
Supplementary material
3D Steerable CNNs: Learning Rotationally
Equivariant Features in Volumetric Data

1 Design choices

1.1 Feature types and multiplicities

The choice of the types and multiplicities of the features is a hyperparameter of our network compara-
ble to the choice of channels in a conventional CNN. As in the latter we follow the logic of doubling
the number of multiplicities when downsampling the feature maps. The types and multiplicities of the
network’s input and output are prescribed by the problem to be solved. If one uses only scalar fields,
then the kernels can only be isotropic, higher order representation allows more complex kernels. A
more detailed investigation of the choice of these hyperparameters is left open for future work.

1.2 Normalization

We implemented an equivariant version of batch normalization [?]. For scalar fields, our implemen-
tation matches with the usual batch normalization. For the nonscalar fields we normalize them with
the average of their norms:

fi(x) 7→ fi(x)

 1

|B|
∑
j∈B

1

V

∫
dx||fj(x)||2 + ε

−1/2 (1)

where B is the batch and i, j are the batch indices.

In order to reduce the memory consumption, we merged the batch normalization operation with the
convolution

κ ? (Af +B)︸ ︷︷ ︸
BN

= (Aκ) ? f + κ ? B.

1.3 Nonlinearities

The nonlinearities of an equivariant network need to be adapted to be equivariant themselves. Note
that the domain and codomain of the nonlinearities might transform under different representations.
We give an overview over the nonlinearities with which we experimented in the following paragraphs.

Elementwise nonlinearities Scalar features do not transform under rotations. As a consequence,
they can be acted on by elementwise nonlinearities as in conventional CNNs. We chose ReLU
nonlinearities for all scalar features except those which are used as gates (see below).

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

F scalar
n F scalar

n

F scalar
n+1 F scalar

n+1

ReLU

Ind
SE(3)
SO(3)[id](g)

Ind
SE(3)
SO(3)[id](g)

ReLU

Norm nonlinearity The representations we are considering are all orthogonal and hence preserve
the norm of feature vectors:

‖ρ(r)f(x)‖ = fT (x)ρT (r)ρ(r)f(x) = fT (x)f(x) = ‖f(x)‖ ∀r ∈ SO(3), f ∈ F

It follows that any nonlinearity applied to the norm of the feature commutes with the group trans-
formation. Denoting a positive bias by β ∈ R+, we experimented with norm nonlinearites of the
form

f(x) 7→ σnorm(f)(x) := ReLU (‖f(x)‖ − β) f(x)

‖f(x)‖
.

Intuitively, the bias acts as a threshold on the norm of the feature vectors, setting small vectors to zero
and preserving the orientation of large feature vectors. In practice, this kind of nonlinearity tended to
converge slower than the gated nonlinearities, therefore we did not use them in our final experiments.
This issue might be related to the problem of finding a suitable initialization of the learned biases for
which we could not derive a proper scale. Norm nonlinearities were considered before in [8].

Fn Fn

Fn+1 Fn+1

σnorm

Ind
SE(3)
SO(3)[ρ](g)

Ind
SE(3)
SO(3)[ρ](g)

σnorm

Tensor product nonlinearity The tensor product of two fields f1 and f2 is in index notation
defined by

[f1 ⊗ f2]µν(x) = f1µ(x)f
2
ν (x).

This operation is nonlinear and equivariant and hence can be used in neural networks. We denote this
nonlinearity by

σ⊗ : Fn ⊕Fn → Fn+1 := Fn ⊗Fn.
Note that the output of this operation transforms under the tensor product representation ρ ⊗ ρ of
the input representations ρ. In our framework we could perform a change of basis Q defined by
Qρ⊗ ρQ−1 =

⊕
j D

j to obtain features transforming under irreducible representations.

Fn ⊕Fn Fn ⊕Fn

Fn+1 = Fn ⊗Fn Fn+1 = Fn ⊗Fn

σ⊗

Ind
SE(3)
SO(3)[ρ⊕ ρ](g)

Ind
SE(3)
SO(3)[ρ⊗ ρ](g)

σ⊗

2

gated blockinput output

convolution

Figure 1: A gated nonlinearity requires one extra scalar field (represented by gray circles with an I) per nonscalar
output fields (represented by circles with a ρ). Specifically, the number of scalar output channels for the preceding
convolution operator is increased by the number of features acted on by gated nonlinearities, and the extra scalar
fields are computed in the same way as any other scalar field. We use sigmoid for the gate fields. In this picture,
there is one scalar field in the output. It is activated with a ReLU.

Gated nonlinearity The gated nonlinearity acts on any feature vector by scaling it with a data
dependent gate. We compute the gating scalars for each output feature via a sigmoid nonlinearity
σ : F scalar

n → F scalar
n acting on an associated scalar feature. Figure 1 shows how the gated nonlinaritiy

is coupled with the convolution operation. One can view the gated nonlinearity as a special case of
the norm nonlinearity since it operates by changing the length of the feature vector. Simultaneously it
can also be seen as a tensor product nonlinearity where one of the two fields as a scalar field. We
found that the gated nonlinearities work in practice better than the the other options described above.

F scalar
n ⊕Fn F scalar

n ⊕Fn

Fn+1 Fn+1

σgate

Ind
SE(3)
SO(3)[id⊕ρ](g)

Ind
SE(3)
SO(3)[ρ](g)

σgate

2 Reduced parameter cost of 3D Steerable CNNs

106 107

Number of parameters

0.55

0.60

0.65

0.70

Te
st

 a
cc

ur
ac

y 3D CNN
3D Steerable CNN
Selected models

Figure 2: Performance of our 3D Steerable CNN com-
pared to a conventional 3D CNN with varying numbers
of filters.

In the main paper, we demonstrated that the
3D Steerable CNN outperforms a conventional
CNN despite having many fewer parameters. To
ensure that the reduced number of parameters
would not be an advantage also for the conven-
tional CNN (due to overfitting with the high-
capacity network), we trained a series of con-
ventional CNNs with reduced number of filters
in each layer (Figure 2). Note that the relative
performance gain of our model increases dra-
matically if we restrict the conventional CNN
to use the same number of parameters as the
Steerable CNN.

3 The Tetris experiment

The architecture used for the Tetris experiment has 4 hidden layers, the kernel size is 5 and the
padding is 4. We didn’t use batch normalization. Table 1 shows the multiplicities of the fields
representations and the sizes of the fields. We compare with a regular CNN that has the same feature

3

map sizes. The CNN is like the SE3 network simply without the constraint of being equivariant for
rotation. It has therefore much more parameters since its kernels are unconstrained. The SE3 network
has 41k parameters and the CNN has 6M parameters.

l = 0 l = 1 l = 2 l = 3 size CNN features
input 1 363 1

layer 1 4 4 4 1 403 43
layer 2 16 16 16 223 144
layer 3 32 16 16 133 160
layer 4 128 173 128
output 8 1 8

Table 1: Architecture of the network for the Tetris experiment. Between layer 1-2 and 2-3 there is a stride of 2.
Between layer 4 and the output there is a global average pooling.

low pass filter disabled enabled
CNN 24%± 4% 27%± 7%
SE3 36%± 6% 99%± 2%

Table 2: Test accuracy to classify rotated pieces of Tetris. Average and standard deviation over 17 runs.

4 3D Model classification

To find the model we ran 10 different models by changing depth, multiplicities, dropout, low pass
filter or stride and two initialization method.

For this experiment we used a kernel size of 5 and a padding of 4. We used batch normalization.
In this architecture we did’t used the low pass filters. Table 3 shows the multiplicities of the fields
representations and the sizes of the fields. This network has 142k parameters.

We converted the 3d models into voxels of size 64 × 64 × 64 with the following code https:
//github.com/mariogeiger/obj2voxel.

Table 4 compares our results with results of the original competition and two other articles [2, 3].

l = 0 l = 1 l = 2 size
input 1 643

layer 1 8 4 2 343

layer 2 8 4 2 383

layer 3 16 8 4 213

layer 4 16 8 4 253

layer 5 32 16 8 153

layer 6 32 16 8 193

layer 7 32 16 8 123

layer 8 512 163

output 55 1
Table 3: Architecture of the network for the 3D Model experiment. Where the size decrease we used a stride of
2. Between the last hidden layer and the output there is a global average pooling.

5 The CATH experiment

5.1 The data set

The protein structures used in the CATH study were simplified to include only Cα atoms (one atom
per amino acid in the backbone), and placed at the center of a 503vx grid, where each voxel spans 0.2
nm. The values of the voxels were set to the densities arising from placing a Gaussian at each atom
position, with a standard deviation of half the voxel width. Since we limit ourselves to grids of size 5
nm, we exclude proteins which expand beyond a 5 nm sphere centered around their center of mass.
This constraint is only violated by a small fraction of the original dataset, and thus constitutes no
severe restriction.

4

https://github.com/mariogeiger/obj2voxel
https://github.com/mariogeiger/obj2voxel

micro macro total
P@R R@N mAP P@R R@N mAP score input size params

Furuya [4] 0.814 0.683 0.656 0.607 0.539 0.476 1.13 126× 103 8.4M
Esteves [3] 0.717 0.737 0.685 0.450 0.550 0.444 1.13 2 × 642 0.5M
Tatsuma [7] 0.705 0.769 0.696 0.424 0.563 0.418 1.11 38× 2242 3M
Ours 0.704 0.706 0.661 0.490 0.549 0.449 1.11 1× 643 142k
Cohen [2] 0.701 0.711 0.676 - - - - 6× 1282 1.4M
Zhou [1] 0.660 0.650 0.567 0.443 0.508 0.406 0.97 50× 2242 36M
Kanezaki [5] 0.655 0.652 0.606 0.372 0.393 0.327 0.93 - 61M
Deng [6] 0.418 0.717 0.540 0.122 0.667 0.339 0.85 - 138M

Table 4: Results of the SHREC17 experiment.

For training purposes, we constructed a 10-fold split of the data. To rule out any overlap between the
splits (in addition to the 40% homology reduction), we further introduce a constraint that any two
members from different splits are guaranteed to originate from different categories at the "superfamily"
level in the CATH hierarchy (the lowest level in the hierarchy), and all splits are guaranteed to have
members from all 10 architectures. Further details about the data set are provided on the website
(https://github.com/wouterboomsma/cath_datasets).

5.2 Establishing a state-of-the-art baseline

The baseline 3D CNN architecture for the CATH task was determined through a range of experiments,
ultimately converging on a ResNet34-like architecture, with half the number of channels compared to
the original implementation (but with an extra spatial dimension), and using a global pooling at the
end to obtain translational invariance. After establishing the architecture, we conducted additional
experiments to establish good values for the learning and drop-out rates (both in the linear and in the
convolutional layers). We settled on a 0.01 dropout rate in the convolutional layers, and L1 and L2
regularization values of 10−7. The final model consists of 15, 878, 764 parameters.

5.3 Architecture details

Following the same ResNet template, we then constructed a 3D Steerable network, by replacing
each layer with its equivariant equivalent. In contrast to the model architecture for the amino acid
environment, we here opted for a minimal architecture, where we use exactly the same number of
3D channels as in the baseline model, which leads to a model with the following block structure:
(2, 2, 2, 2), (((2, 2, 2, 2)×2)×3), (((4, 4, 4, 4)×2)×4), (((8, 8, 8, 8)×2)×6), (((16, 16, 16, 16)×
2)× 2 + ((256, 0, 0, 0)). Here the 4-tuples represent fields of order l = 0, 1, 2, 3, respectively. The
final block deviates slightly from the rest, since we wish to reduce to a scalar representation prior to
the pooling. Optimal regularization settings were found to be a capsule-wide convolutional dropout
rate of 0.1, and L1 and L2 regularization values of 10−8.5. In this minimal setup, the model contains
only 143, 560 parameters, more than a factor hundred less than the baseline.

5

https://github.com/wouterboomsma/cath_datasets

References
[1] Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and Longin Jan Latecki. Gift: A real-time

and scalable 3d shape search engine. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[2] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International
Conference on Learning Representations (ICLR), 2018.

[3] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. 3D
object classification and retrieval with Spherical CNNs. arXiv preprint arXiv:1711.06721,
abs/1711.06721, 2017.

[4] Takahiko Furuya and Ryutarou Ohbuchi. Deep aggregation of local 3d geometric features for
3d model retrieval. In Proceedings of the British Machine Vision Conference (BMVC), pages
121.1–121.12, September 2016.

[5] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. Rotationnet: Joint object
categorization and pose estimation using multiviews from unsupervised viewpoints, 2018.

[6] Manolis Savva, Fisher Yu, Hao Su, Asako Kanezaki, Takahiko Furuya, Ryutarou Ohbuchi,
Zhichao Zhou, Rui Yu, Song Bai, Xiang Bai, Masaki Aono, Atsushi Tatsuma, S. Thermos,
A. Axenopoulos, G. Th. Papadopoulos, P. Daras, Xiao Deng, Zhouhui Lian, Bo Li, Henry Johan,
Yijuan Lu, and Sanjeev Mk. Large-Scale 3D Shape Retrieval from ShapeNet Core55. In Ioannis
Pratikakis, Florent Dupont, and Maks Ovsjanikov, editors, Eurographics Workshop on 3D Object
Retrieval. The Eurographics Association, 2017.

[7] Atsushi Tatsuma and Masaki Aono. Multi-fourier spectra descriptor and augmentation with
spectral clustering for 3d shape retrieval. The Visual Computer, 25(8):785–804, Aug 2009.

[8] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Har-
monic networks: Deep translation and rotation equivariance. In Computer Vision and Pattern
Recognition (CVPR), 2017.

6

	Design choices
	Feature types and multiplicities
	Normalization
	Nonlinearities

	Reduced parameter cost of 3D Steerable CNNs
	The Tetris experiment
	3D Model classification
	The CATH experiment
	The data set
	Establishing a state-of-the-art baseline
	Architecture details

