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A Implementation Details

For our image encoder and decoder, we use the DCGAN architecture [2] as the image encoder and
decoder in our model. The number of layers are set based on the input or output image size, 5 layers
for 64× 64 images and 6 layers for 128× 128. All recurrent neural networks are LSTMs with hidden
size 64. The dimension of the content vector zC is 128, and the dimension of the pose vectors zt,P is
3, containing the parameters of a spatial transformer. We train our model for 200k iterations with
the Adam optimizer [1] with initial learning rate 0.001, which is decayed to 0.0001 halfway through
training. For all experiments, we optimize both the reconstruction and prediction losses during the
first half of training, and optimize only the prediction loss in the second half, though we found that
training with both losses throughout the entire training process produces similar results.

We assume our random latent variables, zi0,P , βi
t , and ziC , to be Gaussian. Thus, our model outputs

the mean and standard deviation for these variables. The prior distributions are p(βi
t) ∼ N (0, 0.1),

and p(ziC) ∼ N (0, 1). The prior for initial pose is p(zi0,P ) ∼ N ([2, 0, 0], [0.2, 1, 1]) for Moving
MNIST, and p(zi0,P ) ∼ N ([4, 0, 0], [0.2, 1, 1]) for Bouncing Balls.

B Qualitative Results

In this section, we show more qualitative results on Moving MNIST (Figure 1) and Bouncing Balls
(Figure 2). Figure 2 shows more examples where our model predicts the collision.

Below we present some failure cases for Bouncing Balls, where the balls fail to be separated. If
the balls are too close together for all input frames, our model may produce blurry results. For
collisions, since the trajectories after collision are highly sensitive to the collision surface, our model
may identify the collision but produce incorrect trajectories.
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Figure 1: Qualitative results on Moving MNIST.
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Figure 2: Qualitative results on Bouncing Balls.
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Figure 3: Bouncing Balls failure cases.
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