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Abstract

Many real-world vision problems suffer from inherent ambiguities. In clinical
applications for example, it might not be clear from a CT scan alone which par-
ticular region is cancer tissue. Therefore a group of graders typically produces
a set of diverse but plausible segmentations. We consider the task of learning a
distribution over segmentations given an input. To this end we propose a generative
segmentation model based on a combination of a U-Net with a conditional vari-
ational autoencoder that is capable of efficiently producing an unlimited number
of plausible hypotheses. We show on a lung abnormalities segmentation task
and on a Cityscapes segmentation task that our model reproduces the possible
segmentation variants as well as the frequencies with which they occur, doing so
significantly better than published approaches. These models could have a high
impact in real-world applications, such as being used as clinical decision-making
algorithms accounting for multiple plausible semantic segmentation hypotheses to
provide possible diagnoses and recommend further actions to resolve the present
ambiguities.

1 Introduction

The semantic segmentation task assigns a class label to each pixel in an image. While in many
cases the context in the image provides sufficient information to resolve the ambiguities in this
mapping, there exists an important class of images where even the full image context is not sufficient
to resolve all ambiguities. Such ambiguities are common in medical imaging applications, e.g.,
in lung abnormalities segmentation from CT images. A lesion might be clearly visible, but the
information about whether it is cancer tissue or not might not be available from this image alone.
Similar ambiguities are also present in photos. E.g. a part of fur visible under the sofa might belong
to a cat or a dog, but it is not possible from the image alone to resolve this ambiguity2. Most existing
segmentation algorithms either provide only one likely consistent hypothesis (e.g., “all pixels belong
to a cat”) or a pixel-wise probability (e.g., “each pixel is 50% cat and 50% dog”).

Especially in medical applications where a subsequent diagnosis or a treatment depends on the seg-
mentation map, an algorithm that only provides the most likely hypothesis might lead to misdiagnoses

∗work done during an internship at DeepMind.
2In [1] this is defined as ambiguous evidence in contrast to implicit class confusion, that stems from an

ambiguous class definition (e.g. the concepts of desk vs. table). For the presented work this differentiation is not
required.
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Figure 1: The Probabilistic U-Net. (a) Sampling process. Arrows: flow of operations; blue blocks:
feature maps. The heatmap represents the probability distribution in the low-dimensional
latent space RN (e.g., N = 6 in our experiments). For each execution of the network,
one sample z ∈ RN is drawn to predict one segmentation mask. Green block: N -channel
feature map from broadcasting sample z. The number of feature map blocks shown is
reduced for clarity of presentation. (b) Training process illustrated for one training example.
Green arrows: loss functions.

and sub-optimal treatment. Providing only pixel-wise probabilities ignores all co-variances between
the pixels, which makes a subsequent analysis much more difficult if not impossible. If multiple
consistent hypotheses are provided, these can be directly propagated into the next step in a diagnosis
pipeline, they can be used to suggest further diagnostic tests to resolve the ambiguities, or an expert
with access to additional information can select the appropriate one(s) for the subsequent steps.

Here we present a segmentation framework that provides multiple segmentation hypotheses for
ambiguous images (Fig. 1a). Our framework combines a conditional variational auto encoder (CVAE)
[2, 3, 4, 5] which can model complex distributions, with a U-Net [6] which delivers state-of-the-art
segmentations in many medical application domains. A low-dimensional latent space encodes the
possible segmentation variants. A random sample from this space is injected into the U-Net to
produce the corresponding segmentation map. One key feature of this architecture is the ability to
model the joint probability of all pixels in the segmentation map. This results in multiple segmentation
maps, where each of them provides a consistent interpretation of the whole image. Furthermore our
framework is able to also learn hypotheses that have a low probability and to predict them with the
corresponding frequency. We demonstrate these features on a lung abnormalities segmentation task,
where each lesion has been segmented independently by four experts, and on the Cityscapes dataset,
where we artificially flip labels with a certain frequency during training.

A body of work with different approaches towards probabilistic and multi-modal segmentation exists.
The most common approaches provide independent pixel-wise probabilities [7, 8]. These models
induce a probability distribution by using dropout over spatial features. Whereas this strategy fulfills
this line of work’s objective of quantifying the pixel-wise uncertainty, it produces inconsistent outputs.
A simple way to produce plausible hypotheses is to learn an ensemble of (deep) models [9]. While
the outputs produced by ensembles are consistent, they are not necessarily diverse and ensembles
are typically not able to learn the rare variants as their members are trained independently. In order
to overcome this, several approaches train models jointly using the oracle set loss [10], i.e. a loss
that only accounts for the closest prediction to the ground truth. This has been explored in [11] and
[1] using an ensemble of deep networks, and in [12] and [13] using one common deep network with
M heads. While multi-head approaches may have the capacity to capture a diverse set of variants,
they are not equipped to learn the occurrence frequencies of individual variants. Two common
disadvantages of both ensembles and M heads models are their ungraceful scaling to large numbers
of hypotheses, and their requirement of fixing the number of allowed hypotheses at training time.
Another set of approaches to produce multiple diverse solutions relies on graphical models, such as
junction chains [14], and more generally Markov Random Fields [15, 16, 17, 18]. While many of the
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previous approaches are guaranteed to find the best diverse solutions, these are confined to structured
problems whose dependencies can be described by tractable graphical models.

The task of image-to-image translation [19] tackles a very similar problem: an under-constrained
domain transfer of images needs to be learned. Many of the recent approaches employ generative
adversarial networks (GANs) which are known to suffer from challenges such as ‘mode-collapse’ [20].
In an attempt to solve the mode-collapse problem, the ‘bicycleGAN’ [21] involves a component that
is similar in architecture to ours. In contrast to our proposed architecture, their model encompasses
a fixed prior distribution and during training their posterior distribution is only conditioned on the
output image. Very recent work on generating appearances given a shape encoding [22] also combines
a U-Net with a VAE, and was developed concurrently to ours. In contrast to our proposal, their
training requires an additional pretrained VGG-net that is employed as a reconstruction loss. Finally,
in [23] is proposed a probabilistic model for structured outputs based on optimizing the dissimilarity
coefficient [24] between the ground truth and predicted distributions. The resultant approach is
assessed on the task of hand pose estimation, that is, predicting the location of 14 joints, arguably a
simpler space compared to the space of segmentations we consider here. Similarly to the approach
presented below, they inject latent variables at a later stage of the network architecture.

The main contributions of this work are: (1) Our framework provides consistent segmentation maps
instead of pixel-wise probabilities and can therefore give a joint likelihood of modes. (2) Our model
can induce arbitrarily complex output distributions including the occurrence of very rare modes,
and is able to learn calibrated probabilities of segmentation modes. (3) Sampling from our model
is computationally cheap. (4) In contrast to many existing applications of deep generative models
that can only be qualitatively evaluated, our application and datasets allow quantitative performance
evaluation including penalization of missing modes.

2 Network Architecture and Training Procedure

Our proposed network architecture is a combination of a conditional variational auto encoder [2, 3, 4,
5] with a U-Net [6], with the objective of learning a conditional density model over segmentations,
conditioned on the image.

Sampling. The central component of our architecture (Fig. 1a) is a low-dimensional latent space
RN (e.g., N = 6, which performed best in our experiments). Each position in this space encodes a
segmentation variant. The ‘prior net’, parametrized by weights ω, estimates the probability of these
variants for a given input image X . This prior probability distribution (called P in the following) is
modelled as an axis-aligned Gaussian with meanµprior(X;ω) ∈ RN and varianceσprior(X;ω) ∈ RN .
To predict a set of m segmentations we apply the network m times to the same input image (only
a small part of the network needs to be re-evaluated in each iteration, see below). In each iteration
i ∈ {1, . . . ,m}, we draw a random sample zi ∈ RN from P

zi ∼ P (·|X) = N
(
µprior(X;ω), diag(σprior(X;ω))

)
, (1)

broadcast the sample to an N -channel feature map with the same shape as the segmentation map, and
concatenate this feature map to the last activation map of a U-Net (the U-Net is parameterized by
weights θ). A function fcomb. composed of three subsequent 1× 1 convolutions (ψ being the set of
their weights) combines the information and maps it to the desired number of classes. The output, Si,
is the segmentation map corresponding to point zi in the latent space:

Si = fcomb.
(
fU-Net(X; θ), zi;ψ

)
. (2)

Notice that when drawing m samples for the same input image, we can reuse the output of the prior
net and the feature activations of the U-Net. Only the function fcomb. needs to be re-evaluated m
times.

Training. The networks are trained with the standard training procedure for conditional VAEs
(Fig. 1b), i.e. by minimizing the variational lower bound (Eq. 4). The main difference with respect to
training a deterministic segmentation model, is that the training process additionally needs to find a
useful embedding of the segmentation variants in the latent space. This is solved by introducing a
‘posterior net’, parametrized by weights ν, that learns to recognize a segmentation variant (given the
raw imageX and the ground truth segmentation Y ) and to map this to a positionµpost(X,Y ; ν) ∈ RN
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with some uncertainty σpost(X,Y ; ν) ∈ RN in the latent space. The output is denoted as posterior
distribution Q. A sample z from this distribution,

z ∼ Q(·|X,Y ) = N
(
µpost(X,Y ; ν), diag(σpost(X,Y ; ν))

)
, (3)

combined with the activation map of the U-Net (Eq. 1) must result in a predicted segmentation S
identical to the ground truth segmentation Y provided in the training example. A cross-entropy loss
penalizes differences between S and Y (the cross-entropy loss arises from treating the output S as the
parameterization of a pixel-wise categorical distribution Pc). Additionally there is a Kullback-Leibler
divergence DKL(Q||P ) = Ez∼Q

[
log Q− log P

]
which penalizes differences between the posterior

distribution Q and the prior distribution P . Both losses are combined as a weighted sum with a
weighting factor β, as done in [25]:

L(Y,X) = Ez∼Q(·|Y,X)

[
− log Pc(Y |S(X, z))

]
+ β ·DKL

(
Q(z|Y,X)||P (z|X)

)
. (4)

The training is done from scratch with randomly initialized weights. During training, this KL loss
“pulls” the posterior distribution (which encodes a segmentation variant) and the prior distribution
towards each other. On average (over multiple training examples) the prior distribution will be
modified in a way such that it “covers” the space of all presented segmentation variants for a specific
input image3.

3 Performance Measures and Baseline Methods

In this section we first present the metric used to assess the performance of all approaches, and then
describe each competitor approach used in the comparisons.

3.1 Performance measures

As it is common in the semantic segmentation literature, we employ the intersection over union
(IoU) as a measure to compare a pair of segmentations. However, in the present case, we not only
want to compare a deterministic prediction with a unique ground truth, but rather we are interested
in comparing distributions of segmentations. To do so, we use the generalized energy distance
[26, 27, 28], which leverages distances between observations:

D2
GED(Pgt, Pout) = 2E

[
d(S, Y )

]
− E

[
d(S, S

′
)
]
− E

[
d(Y, Y

′
)
]
, (5)

where d is a distance measure, Y and Y
′

are independent samples from the ground truth distribution
Pgt, and similarly, S and S

′
are independent samples from the predicted distribution Pout. The

energy distance DGED is a metric as long as d is also a metric [29]. In our case we choose d(x, y) =
1− IoU(x, y), which as proved in [30, 31], is a metric. In practice, we only have access to samples
from the distributions that models induce, so we rely on statistics of Eq. 5, D̂2

GED. The details about
its computation for each experiment are presented in Appendix B.

3.2 Baseline methods

With the aim of providing context for the performance of our proposed approach we compare against
a range of baselines. To the best of our knowledge there exists no other work that has considered
capturing a distribution over multi-modal segmentations and has measured the agreement with such
a distribution. For fair comparison, we train the baseline models whose architectures are depicted
in Fig. 2 in the exact same manner as we train ours. The baseline methods all involve the same
U-Net architecture, i.e. they share the same core component and thus employ comparable numbers of
learnable parameters in the segmentation tasks.

Dropout U-Net (Fig. 2a). Our ‘Dropout U-Net’ baselines follow the Bayesian segnet’s [7] proposi-
tion: we dropout the activations of the respective incoming layers of the three inner-most encoder
and decoder blocks with a dropout probability of p = 0.5 during training as well as when sampling.

3An open source re-implementation of our approach can be found at https://github.com/SimonKohl/
probabilistic_unet.
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Figure 2: Baseline architectures. Arrows: flow of operations; blue blocks: feature maps; red blocks:
feature maps with dropout; green block broadcasted latents. Note that the number of feature
map blocks shown is reduced for clarity of presentation. (a) Dropout U-Net. (b) U-Net
Ensemble. (c) M-Heads. (d) Image2Image VAE.

U-Net Ensemble (Fig. 2b). We report results for ensembles with the number of members matching
the required number of samples (referred to as ‘U-Net Ensemble’). The original deterministic variant
of the U-Net is the 1-sample corner case of an ensemble.

M-Heads (Fig. 2c). Aiming for diverse semantic segmentation outputs, the works of [12] and [13]
propose to branch off M heads after the last layer of a deep net each of which contributes one output
variant. An adjusted cross-entropy loss that adaptively assigns heads to ground-truth hypotheses is
employed to promote diversity while reducing the risk of idle heads: the loss of the best performing
head is weighted with a factor of 1− ε, while the remaining heads each contribute with a weight of
ε/(M − 1) to the loss. For our ‘M-Heads’ baselines we again employ a U-Net core and set ε = 0.05
as proposed by [12]. In order to allow for the evaluation of 4, 8 and 16 samples, we train M-Heads
models with the corresponding number of heads.

Image2Image VAE (Fig. 2d). In [21] the authors propose a U-Net VAE-GAN hybrid for multi-
modal image-to-image translation, that owes its stochasticity to normal distributed latents that are
broadcasted and fed into the encoder path of the U-Net. In order to deal with the complex solution
space in image-to-image translation tasks, they employ an adversarial discriminator as additional
supervision alongside a reconstruction loss. In the fully supervised setting of semantic segmentation
such an additional learning signal is however not necessary and we therefore train with a cross-entropy
loss only. In contrast to our proposition, this baseline, which we refer to as the ‘Image2Image VAE’,
employs a prior that is not conditioned on the input image (a fixed normal distribution) and a posterior
net that is not conditioned on the input either.

In all cases we examine the models’ performance when drawing a different number of samples (1, 4,
8 and 16) from each of them.

4 Results

A quantitative evaluation of multiple segmentation predictions per image requires annotations from
multiple labelers. Here we consider two datasets: The LIDC-IDRI dataset [32, 33, 34] which contains
4 annotations per input, and the Cityscapes dataset [35], which we artificially modify by adding
synonymous classes to introduce uncertainty in the way concepts are labelled.

4.1 Lung abnormalities segmentation

The LIDC-IDRI dataset [32, 33, 34] contains 1018 lung CT scans from 1010 lung patients with
manual lesion segmentations from four experts. This dataset is a good representation of the typical
ambiguities that appear in CT scans. For each scan, 4 radiologists (from a total of 12) provided
annotation masks for lesions that they independently detected and considered to be abnormal. We
use the masks resulting from a second reading in which the radiologists were shown the anonymized
annotations of the others and were allowed to make adjustments to their own masks.

For our experiments we split this dataset into a training set composed of 722 patients, a validation set
composed of 144 patients, and a test set composed of the remaining 144 patients. We then resampled
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Figure 3: Qualitative results. The first row shows the input image and the ground truth segmentations.
The following rows show results from the baselines and from our proposed method. (a)
lung CT scan from the LIDC test set. Ground truth: 4 graders. (b) Cityscapes. Images
cropped to squares for ease of presentation. Ground truth: 32 artificial modes. Best viewed
in colour.

Figure 4: Comparison of approaches using the squared energy distance. Lower energy distances
correspond to better agreement between predicted distributions and ground truth distribution
of segmentations. The symbols that overlay the distributions of data points mark the mean
performance. (a) Performance on lung abnormalities segmentation on our LIDC-IDRI
test-set. (b) Performance on the official Cityscapes validation set (our test set).

the CT scans to 0.5mm× 0.5mm in-plane resolution (the original resolution is between 0.461mm
and 0.977mm, 0.688mm on average) and cropped 2D images (180 × 180 pixels) centered at the
lesion positions. The lesion positions are those where at least one of the experts segmented a lesion.
By cropping the scans, the resultant task is in isolation not directly clinically relevant. However, this
allows us to ignore the vast areas in which all labelers agree, in order to focus on those where there is
uncertainty. This resulted in 8882 images in the training set, 1996 images in the validation set and
1992 images in the test set. Because the experts can disagree whether the lesion is abnormal tissue,
up to 3 masks per image can be empty. Fig. 3a shows an example of such lesion-centered images and
the masks provided by 4 graders.

As all models share the same U-Net core component and for fairness and ease of comparability, we
let all models undergo the same training schedule, which is detailed in subsection H.1.

In order to grasp some intuition about the kind of samples produced by each model, we show in
Fig. 3a, as well as in Appendix F, representative results for the baseline methods and our proposed
Probabilistic U-Net. Fig. 4a shows the squared generalized energy distance D̂2

GED for all models as a
function of the number of samples. The data accumulations visible as horizontal stripes are owed
to the existence of empty ground-truth masks. The energy distance on the 1992 images large lung
abnormalities test set, decreases for all models as more samples are drawn indicating an improved
matching of the ground-truth distribution as well as enhanced sample diversity. Our proposed
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