22

(
1 +

s(a)

c

)(
(a>x)2 +

s(a)

c2
‖a‖22‖x‖22

)

Proof Since, (âa>x)c = (â)c(â>x)c where (â)c, (â>x)c are the estimators for a and a>x defined
in Lemma 4 and Lemma 5 respectively and formed using independent samples. First calculating the
expectation of (âa>x)c

E[(âa>x)c] = E[(â)c(â>x)c] = E[(â)c]E[(â>x)c] = aa>x

The above proof uses the fact that (â)c and (â>x)c are estimated using independent samples. Now,
calculating the second moment of ‖(âa>x)c‖2, we get that

E
[
‖(âa>x)c‖22

]
= E

[
‖(â)c(â>x)c‖22

]
= E

[
‖(â)c‖22‖(â>x)c‖22

]
= E

[
‖(â)c‖22

]
E
[
(âa>x)2

c

]
≤ ‖a‖22

(
1 +

s(a)

c

)(
(a>x)2 +

1

c
‖Π̄c(a)‖22‖x‖22

)
Now, using Lemma 3, we know that ‖Π̄c(a)‖22 ≤

s(a)
c ‖a‖

2
2

Thus, we get that

E
[
‖(âa>x)c‖22

]
≤ ‖a‖22

(
1 +

s(a)

c

)(
(a>x)2 +

s(a)

c2
‖a‖22‖x‖22

)
Lemma 7 (Stochastic Approximation of A>Ax ) Let A ∈ Rn×d with rows a1, a2, . . . , an and

x ∈ Rd and let (Â>Ax)k = Samplemat(A, x, k) (Algorithm 4) where k is some parameter. Then,

E
[
(Â>Ax)k

]
= A>Ax and E

[∥∥∥∥(Â>Ax)k

∥∥∥∥2

2

]
≤M

(
‖Ax‖22 +

1

k2
‖A‖2F ‖x‖22

)
.
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Proof Since, (Â>Ax)k = 1
pi

(âiai>x)ci with probability pi =
‖ai‖22
M

(
1 + si

ci

)
where M is the

normalization constant where (âia>i x)ci is the estimator of aia>i x defined in Lemma 6 and are
formed independently of each other and independently of i where si = s(ai) and k is some parameter

such that ci =
√
sik ≤ d. Calculating the expectation of (Â>Ax)k, we get

E
[
(Â>Ax)k

]
= E

i

[
1

pi
E[(âiai>x)ci ]

]
= E

i

[
1

pi
aia
>
i x

]
=
∑
i

pi
pi
aia
>
i x =

∑
i

aia
>
i x = A>Ax

In the proof above, we used the expectation of (âiai>x)ci calculated in Lemma 6 and also used that
i and (âiai>x)ci are chosen independently of each other.

Calculating the second moment of (Â>Ax)k, we get

E

[∥∥∥∥(Â>Ax)k

∥∥∥∥2

2

]
= E

[∥∥∥∥ 1

pi
(âiai>x)ci

∥∥∥∥2

2

]
= E

i

[
1

p2
i

E
[
‖(âiai>x)ci‖22

]]
≤ E

i

[
1

p2
i

‖ai‖22
(

1 +
si
ci

)(
(a>i x)2 +

si
c2i
‖ai‖22‖x‖22

)]
≤
∑
i

1

pi
‖ai‖22

(
1 +

si
ci

)(
(a>i x)2 +

si
c2i
‖ai‖22‖x‖22

)

Putting the value of pi =
‖ai‖22
M

(
1 + si

ci

)
, we get

E

[∥∥∥∥(Â>Ax)k

∥∥∥∥2

2

]
≤M

∑
i

(
(a>i x)2 +

si
c2i
‖ai‖22‖x‖22

)
Now, putting the value of ci =

√
sik, we get

E

[∥∥∥∥(Â>Ax)k

∥∥∥∥2

2

]
≤M

∑
i

(
(a>i x)2 +

1

k2
‖ai‖22‖x‖22

)
≤M

(
‖Ax‖22 +

1

k2
‖A‖2F ‖x‖22

)

B.2 Application Proofs

B.2.1 Top Eigenvector Computation

Lemma 8 (Variance bound for eigenvector computation) Let ∇g(x) = λx − (Â>Ax)k where

(Â>Ax)k is the estimator of A>Ax defined in Lemma 7, and k =
√

sr(A), then we get

E[∇g(x)] = (λI −A>A)x and E
[
‖∇g(x)−∇g(x∗)‖22

]
≤ (f(x)− f(x∗))8M/gap

with average time taken in calculating ∇g(x), T =
∑
i ‖ai‖22

(
si +

√
sisr(A)

)
/M where M =∑

i ‖ai‖22
(

1 +
√

si
sr(A)

)
and f(x) = 1

2x
>Bx− b>x

Proof Using the unbiasedness of the estimator (Â>Ax)k from Lemma 7, we get E[∇g(x)] =

E[λx− (Â>Ax)k] = λx−A>Ax

Putting the second moment of (Â>Ax)k from Lemma 7 and since in one iteration, the same ∇g(x)
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is picked, the randomness in∇g(x) and ∇g(x∗) is same, therefore, we get

E
[
‖∇g(x)−∇g(x∗)‖22

]
= E

[
‖λ(x− x∗)− ( ̂A>A(x− x∗))k‖22

]
= λ2‖x− x∗‖22 − 2λ(x− x∗)> E

[
( ̂A>A(x− x∗))k

]
+ E

[
‖( ̂A>A(x− x∗))k‖22

]
Using the unbiasedness and second moment bound of (Â>Ax)k from Lemma 7, we get

E
[
‖∇g(x)−∇g(x∗)‖22

]
= λ2(x− x∗)2 − 2λ‖A(x− x∗)‖22

+M

(
‖A(x− x∗)‖22 +

1

k2
‖A‖2F ‖x− x∗‖22

)
≤ λ2(x− x∗)2 +M

(
‖A(x− x∗)‖22 +

1

k2
‖A‖2F ‖x− x∗‖22

)
Now, since we want to relate the variance of our gradient estimator the function error to be used in
the SVRG framework, using the strong convexity parameter of the matrix B, we get the following:

E
[
‖∇g(x)−∇g(x∗)‖22

]
≤ ‖x− x∗‖2B

λ2

λ− λ1
+M‖x− x∗‖2B

(
λ1

λ− λ1
+

‖A‖2F
(λ− λ1)k2

)
Now, using k2 = sr(A) and rewriting the equation in terms of problem parameters, sr(A) =

‖A‖2F
λ1

and λ = (1 + cgap)λ1 where c is some constant and using gap ≤ 1 we get

E
[
‖∇g(x)−∇g(x∗)‖22

]
≤ ‖x− x∗‖2B

4λ1

gap
+

2‖x− x∗‖2BM
gap

≤ 2(f(x)− f(x∗))

(
4λ1

gap
+

2M

gap

)
It is easy to see that λ1 ≤M and hence, the second term always upper bounds the first term, thus we
get the desired variance bound. Note from Theorem 14, we know that the gradient update is of the
following form.

xk+1 := xk − η(∇gi(xk)−∇gi(x0)) + η∇f(x0) .

Note, the estimator (Â>Ax)k uses (â)ci and (â>x)ci estimators internally which both use ci =
√
sik

coordinates. Also, λxk can be added to xk inO(1) time by just maintaining a multiplicative coefficient
of the current iterate and doing the updates accordingly. Hence, our estimator of ∇gi(xk)−∇gi(x0)
can be implemented inO(ci) time when the ith row is chosen. Furthermore, the dense part∇f(x0) =
Bx0−b can be added inO(1) time by separately maintaining the coefficient of this fixed vector in each
xk and using it as necessary to calculate the O(ci) coordinates during each iteration. Consequently,
we can bound the total expected time for implementing the iterations by

T =
∑
i

pici =
∑
i

‖ai‖22
M

(
1 +

si
ci

)
ci =

∑
i

‖ai‖22
M

(ci + si) =
∑
i

‖ai‖22
M

(√
sisr(A) + si

)
Theorem 17 (Theorem 16 of [10]) Let us say we have a linear system solver that finds x such that:

E ‖x− x∗‖2B ≤
1

2
‖x0 − x∗‖2B

in time O(T ) where f(x) = 1
2x
>Bx − b>x, B = λI − A>A and x0 is some ini-

tial point. Then we can find an ε-approximation v to the top eigenvector of A>A in time
O
(
T ·
(

log2
(

d
gap

)
+ log

(
1
ε

)))
where

(
1 + gap

150

)
λ1 ≤ λ ≤

(
1 + gap

100

)
λ1

Theorem 16 of [10] states the running time in terms of the running time required for their system
solver but it can be replaced with any other ε-approximate linear system solver.
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Theorem 18 (Linear System Solver Runtime for B = λI −A>A) For a matrix B = λI −
A>A, we have an algorithm which returns x such that E ‖x − x∗‖2B ≤ 1

2‖x
0 − x∗‖2B in run-

ning time

O

(
nnz(A) +

1

gap2λ1

∑
i

‖ai‖22(
√
si +

√
sr(A))

√
si

)
assuming λ1(1 + gap

150 ) ≤ λ ≤ λ1(1 + gap
100 ) where x∗ = argminx∈Rd

1
2x
>Bx− c>x

Proof The problem of solving min f(x) where f(x) = 1
2x
>Bx− c>x can be solved by using the

SVRG framework defined in Theorem 14 with the strong convexity parameter µ = λ− λ1(A>A).
Using the estimator for∇f(x) defined in Lemma 8, we get the corresponding variance defined in The-
orem 14 as 4M

gap i.e. σ2 = 4M
gap where M is as defined in Lemma 8. Therefore, according to Theorem

14, we can decrease the error by a constant factor in total number of iterations O( 4M
gap(λ−λ1) ). The

expected time taken per iteration is T =
∑
i
‖ai‖22
M

(
si +

√
sr(A)si

)
as defined in Lemma 8. Now,

again we can argue that the total time taken would be Tσ2
/λ−λ1 with constant probability by using

Markov inequality to argue that time taken per iteration and number of iterations do not exceed their
expected values with constant probability upto constant factors. Therefore, the total time taken to de-
crease the error by a constant factor would beO

(
nnz(A) + 1

λ−λ1

M
gap

∑
i
‖ai‖22
M

(
si +

√
sisr(A)

))
.

Simplifying, we get

1

λ− λ1

M

gap

∑
i

‖ai‖22
M

(
si +

√
sisr(A)

)
=

1

gap2

∑
i

‖ai‖22
λ1

(√
si +

√
sr(A)

)√
si

Theorem 9 (Numerically Sparse Top Eigenvector Computation Runtime) Linear system solver
from Theorem 18 combined with the shift and invert framework from [10] stated in Theorem 17 gives
an algorithm which computes ε-approximate top eigenvector (Definition 1) in total running time
O
((

nnz(A) + 1
gap2λ1

∑
i ‖ai‖22

(√
si +

√
sr(A)

)√
si

)
·
(

log2
(

d
gap

)
+ log

(
1
ε

)))
Proof We get this from combining Theorem 17 and Theorem 18.

Theorem 10 (Numerically Sparse Accelerated Top Eigenvector Computation Runtime)
Linear system solver from Theorem 18 combined with acceleration framework from [9] men-
tioned in Theorem 15 and shift and invert framework from [10] stated in Theorem 17 gives an
algorithm which computes ε-approximate top eigenvector (Definition 1) in total running time

Õ

(
nnz(A) + nnz(A)3/4√

gap

(∑
i
‖ai‖22
λ1

(√
si +

√
sr(A)

)√
si)
)1/4

)
where Õ hides a factor of(

log2
(

d
gap

)
+ log

(
1
ε

))
log
(

d
gap

)
.

Proof When solving the regularized linear system in B + γI = (λ + γ)I −A>A upto constant
accuracy, we get a total running time ofO

(
nnz(A) + 2λ1(A>A)

(λ+γ−λ1)2

∑
i ‖ai‖22

(√
si +

√
sr(A)

)√
si

)
by Theorem 18. Hence, the total running time for solving the unregularized linear system in B
according to Theorem 15 will be
O
((

nnz(A) + 2λ1

(λ+γ−λ1)2

∑
i ‖ai‖22

(√
si +

√
sr(A)

)√
si

)
log
(

2γ
λ−λ1

)√
γ

λ−λ1

)
assuming γ ≥

2(λ− λ1) by the assumption of the theorem.

Balancing the two terms, we get that

γ =

√
2λ1

nnz(A)

∑
i

‖ai‖22
(√

si +
√

sr(A)
)√

si

Putting this in the total runtime and using γ
λ−λ1

≤
√

d‖A‖2F
λ1nnz(A)gap2 , we get a total runtime of

Õ

nnz(A) + nnz(A)

(
λ1

nnz(A)(λ− λ1)2

∑
i

‖ai‖22
(√

si +
√

sr(A)
)√

si)

) 1
4


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where Õ hides a factor of log
(

d‖A‖2F
λ1nnz(A)gap2

)
.

Since ‖A‖
2
F

λ1
≤ d and nnz(A) ≥ 1, we get a running time of

O

nnz(A) +
nnz(A)

3
4

√
gap

(∑
i

‖ai‖22
λ1

(√
si +

√
sr(A)

)√
si)

) 1
4

 log

(
d

gap

)
for solving a linear system in B. Then we get the final running time from combining Theorem 17
along with the time for the linear system solver in B obtained above.

B.2.2 Regression

Lemma 11 (Variance Bound for Regression) Let ∇g(x) = (Â>Ax)k where (Â>Ax)k is the
estimator for A>Ax defined in Lemma 7 and k =

√
κ, assuming κ ≤ d2 we get

E[∇g(x)] = A>Ax and E
[
‖∇g(x)−∇g(x∗)‖22

]
≤M(f(x)− f(x∗))

with average time taken in calculating ∇g(x), T =
√
κ
M

∑
i∈[n] ‖ai‖22

√
si where M =∑

i ‖ai‖22
(
1 +

√
si
κ

)
where f(x) = 1

2‖Ax− b‖
2
2

Proof Since we know (Â>Ax)k is an unbiased estimate from Lemma 7, we get E[∇g(x)] =

E[(Â>Ax)k] = A>Ax

To calculate E
[
‖∇g(x)−∇g(x∗)‖22

]
, using the second moment of (Â>Ax)k from Lemma 7 and

since in one iteration, the same∇g(x) is picked, the randomness in∇g(x) and∇g(x∗) is same, we
get

E
[
‖∇g(x)−∇g(x∗)‖22

]
= E

[
‖( ̂A>A(x− x∗))k‖22

]
≤M

(
‖A(x− x∗)‖22 +

1

k2
‖A‖2F ‖x− x∗‖22

)
Putting the value of k =

√
κ, and using strong convexity, ‖A(x− x∗)‖22 ≥ µ‖x− x∗‖22 we get that

E
[
‖∇g(x)−∇g(x∗)‖22

]
≤M

(
‖A(x− x∗)‖22 + ‖A(x− x∗)‖22

)
≤ 2M‖A(x− x∗)‖22

Note from Theorem 14, we know that the gradient update is of the following form.

xk+1 := xk − η(∇gi(xk)−∇gi(x0)) + η∇f(x0)

Note, the estimator (Â>Ax)k uses (â)ci and (â>x)ci estimators internally which both use ci =
√
sik

coordinates. Hence, our estimator of∇gi(xk)−∇gi(x0) can be implemented inO(ci) time when the
ith row is chosen. Furthermore, the dense part ∇f(x0) = A>(Ax0 − b) can be added in O(1) time
by separately maintaining the coefficient of this fixed vector in each xk and using it as necessary to
calculate the O(ci) coordinates during each iteration. Consequently, we can bound the total expected
time for implementing the iterations by

T =
∑
i∈[n]

pici =
∑
i∈[n]

‖ai‖22
M

(
1 +

si
ci

)
ci =

∑
i∈[n]

‖ai‖22
M

(ci + si) =
∑
i∈[n]

‖ai‖22
M

(√
κ+
√
si
)√

si

Now, we know that si ≤ d and κ ≥ d, hence, the first term in the above expression always dominates.
Hence, we get the desired bound on T .

Theorem 12 (Numerically Sparse Regression Runtime) For solving ε-approximate regression
(Definition 2), if κ ≤ d2, SVRG framework from Theorem 14 and the variance bound from Lemma 11
gives an algorithm with running time O

((
nnz(A) +

√
κ
∑
i∈[n]

‖ai‖22
µ

√
si

)
log
(

1
ε

))
.
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Proof The problem of solving regression min f(x) where f(x) = 1
2‖Ax−b‖

2
2 can be solved by using

the SVRG framework defined in Theorem 14 with the strong convexity parameter µ = λd(A
>A).

Using the estimator for ∇f(x) defined in Lemma 11, we get the corresponding variance defined
in Theorem 14 as M i.e. σ2 = M where M is as defined in Lemma 11. Therefore, according to
Theorem 14, we can decrease the error by a constant factor in total number of iterations O(Mµ ). The

expected time taken per iteration is T =
√
κ
M

∑
i∈[n] ‖ai‖22

√
si as defined in Lemma 11. Now, since

we know the expected number of iterations O(σ
2
/µ) and expected time O(T ) per iteration, we can

argue that with constant probability, the time taken is O(T ) and number of iterations is O(σ
2
/µ) (upto

constants) by using Markov inequality and hence, the total running time with constant probability will
be O(Tσ

2
/µ) to decrease the error by constant multiplicative factor. Therefore, the total time taken

would be O
(

nnz(A) +
√
κ
∑
i∈[n]

‖ai‖22
µ

√
si

)
and thus, the total time taken to get an ε-approximate

solution to the problem would be O
((

nnz(A) +
√
κ
∑
i∈[n]

‖ai‖22
µ

√
si

)
log
(

1
ε

))
.

Theorem 13 (Numerically Sparse Accelerated Regression Runtime) For solving ε-approximate
regression (Definition 2) if κ ≤ d2, SVRG framework from Theorem 14, acceleration framework
from Theorem 15 and the variance bound from Lemma 11 gives an algorithm with running time

O

(
nnz(A)2/3κ1/6

(∑
i∈[n]

‖ai‖22
µ

√
si

)1/3

log(κ) log
(

1
ε

))
Proof Solving a regularized least squares problem i.e. minx ‖Ax− b‖22 + λ‖x− x0‖22 is equivalent
to solving a problem with a modified matrix Ã with n+ d rows with the last d rows having sparsity
of 1 and rows ãi = ai if i ≤ n and 0 otherwise, s̃i = si if i ≤ n and 1 otherwise and µ̃ = µ + λ
and therefore, by Theorem 12, the running time for solving the regularized regression upto constant
accuracy will be

O

nnz(Ã) +

√
‖Ã‖2F
µ+ λ

∑
i∈[n+d]

‖ãi‖22
µ+ λ

√
s̃i


which is equal to

O

nnz(A) + d+

√
‖A‖2F + dλ2

µ+ λ

∑
i∈[n]

‖ai‖22
µ+ λ

√
si +

√
‖A‖2F + dλ2

µ+ λ

dλ2

µ+ λ

 .

Thus, the total running time for solving the unregularized problem will be, by Theorem 15

Õ

nnz(A) + d+

√
‖A‖2F + dλ2

µ+ λ

∑
i∈[n]

‖ai‖22
µ+ λ

√
si +

√
‖A‖2F + dλ2

µ+ λ

dλ2

µ+ λ

√λ

µ


where Õ hides a factor of log

(
λ+2µ
µ

)
. Since λ > 2µ by the assumption of Theorem 15, we get

λ+ µ = O(λ), thus the total running time becomes

O

nnz(A) + d+

√
‖A‖2F + dλ2

λ

∑
i∈[n]

‖ai‖22
λ

√
si +

√
‖A‖2F + dλ2

λ

dλ2

λ

√λ

µ
log

(
λ

µ

)
Assuming nnz(A) ≥ d and λ2 <

‖A‖2F
d since λ should be less than the smoothness parameter of the

problem. The running time becomes

O

nnz(A) +

√
‖A‖2F
λ

∑
i∈[n]

‖ai‖22
λ

√
si +

√
‖A‖2F
λ

dλ2

λ

√λ

µ
log

(
λ

µ

)
Since, λ2 ≤ 1

d

∑
i∈[n] ‖ai‖22

√
si by the assumption for this case as si ≥ 1, hence, we get that the

running time becomes

O

nnz(A) +

√
‖A‖2F
λ

∑
i∈[n]

‖ai‖22
λ

√
si

√λ

µ
log

(
λ

µ

)
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Balancing the two terms, we get the value of λ =
(
‖A‖F

nnz(A)

∑
i∈[n] ‖ai‖22

√
si

)2/3

which also satisfies
our assumption on λ, hence the total running time becomes

O

nnz(A)
√
µ

 ‖A‖F
nnz(A)

∑
i∈[n]

‖ai‖22
√
si

1/3

log

 ‖A‖F
µ3/2nnz(A)

∑
i∈[n]

‖ai‖22
√
si




Thus, the running time for solving the system upto ε accuracy will be

O

nnz(A)
2/3κ

1/6

∑
i∈[n]

‖ai‖22
µ

√
si

1/3

log (κ) log

(
1

ε

)
C Entrywise Sampling

In this section, we compute what bounds we get by first doing entrywise sampling on matrix A to get
Ã and then running regression on Ã. Let us say we do entrywise sampling on the matrix A ∈ Rn×d
to obtain a matrix Ã ∈ Rn×d with s non-zero entries such that ‖A− Ã‖2 ≤ ε.
Then, we can write Ã = A + E where E ∈ Rn×d where ‖E‖2 ≤ ε
To get a bound on ‖A>A− Ã

>
Ã‖2

‖A>A− Ã
>
Ã‖2 = ‖A>A− (A + E)

>
(A + E)‖2

= ‖ −A>E −E>A−E>E‖2
≤ 2σmax(A)ε+ ε2

For ε ≤ λmin(A>A)ε′

2σmax(A) , we get

‖A>A− Ã
>
Ã‖2 ≤ λmin(A>A)ε′

and thus, we get that Ã
>
Ã is a spectral approximation to A>A i.e.

(1− ε′)A>A ≤ Ã
>
Ã ≤ (1 + ε′)A>A

Thus, we can solve a linear system in A>A to get δ multiplicative accuracy by solving log( 1
δ )

linear systems in Ã
>
Ã upto constant accuracy and hence, the total running time will be (nnz(Ã) +

‖Ã‖2F s
′

λmin(Ã
>
Ã)

) log(1
δ ) where s′ is the number of entries per row of Ã i.e. we can find x such that

‖x− x∗‖A>A ≤ δ‖x0 − x∗‖A>A where A>Ax∗ = c.

Assuming uniform sparsity which is the best case for this appraoch and might not be true in general,
we get the following running times by instantiating the above running time with different entry wise
sampling results.

Using the results in [2] we get, s′ = O(
||A||2F
ε2 ) where ε = λmin(A>A)ε′

2σmax(A) and hence s′ =
||A||2Fσ

2
max(A)

λ2
min(A>A)ε′2

and hence a total running time of Õ
(

nnz(A) +
‖A‖4Fλmax(A>A)

λ3
min(A>A)

)
)

Using the results in [1] we get, s′ = O(
∑
i ‖A(i)‖21
nε2 ) and hence we get a total running time of

Õ
(

nnz(A) +
∑
i ‖A(i)‖21‖A‖

2
Fλmax(A>A)

nλ3
min(A>A)

)
)

or Õ
(

nnz(A) +
∑
i si‖ai‖

2
2‖A‖

2
Fλmax(A>A)

nλ3
min(A>A)

)
)

Using the results in [5] we get, s′ =
∑
ij
|Aij |√
nε

and hence, s′ = σmax(A)

λmin(A>A)

∑
ij
|Aij |√
nε

and hence a total running time of Õ

(
nnz(A) +

∑
ij |Aij |‖A‖2Fσmax(A)
√
nλ2

min(A>A)

)
or

Õ

(
nnz(A) +

∑
i

√
si‖ai‖2‖A‖2F

√
λmax(A>A)√

nλ2
min(A>A)

)
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Table 3: Previous results in entry wise matrix sparsification. Given a matrix A ∈ Rn×n, we want to
have a sparse matrix Ã ∈ Rn×n satisfying ‖A− Ã‖2 ≤ ε. The first column indicates the number of
entries in Ã (in expectation or exact). Note that this is not a precise treatment of entrywise sampling
results since some results grouped together in the first row have different success probabilities and
some results also depends on the ratio of the maximum and minimum entries in the matrix but this is
the lower bound and we ignore details for simplicity since this suffices for our comparison.

Previous entry wise sampling results

Sparsity of Ã in Õ Citation

n
‖A‖2F
ε2

[2, 11, 19, 18, 8, 14]
√
n
∑
ij

|Aij |
ε

[5]∑
i

||ai||21
ε2

+

√
||A||21
ε2

[1]
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