A Supplementary material

A.1 Proof of Lemma 1:

We first show that the feasible set of (3) is contained in the feasible set of (10). We do this by using
the fact that a convex set with a smooth boundary is contained in the halfspace defined by the tangent
hyperplane at any point of the boundary of the convex set. Consider a point (1, ) on the boundary
of the convex set defined by the constraints in (3) and observe that

SyWeLy > SpT, w
{(wz7xe) e R2[7ETCM |y£|}c{(we7fcz)€R2 (Sflﬁfe><$§—ze> >0} (15)

sign(wg) = ty
Plugging in wy = b h and z; = ¢ m, we have that any feasible (h, m) satisfies

sge;mbh + szb}fzc}m > 2y, £=1,...,L,

which implies s,(b] hel i + bl hefm) > 2|y for all £. So, the feasible set of (10) contains the
feasible set of (3). Lastly, note that among all points (h, m) € (h,m) & S, only (h, ) is feasible
in (3). So, if (h m) solves (10) then (h m) solves (3). O

A.2 Proof of Lemma 2:

Define a one-sided loss function:
L
m) = %Z [2|y4| — sycymblh — s;b]he]m
=1

where (-)4 denotes the positive side. The LP in (10) can now be equivalently expressed as

(h,7) := axrgmin ||k, + |m|. subjectto L(h,m) <O0. (16)
(h,m)eRE+N

We want to show that there is no feasible descent direction (6h, dm) € D around the true solution

(h,m). Since (6h, m) is a feasible perturbation from the proposed optimal (k, 712), we have from
(16)

L(h + 6h,m + dm) < 0. (17
We begin by expanding the loss function £(h + 6h, 1 + dm) below

M=

L(h + 6h,m + 0m) = 1 [s0(2ye — b hc] (1 + om) — c]mb] (h + Sh)] N

{=1

M=

> 1> [~ siblhcfém — spc]mbloh] , . (18)

¢
Let ¢:(s) := (s)+ — (s — t)+. Using the fact that ¢;(s) < (s)4, and that for every a, ¢ > 0, and
5 € R, Yar(s) = ta(3), we have

1

L L
1 [— Snghc}ém — s4€] mbTéh 1 Z V|| (5h,5m)|2 (—SZb}wagém — sw}rhb}éh)
=1

~
Il
—

L
|6k, 0m)l2- > 1, (— <<czmw, bj hey), %»

1

L
— |5k, 5m)5 l; S E v (—se ((cImbe, blhe), e ) ) ~

1

L
%Z <E¢T (—se <(c}7hbmb}f~wz) m>) (L (— <(c}fnbz, bl hcy), %>> >1
=1
(19)
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The proof mainly relies on lower bounding the right hand side above uniformly over all (6h, dm) € D.
To this end, define a centered random process R (B, C) as follows

R(B,C):= sup %Z |:E¢7—<—Sg <(szbg,b th) m>)
(=1

(6h,0m)eD
~ 7 Sh,0m
— 4y ( — s <(c}mbg, bj hey), 7H((5h,5m))”2 > )] ;

and an application of bounded difference inequality McDiarmid [1989] yields that R(B,C) <

ER(B,C) + tr/+/L with probability at least 1 — e=2L%* 1t remains to evaluate B R(B, C), which
after using a simple symmetrization inequality van der Vaart and Wellner [1997] yields

ER(B,C)<2E  sup 1+ ngu)f(— se ((cImbe, bl her), m>> (20)
(6h, 5m)eDmB '
where €1, €, ..., e, are independent Rademacher random variables. Using the fact that 1(s) is

a contraction: |¢(aq) — Yi(ag)| < |ag — ae| for all ag, ay € R, we have from the Rademacher
contraction inequality Ledoux and Talagrand [2013] that

L
E sup iZngT(5@<(C}ﬁ’bbg,b}h6e),m>>
(=1

(6h,0m)eD

L
<E sup + Z —€050 <(c}fnbg, bl hey), %>
(5h,sm)eD 4 '

I
-

=l
=

=E sup

~ T dh,0m
) <(c}mbg, bl hcy), 7|\((6h,5m))\|2> ) (21)
(0h,0m)eD ;5

where the last equality is the result of the fact that multiplying Rademacher random variables with
signs does not change the distribution. In addition, using the facts that t1(s > t) < ;(s), and that

random vectors {(c]mby, b] heg) Yk, are identically distributed and the distribution is symmetric,
it follows

P (754 <(cgmb5, blhey), %> > 7) — 7P (<(C}’l’hbg, blhey), %> > T)
—7E [1 (<(cgrhb@,bgﬁc@) m> > 7)} <E, (<(c;mb@,bgﬁc@), %» .
(

22)
Plugging (22), and (21) in (19), we have

~ T dh,0m
£ [ - se {(epmbe, bhe), pomim )| >
=1 *
~ T 6h,é
7| (6h, 5|12 ({(e]rinbe, bl er), imim) ) > 1)
6k, am)l2(2B sup 43 e ((cfrmbe, blher), i)+ )
I )ll2 (M’gm)epL; ((e] ) Tohsmlz ) tVE

Combining this with (17) and (18), we obtain the final result

I3, 5m) 2| 7P ({ (eI by, bl hes), ipml) = 7)
L ~
2FE (6h561717£))ep % ;:: g <(cgrhbz7 bl hey), %> —1—\’%) 1 <0.
Using the definitions in (13), and (14), can write
\(Sh, 5m)|l2 (m (7\9/){ tT)) <o.
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72%?();;7) implies

|(5h,6m2) |2 < 0,

which directly means that (6, 0m) = (0,0). Recall that § C N,and D L N, where S is defined

in (11), this implies that the minimizer (h,772) of the LP (10) resides in the set (h, ) & S. This
completes the proof of Lemma 2.

It is clear that choosing L > (

A.3 Proof of Theorem 2:

In light of Lemma 2, the proof of Theorem 2 comes down to computing the Rademacher complexity
€(D) defined in (13), and the tail probability estimate p, (D) defined in (14) of the set of descent
directions D defined in (12).

Upper Bound on Rademacher Complexity' We will start by evaluating (D)

¢D)=E sup er { (c]iby, bl hey), SR
@) (6h,6m)e”DfZ < ¢ )I\(éhém)\|2>

L
1 - r Shr;, ,dmr,,
<E||lJpD e (Ch”b”“’bzhcZ F) " anop (I\(64f2 6m>u2) '
=1 (6h,0m)eD ’ 2
= 2
- (
- ~ Shre ,dmre )
+E|L g (c}mbdpc , b}hcﬂpc sup WH (23)
VL ; by o || e

First note that on set D (12), we have

<AVS1+ 5

As for the remaining terms, we begin by writing

(ahFc Smre )
[[(oh,0m)]|2 L

(6’11" ,(Smr‘m)
Thamls || S VS S

2

E <

L
%Z (cembdrmb hC€|Fm>
) —1

L
ﬁZe (cgmbelrh,b hctz\rm)
=1

2

L
> E (eI mPb] I, I3 + ook ledr, 13
=1

VImllzs: + 1R ]35S,

and the second term in (23) is

L

Z bTth|Fc Cémbg‘FC)
=1

L

Z bTth|Fc Cembg|FC)
=1

<

oo oo

IN

2elog(K + N) - + 3 Emax {[el |2 belrs 12, [bIAl2llelrs, |12 }

L
{=1

IN

\/26 log(K + N) Emax{[bTh|?|le|r; [|Z., [eTri[2[|b]r |12}

< O/ max{||h|[3, ||57]3} log® (K + N),

where the second inequality by the application of Lemma 5.2.2 in Akritas et al. [2016], and the final
equality is due to the fact that ||c|re |2, and [[b|r; ||Z, are subexponential and using Lemma 3 in
van de Geer and Lederer [2013].

Plugging the bounds above back in (23), we obtain the upper bound on the Rademacher complexity
given below

e(D) < Cy/ (I3 + IAIZ) (1 + S2) log? (K + N). 24)
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Tail Probability: To apply the result in Lemma 2, we also need to evaluate

. - = (5h,6m)
o) = int P (((efrmbe bEhed. e ) 2 7) 29

It suffice to estimate the probability P(|b}ﬁc}5m + bjdhe]jm| > 7). Using Paley-Zygmund
inequality, we obtain

- 1 -
P <|bghcgam + bjshejm|* > 5 Blblhc]om + b}éhc;fnﬁ)

1 (E |b] hefdm + b] Shelm)?)?
~ 4 E|bJhc]om + b]shelm|t

By the norm equivalence of Gaussian random variables, we have that (E|b] fzc}ém +
bjsheym|*)1/4 < ¢(E |b] he] 6m + b] Shefm|?)1/2, this implies that
- 1 ~ 1 1
P(|b] he]dm + bjshe]m|? > 5 Blb]hc]om + bjshe]m|?) > 1 (26)
: c
Finally, a simple calculation shows that E |bJhcjdm + b]dhcjm|> > min{|h|3, |m|3}
(o3 + [[6R]13)-
E (bl heldm + bl shelml|? = By Eo bbbl hom” epclom + 0h " bb]ohin " coclm
+2Ep E.6h " bibJ hdm " cochmn
— By (||oml|3h bebTh + [||20hT bb]6h + 20m sk bblR)
= [loml[3]|R[I3 + [[l|3|6hl3 + 26m "ok " h
= [loml[3|R[I3 + [|772]|3]|5hl|3 + 2(5R "h)?
> [[om3][R[I3 + ]3[R]35,
> min{|[k[3, [m]3} (lom]3 + [loR]3),
where the last equality follows using the fact (6h,0m) € D C N, and hence D 1. N, which
implies that Sh ' h = ({mTrh. Normalizing by ||(6h, ém)||2, and comparing with (25) directly
shows that 72 = min{||h||3, |m |3}, and p, (D) > L;. Plugging these results and the Rademacher

complexing bound in (24) in Lemma 2 proves Theorem 2. O

A.4 Evaluation of the Projection Operator
Given a point (z’,w’, £’) € R3L, in this section we focus on deriving a closed-form expression for
proje ((x',w’,£’)), where

C= {(mvwas) € R3L| 3[(5{ + x[)u}g > |,W|7 tywe > 07 = ]-7 .- 7L}

is the convex feasible set of (6). It is straightforward to see that the resulting projection program
decouples into L convex programs in R? as

1 /= z
argmin = = ||| w ]| — [ w)
2ER,wER,EER 2 ¢ ¢

Throughout this derivation we assume that |y,| > 0 (derivation of the projection for the case y; is
easy) and as a result of which the second constraint —tyw < 0 is never active (because then w = 0
and the first constraint requires that |y,| < 0). We also consistently use the fact that ¢, and s, are
signs and nonzero.

2

s.t. |ye| — spxw — spfw <0, —tpw <O0. 27
2

Forming the Lagrangian as

L||(* fﬂ'e
E(az7w,§,u17p2) - 5 H (?) — (Té]})
£

2

+ 11 (Jye| = sexw — se8w) — pa (tew),
2
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along with the primal constraints, the KKT optimality conditions are

% — 2 — 2 — siw = 0, (28)
oL
S = W Wi s — pse — piate =0, (29)
oL
€ =¢{—& — msow =0, (30)
p1 >0, p1(Jye] — serw — spéw) = 0, 31
po >0, po (tew) = 0. (32)

We now proceed with the possible cases.

Case 1. pi1 = o = 0:

In this case we have (z,w, &) = (2}, wy, £}) and this result would only be acceptable when |y,| —
spxpwy — se&pwy < 0 and tpw, > 0.

Case 2. 1 =0, tyw = 0:

In this case the first feasibility constraint of (27) requires that |y,| < 0, which is not possible when
|ye| > 0.

Case 3. |y¢| — spxw — 5w = 0, tyw = 0:
Similar to the previous case, this cannot happen when |y,| > 0.

Case 4. ;15 = 0, |ye| — spxw — sp§w = 0:
In this case we have
lye| = sexw + sp€w.

Now combining this observation with (28) and (30) yields
lyel = s¢ (2 + prsew) w + s¢ (§ + prsew) w, (33)
and therefore

_ yel =se(mp+ &) w
2w? '

Iz G4

Similarly, (29) yields
w = wy + p18e (T + p1sew) + p1se (&) + prsew) . (35)

Knowing that w # 0, p1 can be eliminated between (33) and (35) to generate the following forth
order polynomial equation in terms of w:

2w — 2wyw® + selye| (2] + &) w — y7 = 0.

After solving this 4-th order polynomial equation (e.g., the root command in MATLAB) we pick the
real root w which obeys

tew >0, lye| — s¢ (z + &) w > 0. (36)

Note that the second inequality in (36) warrants nonnegative values for p; thanks to (34). After
picking the right root, we can explicitly obtain zq using (35) and calculate the solutions = and £ using
(28) and (30). Technically, in using the ADMM scheme for each ¢ we solve a forth-order polynomial
equation and find the projection.
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